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1 Introduction

Filtering is a common problem in many applications. The essential concept is that
there is an unseen Markov process, which influences the state of some observed pro-
cess, and our task is to approximate the state of the unseen process using a form of
Bayes’ theorem. Many results have been obtained in this direction, most famously
the Kalman filter (Kalman 1960; Kalman and Bucy 1961), which assumes the under-
lying processes considered are Gaussian, and gives explicit formulae accordingly.
Similarly, under the assumption that the underlying process is a finite-state Markov
chain, a general formula to calculate the filter can be obtained (the Wonham fil-
ter Wonham (1965)). These results are well known, in both discrete and continuous
time (see Bain and Crisan (2009) or Cohen and Elliott (2015) Chapter 21 for further
general discussion).

In this paper, we consider a simple setting in discrete time, where the underly-
ing process is a finite-state Markov chain. Our concern is to study uncertainty in
the dynamics of the underlying processes, in particular, its effect on the behaviour
of the corresponding filter. That is, we assume that the observer has only imperfect
knowledge of the dynamics of the underlying process and of their relationship with
the observation process, and wishes to incorporate this uncertainty in their estimates
of the unseen state. We are particularly interested in allowing the level of uncer-
tainty in the filtered state to be endogenous to the filtering problem, arising from the
uncertainty in parameter estimates and process dynamics.

We model this uncertainty in a general manner, using the theory of nonlinear
expectations, and concern ourselves with a description of uncertainty for which
explicit calculations can be carried out, and which can be motivated by considering
statistical estimation of parameters. We then apply this to building a dynamically
consistent expectation for random variables based on future states, and to a general
control problem, with learning, under uncertainty.

1.1 Basic filtering

Consider two stochastic processes, X = {Xt }t≥0 and Y = {Yt }t≥0. Let � be the
space of paths of (X, Y ) and P be a probability measure on �. We denote by {Ft }t≥0
the (completed) filtration generated by X and Y and denote by Y = {Yt }t≥0 the
(completed) filtration generated by Y. The key problem of filtering is to determine
estimates of φ(Xt ) given Yt , that is, EP[φ(Xt )|Yt ], where φ is an arbitrary Borel
function.

Suppose that X is a Markov chain with (possibly time-dependent) transition matrix
A�

t under P (the transpose here saves notational complexity later). Without loss of
generality, we assume that X takes values in the standard basis vectors {ei}Ni=1 of R

N

(where N is the number of states of X), and so we write

Xt = AtXt−1 + Mt,

where EP[Mt+1|Ft ] = 0, so EP[Xt |Ft−1] = AtXt−1.
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We suppose the process Y is multivariate real-valued1. The law of Y depends on
X, in particular, the P-distribution of Yt given {Xs}s≤t ∪{Ys}s<t (that is, given all past
observations of X and Y and the current state of X) is

Yt ∼ c(y; t, Xt )dμ(y)

for μ a reference measure on
(
R

d ,B
(
R

d
))
, where ∼ is used to indicate the density

of the distribution of a random variable.
For simplicity, we assume that Y0 ≡ 0, so no information is revealed about X0 at

time 0. It is convenient to write Ct(y) = C(y; t) for the diagonal matrix with entries
c(y; t, ei), so that

Ct(y)Xt = c(y; t, Xt )Xt .

Note that these assumptions, in particular the values of A and C, depend on the choice
of probability measure P. Conversely, as our space � is the space of paths of (X, Y ),
the measure P is determined by A and C. We call A and C the generators of our
probability measure.

As we have assumed Xt takes values in the standard basis in R
N , the expecta-

tion EP[Xt |Yt ] determines the entire conditional distribution of Xt given Yt . In this
discrete time context, the filtering problem can be solved in a fairly simple manner:
Suppose we have already calculated pt−1 := EP[Xt−1|Yt−1]. Then, by linearity and
the dynamics of X, using the fact

EP

[
Mt |Yt−1

] = EP

[
EP

[
Mt |Ft−1

]∣∣Yt−1
] = 0,

we can calculate

EP

[
Xt |Yt−1

] = EP

[
AtXt−1 + Mt |Yt−1

] = Atpt−1.

Bayes’ theorem then states that, with probability one, with ∝ denoting equality up
to proportionality,

P (Xt = ei |Yt ) = P (Xt = ei |{Ys}s<t , Yt ) ∝ c(Yt ; t, ei)P(Xt = ei |Yt−1),

which can be written in a simple matrix form, as given in the following theorem
which summarizes the classical filter.

Theorem 1 For X a hidden Markov chain with transition matrix A�
t , and Y an

observation process with conditional density (given Xt ) given by

Yt |Xt ∼ c(y; t, Xt )dμ(y) = 1�Ct(y)Xtdμ(y),

the conditional distribution E[Xt |Yt ] = pt satisfies the recursion

pt = G(pt−1, At , Ct , Yt ) := Ct(Yt )Atpt−1

1�Ct(Yt )Atpt−1
, (1)

where 1 denotes a vector with all components 1.

1This assumption can easily be relaxed, to allow Y to take values in an appropriate Polish or Blackwell
space. We restrict to the real setting purely for simplicity.
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We call pt the “filter state” at time t. Note that, if we assume the density c is
positive, At is irreducible and pt−1 has all entries positive, then pt will also have all
entries positive.

In practice, the key problem with implementing these methods is the requirement
that we know the underlying transition matrix A� and the density C. These are gener-
ally not known perfectly, but need to be estimated prior to the implementation of the
filter. Uncertainty in the choice of these parameters will lead to uncertainty in the esti-
mates of the filtered state, and the aim of this paper is to derive useful representations
of that uncertainty.

As variation in the choice of A and C corresponds to a different choice of measure
P, we see that using an uncertain collection of generators corresponds naturally to
uncertainty regarding P. This type of uncertainty, where the probability measure is
not known, is commonly referred to as “Knightian” uncertainty (with reference to
Knight (1921), related ideas are also discussed by Keynes (1921) and Wald (1945)).

Effectively, we wish to consider the propagation of uncertainty in Bayesian updat-
ing (as the filter is simply a special case of this). Huber and Ronchetti 2009 p. 331
briefly touch on this, however (based on earlier work by Kong) argue that this propa-
gation is computationally infeasible. However, their approach was based on Choquet
integrals, rather than nonlinear (convex) expectations in the style of Peng (2010) and
others. In the coming sections, we see how the structure of nonlinear expectations
allows us to derive comparatively simple rules for updating.

Remark 1 While we will present our theory in the context where X is a finite
state Markov chain, our approach does not depend in any significant way on this
assumption. In particular, it would be equally valid, mutatis mutandis, if we supposed
that X followed the dynamics of the Kalman filter, and our uncertainty was on the
coefficients of the filter. We specialize to the Markov chain case purely for the sake of
concreteness.

The aim of this paper is to provide, with a minimum of technical complexity, the
basic structures which underlie this approach to filtering with a nonlinear expecta-
tion. It proceeds as follows: In Section 2 we give some key facts about the measures
which naturally appear in a filtering context. In Section 3, we introduce the theory
of nonlinear expectations, and a means of connecting these with statistical estima-
tion from Cohen (2017). Section 4 unites these expectations with filtering, giving
recursive equations which replace the filtering equation in Theorem 1, it also out-
lines some concrete simplifications of this general structure, depending on whether
the underlying parameters can vary through time and how new information is to be
incorporated. In Section 5 we consider dynamic properties of this nonlinear expecta-
tion when looking at future events, and some connections with the theory of (discrete
time) BSDEs. Finally, Section 6 considers a generic control problem in this context.

2 Conditionally Markov measures

In order to incorporate learning in our nonlinear expectations and filtering, it is useful
to extend slightly from the family of measures previously described. In particular, we



Probability, Uncertainty and Quantitative Risk             (2020) 5:4 Page 5 of 34

wish to allow the dynamics to depend on past observations, while preserving enough
Markov structure to enable filtering. The following classes of probability measures
will be of interest.

Definition 1 We write M1 for the space of probability measures equivalent to a
reference measure P.

Let MM ⊂ M1 denote the probability measures under which

• X is a Markov chain, that is, for all t, Xt+1 is independent of Ft given Xt ;
• {Ys}s≥t+1 is independent of Ft given Xt+1;
• both X and Y are time homogeneous, that is, the conditional distributions of

Xt+1|Xt and Yt |Xt do not depend on t.

Let MM|Y ⊂ M1 denote the probability measures under which

• X is a conditional Markov chain, that is, for all t,Xt+1 is independent ofFt given
Xt and {Ys}s≤t ; and

• {Ys}s≥t+1 is independent of Ft given {Xt+1} ∪ {Ys}s≤t .

We note that, if we consider a measure in MM|Y , there is a natural notion of the
generators A and C. In particular, MM corresponds to those measures under which
the generators A and C are constant, while MM|Y corresponds to those measures
under which the generators A and C are functions of time and {Ys}s≤t (i.e. {Yt }t≥0-
predictable processes).

For each t, these generators determine the measure onFt givenFt−1, and (together
with the distribution of X0) this determines the measure at all times. It is straightfor-
ward to verify that our filtering equations hold for all measures in MM|Y , with the
appropriate modification of the generators.

Definition 2 For a measure Q ∈ MM|Y , we write
(
AQ, CQ(·)) for the generator

of (X, Y ) under Q, recalling that C
Q

t (y) = diag

({
c
Q

t (y; ei)
}N

i=1

)
, and that A

Q

t

and C
Q

t are now allowed to depend on {Ys}s<t . For notational convenience, we shall
typically not write the dependence on {Ys}s<t explicitly.

Similarly, for a {Yt }t≥0-predictable process (At , Ct (·))t≥0 taking values in the
product of the space of transition matrices and the space of diagonal matrix-valued
functions, where each diagonal element is a probability density on R

d , and p0 a
probability vector in R

N , we write Q(A, C, p0) for the measure with generator
(At , Ct (·))t≥0 and initial distribution EQ[X0] = p0.

In what follows, we will be variously wishing to restrict a measure Q to a σ -
algebra, and to condition a measure on a σ -algebra. To prevent notational confusion,
we shall write Q‖F for the restriction of Q to F , and Q|F for Q conditioned on F .

In our setting, our fundamental problem is that we do not know what measure
is “true”, and so work instead under a family of measures. In this context, measure
changes can be described as follows.

Proposition 1 Let P̄ be a reference probability measure under which X is a
sequence of i.i.d. uniform random variables from the basis vectors {e1, ...eN } ⊂ R

N
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and {Yt }t≥0 is independent of X, with i.i.d. distribution Yt ∼ dμ. The measure
Q(A, C, p0) ∈ MM|Y has Radon–Nikodym derivative (or likelihood)

dQ(A, C, p0)‖FT

dP̄‖FT

= N
(
X�
0 p0

) T∏

t=1

((
X�

t At−1Xt−1

) (
1�C(Yt )Xt

))
.

Remark 2 The requirement that P̄ is a probability measure is unnecessary (i.e.,
in Bayesian parlance, the reference distribution may be improper). For example, we
can use Lebesgue measure on R as the marginal reference measure μ for Yt without
difficulty, in which case ct (y) is the usual (Lebesgue) density of the distribution of Yt .

Proof A simple verification of this result is possible by factoring the proposed
Radon–Nikodym density as the product of three terms:

dQ(A, C, p0)‖FT

dP̄‖FT

= X�
0 p0

1/N
·

T∏

t=1

(
X�

t At−1Xt−1

)
·

T∏

t=1

(
1�C(Yt )Xt

)
.

The first term, (X�
0 p0)/(1/N), changes the distribution of X0 from uniform to p0,

as is seen from the calculation

E
P̄

[
X0

(
X�
0 p0

)
/(1/N)

]
= NE

P̄

[
X0X

�
0

]
p0 = NN−1INp0 = p0.

This is clearly a probability density with respect to P̄.
The second term,

∏T
t=1

(
X�

t At−1Xt−1
)
, changes the conditional distribution

of Xt |{Xs}s<t (for each t), from a uniform distribution to the probability vector
At−1Xt−1; as can be demonstrated by a calculation similar to that for X0 in the first
term. As the columns of At−1 sum to one, it is easy to verify that this product has
expectation 1 (conditional onX0) and is nonnegative, that is, it is a probability density
which does not modify the distribution of X0.

The third term changes the conditional distribution of Yt |{Xt, Xs, Ys}s �=t from μ

to C(y)Xtdμ(y) = c(y; Xt)dμ(y). This is most easily seen by calculating

EQ[g(Yt )|{Xt, Xs, Ys}s �=t ] =
∫

g(y)1�C(y)Xtdμ(y) =
∫

g(y)c(y; Xt)dμ(y)

for a general bounded Borel function g. As c is defined to be a density, it is again
easy to verify that the product

∏(
1�C(Yt )Xt

)
is a probability density with respect

to P̄, and that it does not modify the distribution of X.
As we are on a canonical space, the measureQ is determined by the laws of X and

Y, and so we have the result.

The above proposition gives a Radon–Nikodym derivative adapted to the full
filtration {Ft }t≥0. In practice, it is also useful to consider the corresponding Radon–
Nikodym derivative adapted to the observation filtration {Yt }t≥0. As this filtration
is generated by the process Y, it is enough to multiply together the conditional
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distributions of Yt |Yt−1, leading to the following convenient representation. Recall
that

∑

i

pict (y; ei) = 1�Ct(y)p.

Proposition 2 For Q(A, C, p0) ∈ MM|Y , the Radon–Nikodym derivative
restricted to YT is given by

Lobs(Q(A, C, p0)|y) := dQ(A, C, p0)‖YT

dP̄‖YT

=
T∏

t=1

1�Ct(Yt )Atp
(A,C),p0
t−1 ,

where p
(A,C),p0
t−1 is the solution to the filtering problem in the measure Q(A, C, p0),

as determined by (1) (and so includes further dependence on {Ys}s<t ).

Proof The distribution of Yt |Yt−1 is determined by (for Borel sets B)

EQ[1Yt∈B |Yt−1] = EQ

[
EQ[1Yt∈B |Yt−1 ∨ σ(Xt )]

∣
∣∣Yt−1

]

= EQ

[∫

B

1�Ct(y)Xtdμ(y)

∣
∣
∣Yt−1

]

=
∫

B

1�Ct(y)EQ[Xt |Yt−1]dμ(y)

=
∫

B

1�Ct(y)Atp
(A,C),p0
t−1 dμ(y).

As Yt |Yt−1 has distribution μ under P̄, it follows that 1�Ct(Yt )Atp
(A,C),p0
t−1 is the

Radon–Nikodym density of the conditional law of Yt |Yt−1 under Q with respect to
its law under P̄. As {Ys}s≤T generates YT , the result follows by induction.

In order to apply classical statistical methods, we take a (generic) parameterization
of this family of measures. This will also allow us to encode which parts of the
generators we believe are static (and so can be learnt from observations), and which
are dynamic (and so will violate stationarity).

Assumption 1 For fixed m > 0, we assume we are given a (Borel measurable)
function � : N × R

m × R
m → A such that the generators satisfy

�(t,S,Dt ) = (At , Ct ),

where S is a static parameter, and Dt is a parameter which may vary at each
point in time. We write Q for the family of measures in MM|Y induced by this
parameterization, and typically omit to write the argument t of �.

With a slight abuse of notation, if (At , Ct ) = �(t,S,Dt ), we write Q(S,D, p0)

as an alias for the measure Q(A, C, p0), and G(t,S,Dt , p) as an alias for the
function G(t, A, C, p) defined in (1).
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3 Nonlinear expectations

In this section, we introduce the concepts of nonlinear expectations and convex risk
measures, and discuss their connection with penalty functions on the space of mea-
sures. These objects provide a technical foundation with which to model the presence
of uncertainty in a random setting. This theory is explored in some detail in Föllmer
and Schied (2002b). Other key works which have used or contributed to this the-
ory, in no particular order, are Hansen and Sargent (2008) (see also Hansen and
Sargent (2005, 2007) for work related to what we present here); Huber and Ron-
cetti (2009), Peng (2010), El Karoui et al. (1997), Delbaen et al. (2010), Duffie and
Epstein (1992), Rockafellar et al. (2006), and Riedel (2004) and Epstein and Schnei-
der (2003). We base our terminology on that used in Föllmer and Schied (2002b) and
Delbaen et al. (2010).

We here present, without proof, the key details of this theory as needed for our
analysis.

Definition 3 For a σ -algebra G on �, let L∞(G) denote the space of essentially
bounded G-measurable random variables. A nonlinear expectation on L∞(G) is a
mapping

E : L∞(G) → R

satisfying the assumptions

• Strict Monotonicity: for any ξ1, ξ2 ∈ L∞(G), if ξ1 ≥ ξ2 a.s., then E(ξ1) ≥ E(ξ2)

and, if in addition E(ξ1) = E(ξ2), then ξ1 = ξ2 a.s.;
• Constant triviality: for any constant k, E(k) = k;
• Translation equivariance: for any k ∈ R, ξ ∈ L∞(G), E(ξ + k) = E(ξ) + k.

A “convex” expectation also satisfies

• Convexity: for any λ ∈ [0, 1], ξ1, ξ2 ∈ L∞(G),

E(λξ1 + (1 − λ)ξ2) ≤ λE(ξ1) + (1 − λ)E(ξ2).

If E is a convex expectation, then the operator defined by ρ(ξ) = E(−ξ) is called
a convex risk measure. A particularly nice class of convex expectations is those which
satisfy

• Lower semicontinuity: For a sequence {ξn}n∈N ⊂ L∞(G) with ξn ↑ ξ pointwise
(and ξ ∈ L∞(G)), we have E(ξn) ↑ E(ξ).

The following theorem (which was expressed in the language of risk measures) is
due to Föllmer and Schied (2002a) and Frittelli and Rosazza Gianin (2002).

Theorem 2 Suppose E is a lower semicontinuous convex expectation. Then there
exists a “penalty” functionR : M1 → [0, ∞] such that

E(ξ) = sup
Q∈M1

{
EQ[ξ ] − R(Q)

}
.
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Provided R(Q) < ∞ for some Q equivalent to P, we can restrict our attention to
measures inM1 equivalent to P without loss of generality.

Remark 3 This result gives some intuition as to how a convex expectation can
model “Knightian” uncertainty. One considers all the possible probability measures
on the space, and then selects the maximal expectation among all measures, penal-
izing each measure depending on its plausibility, as measured by R(·). As convexity
of E is a natural requirement of an “uncertainty averse” assessment of outcomes,
Theorem 2 shows that this is the only way to construct an “expectation” E which
penalizes uncertainty, while preserving monotonicity, translation equivariance, and
constant triviality (and lower semicontinuity).

In order to relate our penalty function with the temporal structure of filtering, we
focus our attention on measures in our parametric familyQ, defined in Assumption 1.
We also allow the penalty R to depend on time. In the analysis of this paper, the fol-
lowing definition allows us to obtain a (forward) recursive structure in our nonlinear
expectations, as one might expect in a filtering context.

Definition 4 We say a family of penalty functions {Rt }t≥0, is additive if it can be
written in the form

Rt (Q) =
{ (

1
k
αt (Q, {Ys}s≤t )

)k′
if Q ∈ Q

+∞ otherwise,

where, if Q = Q(S,D, p0) and p
Q

t is the solution of the filtering Eq. 1 under Q, the
function αt is of the form

αt

(
Q, {Ys}s≤t

) = κprior(p0,S) +
∑

s≤t

γs

(
S,Ds , {Yn}n≤s , p

Q

s−1

)
+ mt .

Here k and k′ are positive constants, κprior and {γt }t≥0 are known real functions
bounded below, and mt is a Yt -measurable scalar random variable which ensures
the normalization condition infQ α

(
Q, {Ys}s≤t

) = 0 holds for almost all observation
sequences {Ys}s≥0.

3.1 DR-expectations

From the discussion above, it is apparent that we can focus our attention on calcu-
lating the penalty function R, rather than working with the nonlinear expectation
directly. This penalty function is meant to encode how “unreasonable” a probability
measure Q is as a model for our outcomes.

In Cohen (2017), we have considered a framework which links the choice of the
penalty function to statistical estimation of a model. The key idea of Cohen (2017)
is to use the negative log-likelihood function for this purpose, where the likelihood
is taken against an arbitrary reference measure, and evaluated using the observed
data. This directly uses the statistical information from observations to quantify our
uncertainty.
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In this paper, we make a slight extension of this idea, to explicitly incorporate prior
beliefs. In particular, we replace the log-likelihood with the log-posterior density,
which in turn gives an additional term in the penalty.

Definition 5 For Q ∈ Q, the observed likelihood Lobs(Q|y) is given in Propo-
sition 2. Inspired by a “Bayesian” approach, we augment this by the addition of a
prior distribution over Q. Suppose a (possibly improper) prior is given, with density
in terms of the parameters (S, {Dt }t≥0)

exp

(

−κprior(S, p0) −
∑

t

γprior(S,Dt )

)

.

The posterior relative density is given by the product

L(Q|y) = Lobs(Q|y) exp
(

−κprior(S) −
∑

t

γprior(S,Dt )

)

.

The “Q|yt -divergence” is defined to be the normalized negative log-posterior
relative density

αy(Q) := − log (L(Q|y)) + sup
Q̃∈Q

{
log

(
L
(
Q̃|y

))}
. (2)

Remark 4 The right-hand side of (2) is well defined whether or not a maximum
a posteriori (MAP) estimator exists. Given a MAP estimate Q̂ ∈ Q, we would have
the simpler representation

αy(Q) := − log

(
L(Q|y)
L(Q̂|y)

)

.

Definition 6 For fixed observations yt = (Y1, Y2, ..., Yt ), for uncertainty aversion
parameters k > 0 and k′ ∈ [1, ∞], we define the convex expectation

Ek,k′
yt

(ξ ) := sup
Q∈Q

{

EQ[ξ |yt ] −
(
1

k
αyt (Q)

)k′}

, (3)

where we adopt the convention x∞ = 0 for x ∈ [0, 1] and +∞ otherwise2.

We call Ek,k′
yt

the “DR-expectation” (with parameter k, k′). We may omit to write
k, k′ for notational simplicity.

With deliberate ambiguity, the acronym “DR” can either stand for “divergence
robust” or “data-driven robust”.

Remark 5 By construction, Q is parameterized by S and {Dt }t≥0, which lie in
R

m for some m. The divergence and conditional expectations given yt are continuous

2The convention 1∞ = 0 simply ensures that x∞ is lower semicontinuous, and also that x �→ x∞ is the
convex conjugate of x �→ x1.
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with respect to this parameterization and can be constructed to be Borel measurable
with respect to yt . Consequently, measure theoretic concerns which arise from taking
the supremum will not cause difficulty, in particular, the DR-expectation defined in
(3) is guaranteed to be a Borel measurable function of yt for every ξ . (This follows
from Filippov’s implicit function theorem, see, for example, Cohen and Elliott (2015)
Appendix 10.)

Remark 6 The choice of parameters k and k′ determines much of the behaviour
of the nonlinear expectation. The role of k is simple, as it acts to scale the uncer-
tainty aversion—a higher value of k results in smaller penalties, and hence the
DR-expectation will lie further above the MAP expectation. The parameter k′ deter-
mines the “curvature” of the uncertainty aversion. Taking k′ = ∞ results in the
DR-expectation being positively homogeneous, that is, it is a coherent expectation
in the sense of Artzner et al. (1999). In Cohen (2017), the asymptotic behaviour of
the DR-expectation is studied, under the assumption of iid observations. For k′ = 1,
the DR-expectation of corresponds (for large samples) to the expected value under
the maximum likelihood model plus k/2 times the sampling variance of the expecta-
tion, while for k′ = ∞, the DR-expectation corresponds to the expected value under
the maximum likelihood model plus

√
2k times the sampling standard error of the

expectation. In this paper, we will not be considering such an asymptotic result, so
the values of k and k′ will not play a significant role. Their presence nevertheless
gives a more general class of penalty functions in Definition 4, and they are kept for
notational consistency with other papers considering the DR-expectation.

Remark 7 In principle, we could now apply the DR-expectation framework to a
filtering context as follows: Take a collection of models Q. For a random variable ξ ,
and for each measure Q ∈ Q, compute EQ[ξ |yt ] and αyt (Q). Taking a supremum as
in (3), we obtain the DR-expectation. However, this is generally not computationally
tractable in this form.

Lemma 1 Let {Ft }t≥0 be a filtration such that Y is adapted. For Ft -measurable
random variables, the choice of horizon T ≥ t in the definition of the penalty function
α is irrelevant. In particular, for Ft -measurable ξ , if Q‖Ft

= {Q‖Ft
: Q ∈ Q}, we

know

Eyt (ξ ) = sup
Q∈Q‖Ft

{

EQ[ξ |yt ] −
(
1

k
αyt (Q‖Yt

)

)k′}

,

where αyt (Q‖Yt
) is defined as above, in terms of the restricted measure Q‖Yt

.

Proof By construction, αyt is obtained from the posterior relative density, which
is determined by the restriction of Q to Yt ⊆ Ft , while the expectation depends only
on the restriction of Q to Ft . As these are the only terms needed to compute the
DR-expectation, the result follows.

Theorem 3 The penalty in the DR-expectation is additive, in the sense of
Definition 4.
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Proof From Proposition 2, we have the likelihood

Lobs(Q(A, C, p0)|yt ) =
t∏

s=1

1�Cs(Ys)Asp
(A,C),p0
s−1 ,

where p
(A,C),p0
s is the solution to the filtering Eq. 1. By Lemma 1, the penalty in the

DR-expectation is given by

αyt (Q‖Yt
)

= − log
(
Lobs(Q(A, C, p0)|yt ) · e−κprior(S,p0)−∑t γprior(S,Dt )

)
− mt

= κprior(S, p0) +
∑

s≤t

[
γprior(S,Ds) − log

(
1�Cs(Ys)Asp

(A,C),p0
s−1

)]
− mt,

where mt is chosen to ensure infQ(αyt (Q) ≡ 0. As (At , Ct (·)) = �(S,Dt ), we
obtain the desired form by setting

γt (S,Dt , {Ys}s≤t , p) = γprior(S,Dt ) − log
(
1�Ct(Yt )Atp

)
.

Remark 8 The purpose of the nonlinear expectation is to give an “upper”
estimate of a random variable, accounting for uncertainty in the underlying proba-
bilities. This is closely related to robust estimation in the sense of Wald (1945). In
particular, one can consider the robust estimator given by

arg inf
ξ̂∈RN Eyt

(∥∥
∥ξ − ξ̂

∥∥
∥
2
)

,

which gives a “minimax” estimate of ξ , given the observations yt and a quadratic
loss function. The advantage of the nonlinear expectation approach is that it allows
one to construct such an estimate for every random variable/loss function, giving a
cost-specific quantification of uncertainty in each case.

We can also see a connection with the theory of H∞ filtering (see, for example,
Grimble and El Sayed (1990) or more recently Zhang et al. (2009) and references
therein, or the more general H∞-control theory in Başar and Bernhard (1991)). In
this setting, we look for estimates which perform best in the worst-situation, where
“worst” is usually defined in terms of a perturbation to the input signal or coeffi-
cients. In our setting, we focus not on the estimation problem directly, but on the
“dual” problem of building an upper expectation, i.e. calculating the “worst” expec-
tation in terms of a class of perturbations to the coefficients (our setting is general
enough that perturbation to the signal can also be included through shifting the
coefficients).

Remark 9 There are also connections between our approach and what is called
“risk-sensitive filtering”, see, for example, James et al. (1994) and Dey and Moore
(1995); or the review of Boel et al. (2002) and references therein (from an engi-
neering perspective); or Hansen and Sargent (2007) and Hansen and Sargent (2008)
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(from an economic perspective). In their setting, one uses the nonlinear expectation
defined by

E(ξ |Yt ) = −k logEP

[
exp(−ξ/k)

∣
∣Yt

]
,

for some choice of robustness parameter 1/k > 0. This leads to significant sim-
plification, as dynamic consistency and recursivity is guaranteed in every filtration
(see Graf (1980) and Kupper and Schachermayer (2009), and further discussion in
Section 5). The corresponding penalty function is given by the conditional relative
entropy,

Rt (Q) = kEQ[log(dQ/dP)|Yt ],
which is additive (Definition 4) and the one-step penalty can be calculated accord-
ingly. In this case, the optimization defining the nonlinear expectation could also
be taken over M1, so this approach has a claim to be including “nonparametric”
uncertainty, as all measures are considered, rather than purely Markov measures
or measures in a parametric family (however, the optimization can be taken over
conditionally Markov measures, and one will obtain an identical result!).

The difficulty with this approach is that it does not allow for easy incorpora-
tion of knowledge of the error of estimation of the generators (A, C) in the level of
robustness—the only parameter available to choose is k, which multiplies the rela-
tive entropy. A small choice of k corresponds to a small penalty, hence a very robust
expectation, but this robustness is not directly linked to the estimation of the gener-
ators (A, C). Therefore, the impact of statistical estimation error remains obscure,
as k is chosen largely exogenously of this error. For this reason, our approach,
which directly allows for the penalty to be based on the statistical estimation of the
generators, has advantages over this simpler method.

4 Recursive penalties

The DR-expectation provides us with an approach to including statistical estimation
in our valuations. However, the calculations suggested by Remark 7 are generally
intractable in their stated form. In this section, we shall see how the assumption that
the penalty is additive (Definition 4) can be used to simplify our calculations.

Our arguments will be based on dynamic programming techniques. For the
sake of precision and brevity, we here state a (forward in time) abstract “dynamic
programming principle” which we can call on in later arguments.

Theorem 4 Let U be a topological space which is equal to the countable union of
compact metrizable subsets of itself. For some m > 0, let gt : Rm × U → R

m be a
sequence of Borel measurable functions. For any sequence u = (u1, ..., uT ) in U, let
the sequence Z

u,z0
t be defined by the recursion

Z
u,z0
t = gt

(
Z
u,z0
t−1 , ut

)
and Z

u,z0
0 = z0.

For each u ∈ U , we write g−1(·, u) for the (set-valued) inverse of g(·, u).
Suppose we have a sequence of Borel measurable maps At : R × U × R

m → R

such that v �→ A(v, u, z) is nondecreasing and continuous (uniformly in u, z) and
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A(v, u, z) → ∞ as v → ∞. For each u and z0, we define the sequence of values at
each time t by

Vt (u, z0) = At

[
Vt−1(u, z0), ut , Z

u,z0
t−1

]
and V0(u, z0) = v0(z0).

Then, the minimal value,

V ∗
t (z) := inf{

u,z0:Zu,z0
t =z

}Vt (u, z0),

satisfies the recursion

V ∗
t (z) = inf

u∈U
inf

y∈g−1
t (z,u)

{
At

[
V ∗

t−1(y), u, y
]}

and V ∗
0 (z0) = v0(z0), (4)

(with the convention that the infimum of the empty set is +∞).

Proof We proceed by induction. Clearly, the result holds at t = 0, as does the (at
t = 0 empty) statement

Vt (z) = +∞ for all z �∈
⋃

u,z0

{
Z
u,z0
t

}
. (5)

Suppose then that (4) and (5) hold at t = n − 1. For every ε > 0, there exists (u, z0)

such that

An

[
Vn−1(u, z0), un, Z

u
n−1

] = Vn(u, z0) = An

[
Vn−1(u, z0), un, Z

u
n−1

]

≤ An

[
V ∗

n−1

(
Zu

n−1

)+ ε, un, Z
u
n−1

]
.

Taking the infimum over
{
u, z0 : Zu

t = z
}
(which can be done measurably with

respect to z, given Filippov’s implicit function theorem, see, for example, Cohen and
Elliott (2015) Appendix 10, and sending ε → 0 gives

inf{u,z0:Zu
n=z}Vn(u, z0) = inf{u,z0:Zu

n=z}An

[
V ∗

n−1

(
Zu

n−1

)
, un, Z

u
n−1

]
.

From the definition of g, we know that
{
u, z0 : Zu,z0

n = z
} =

{
u, z0 : Z

u,z0
n−1 ∈ g−1

n (z, un)
}

from which we derive

V ∗
n (z) = inf{

u,z0:Zu,z0
n−1∈g−1

n (z,un)
}An

[
V ∗

n−1

(
Z
u,z0
n−1

)
, un, Z

u,z0
n−1

]
.

The right side of this equation depends on u, z0 only through the values of Z
u,z0
n−1 and

un. In particular, considering the set of attainable y, that is, for y ∈ ⋃
u,z0

{
Z
u,z0
n

}
,

we change variables to write

V ∗
n (z) = inf

un∈U
inf

y∈g−1
n (z,un)

y∈⋃u,z0
{Zu,z0}

An

[
V ∗

n−1(y), un, y
]
.

As the infimum on the empty set is +∞, we also obtain (5) at time n, and simplify
to give (4) for t = n, completing the inductive proof.
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Corollary 1 Suppose, instead of Z being defined by a forward recursion, for some
Borel measurable function g̃ we had the backward recursion

g̃t

(
Z
u,z0
t , ut

) = Z
u,z0
t−1 .

The result of Theorem 4 still holds (with effectively the same proof), where we write
g̃t instead of g−1

t , so the second infimum in (4) is unnecessary (as g̃(z, u) is single-
valued).

For practical purposes, it is critical that we refine our approach to provide a recur-
sive construction of our nonlinear expectation. In classical filtering, one obtains a
recursion for expectations E[φ(Xt )|Yt ], for Borel functions φ; one does not typically
consider the expectations of general random variables. Similarly, we will consider
the expectations of random variables φ(Xt ).

Proposition 3 For each t, there exists a Yt ⊗ B(R)-measurable function κt such
that, for every Borel function φ,

Eyt (φ(Xt )) := sup
Q∈Q

{
EQ[φ(Xt )|yt ] − Rt (Q)

}

= sup
q∈S+

N

{
∑

i

qiφ(ei) −
(
1

k
κt (ω, q)

)k′}

,
(6)

where S+
N denotes the probability simplex in R

N , that is, S+
N = {x ∈ R

N : ∑i xi =
1, xi ≥ 0 ∀i}.

Proof Fix the observations yt . Taking �X to be the possible states of Xt , that
is, the basis vectors in R

N with the discrete topology and corresponding Borel σ -
algebra, the space of measures on �X is represented by the probability simplex S+

N .
We consider the map

φ �→ E ′(φ(ωX)) := Eyt (φ(Xt ))

as a nonlinear expectation with underlying space �X. By Theorem 2, it follows that
there exists a penalty function κyt (q) such that

E ′(φ(ωX)) = sup
q∈S+

N

{
∑

i

qiφ(ei) −
(
1

k
κyt (q)

)k′}

.

Taking a regular version of this penalty function (which by convex duality exists as
E is measurable in yt ), we can write κt (ω, q) = κyt (q) as desired.

Our aim is to find a recursion for κt , for various choices of R. Our constructions
will depend on the following object.

Definition 7 Recall from Theorem 1 and Assumption 1 that, given a generator
(At , Ct (·)) = �(S,Dt ) ∈ A at time t, our filter dynamics are described by the
recursion (up to proportionality)

pt = G(pt−1,S,Dt , Yt ) ∝ C(Yt )Apt−1.
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We correspondingly define the (set-valued) inverse

G
−1(p;S,Dt , Yt ) = {

p′ ∈ S+
N : G (

p′,S,Dt , Yt

) = p
}
.

For notational simplicity, we will omit the argument Yt when this does not lead to
confusion.

The set G−1(p;S,Dt , Yt ) represents the filter states at time t − 1 which evolve
to p at time t, assuming the generator of our process (at time t) is given by �(S,Dt )

and we observe Yt . This set may be empty, if no such filter states exist. As the
matrix A is generally not invertible (even accounting for the restriction to S+

N ), the set
G

−1(p;S,Dt , Yt ) is not generally a singleton.

4.1 Filtering with uncertainty

We now show that if we assume our penalty is additive, then the function κ appearing
in (6) can be obtained in a recursive manner.

Theorem 5 Suppose Rt is additive, in the sense of Definition 4. Then, a function
κ satisfying (6) is given by

κt (p) = inf
S

Kt(p,S),

where Kt satisfies the recursion

Kt(p,S) = inf
Dt

{
inf

p′∈G−1(p,S,Dt ,Yt )

{
Kt−1

(
p′,S

)+ γt

(
S,Dt , {Ys}s≥0, p

′)}
}

−m′
t ,

with initial value K0(p0,S) = κprior(p0,S), where m′ is chosen to ensure we have
the normalization infp,S Kt(p,S) ≡ 0.

Proof As we know that Rt is additive, we have the representation Rt (Q) =
(
k−1αt (Q, {Ys}s≤t )

)k′
, where

αt (Q, {Ys}s≤t ) = κprior(p0,S) +
∑

s≤t

γs

(
S,Ds , {Yn}n≤s , p

Q

s−1

)
+ mt .

As EQ[φ(Xt )|yt ] depends only on the conditional law of Xt |Yt under Q, it is easy to
see that (6) is satisfied when

(
1

k
κt (p)

)k′

= inf
{Q:EQ[Xt |Yt ]=p}

Rt (Q) = inf
{Q:EQ[Xt |Yt ]=p}

(
1

k
αt (Q)

)1/k′

, (7)

We wish to write the minimization in (7) as a recursive control problem, to which
we can apply Theorem 4. Given p0, S, and {Ds}s≤t , the law of Xt |Yt is given by
the solution to the filtering Eq. 1. Write Zt = (pt ,S), and ut = Dt , so that Z
is a state process defined by Z0 = z0 = (p0,S) and the recursion (controlled by
u = {us}s≤t = {Ds}s≤t )

Zt = Ĝ(Zt−1,Dt ) := (G (pt−1,S,Dt , Yt ) , S) .
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Omitting the constant mt from the definition of αt , we define

Vt (z0,u) = κprior(p0,S) +
∑

s≤t

γs

(
S,Ds , {Yn}n≤s , ps

)
.

Taking At to be the operator

At

[
Vt−1, ut , Z

u,z0
t

] = Vt−1 + γt (S, ut , {Ys}s≤t , pt−1),

we see that V satisfies the structure assumed in Theorem 4. Therefore, its minimal
value satisfies

V ∗
t (z) = inf{

z0,u:Zz0,u
t =z

}Vt (z0,u)

= inf
Dt

{

inf
(p′,S)=z′∈Ĝ−1(z)

{
V ∗

t−1(z
′) + γt

(
S, ut , {Ys}s≥0, p

′)}
}

with initial value V0(z) = κprior(p0,S). We renomalize this by setting m′
t =

infz V ∗
t (z) and Kt(p,S) := V ∗

t (z) − m′
t , and so obtain the stated dynamics for K.

By construction, we know

Kt(p,S) = inf{Ds }s≤t

{
αt

(
Q, {Ys}s≤t

) : EQ[Xt |Yt ] = p,Q = Q
(
p0,S, {Ds}s≤t

)}
.

It follows that (7), and hence (6), are satisfied by taking κt (p) = infS Kt(p,S), as
desired.

4.2 Examples

In this section, we will seek to outline a few key settings where this theory can be
applied.

4.2.1 Static generators, uncertain prior (StaticUP)

We first consider the case where uncertainty is given over the prior inputs to the filter.
In particular, this “prior uncertainty” is not updated given new observations, and R
will not change through time.

Framework 1 (StaticUP) In a StaticUP setting, the inputs to the filtering problem
are the initial filter state p0 and the generator (A, C(·)), which we parameterize
solely using the static parameter S. in particular, we exclude dependence on the
“dynamic” parameters {Dt }t≥0. To represent our uncertain prior, we take a penalty

R(Q) =
(
1

k
α(Q)

)k′

=
(
1

k
κprior(p0,S)

)k′

for some prescribed penalty κprior.
We now apply Theorem 5 (omitting dependence onDt , as we are in a purely static

setting) to see that a dynamic version κt of the penalty function, satisfying (6), can
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be computed as
κt (p) = inf

S
Kt(p,S),

where Kt satisfies the recursion

Kt(p,S) = inf
p′∈G−1(p,S,Yt )

{
Kt−1(p

′,S)
}− m′

t .

Assuming inf(p0,S) κprior(p0,S) = 0, we further compute m′
t ≡ 0. This completely

characterizes the penalty function, and hence the nonlinear expectation.

Remark 10 Inspired by the DR-expectation, a possible choice of penalty function
κprior would be the negative log-density of a prior distribution for the inputs (p0,S),
shifted to have minimal value zero. Alternatively, taking an empirical Bayesian per-
spective, κprior could be the log-likelihood from a prior calibration process. In this
case, we are incorporating our prior statistical uncertainty regarding the parameters
in the filtering problem.

Remark 11 We emphasize that there is no learning of the generator being done
in this framework—the penalty applied at time t = 0 is simply propagated forward;
our observations do not affect our opinion of the plausible generators. In particular,
if we assume no knowledge of the initial state (i.e., a zero penalty), then we will
have no knowledge of the state at time t (unless the observations cause the filter to
degenerate).

Example 1 For a concrete example of the StaticUP framework, we take the class
of models in MM where A and C are perfectly known and A = I , so Xt = X0 is
constant (but X0 is unknown). We take N = 2, so X takes only one of two values. For
the observation distribution C, we assume that

Yt |(Xt = e1) ∼ Bernoulli(a), Yt |(Xt = e2) ∼ Bernoulli(b),

where a, b ∈ (0, 1) are fixed constants. Effectively, in this example we are using
filtering to determine which of two possible parameters is the correct mean for our
observation sequence. It is worth emphasising that the filter process p corresponds
to the posterior probabilities, in a Bayesian setting, of the events that our Bernoulli
process has parameter a or b.

It is useful to note that, from classical Bayesian statistical calculations3, for a
given p0, one can see that the corresponding value of pt is determined from the
log-odds ratio,

log

(
p1

t

p2
t

)
= log

(
p1
0

p2
0

)

+ t Ȳt log
(a

b

)
+ t (1 − Ȳt ) log

(
1 − a

1 − b

)
,

where Ȳt = t−1∑
s≤t Ys is the average number of successes observed at time t.

3One can derive the stated formula using the filtering equations, for the vector pt = (
p1

t , p
2
t

)�
. How-

ever, the closed-form solution given here is more easily obtained using alternative methods for Bayesian
hypothesis testing (which is effectively what this problem encodes).
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To write down the StaticUP penalty function, let the (known) dynamics be
described byS∗. Consequently, we can write K(p,S) = ∞ for allS �= S∗. We ini-
tialize with a known penalty κprior(p,S∗) = κ0(p) for all p ∈ S+

N . As S∗ is known,
there is no distinction between K and κ , that is,

κt (p) = inf
S

Kt(p,S) = Kt(p,S∗) = inf{
p0:EQ(S∗,p0)[Xt |Yt ]=p

} {κ0(p0)} .

In this example, we can express our penalty in terms of the log-odds, for the sake
of notational simplicity given the closed-form solution to the filtering problem, and
hence can explicitly calculate the (unique) initial distribution p0 which would evolve
to a given p at time t. In particular, the time-t penalty is given by a shift of the initial
penalty:

κt

(
log

(
p1

t

p2
t

))
= κ0

(
log

(
p1

t

p2
t

)
− t Ȳt log

(a

b

)
− t (1 − Ȳt ) log

(
1 − a

1 − b

))
.

Remark 12 This example demonstrates the following behaviour:

• If the initial penalty is zero, then the penalty at time t is also zero—there is no
learning of which state we are in.

• When parameterized by the log-odds ratio, there is no variation in the curva-
ture of the penalty (and so no change in our “uncertainty”), we simply shift the
penalty around, corresponding to our changing posterior probabilities.

• The update of κ is done purely using the tools of Bayesian statistics, rather than
having any direct incorporation of our uncertainty.

Remark 13 We point out that this is, effectively, the model of uncertainty proposed
by Walley (1991) (see, in particular, Walley (1991) section 5.3, although there he
takes a model where the unknown parameter is Beta distributed). See also Fagin and
Halpern (1990).

4.2.2 Dynamic generators, uncertain prior (DynamicUP)

If we model the generator (A, C) as fixed and unknown (i.e., it depends only on S),
calculation of Kt(p,S) suffers from a curse of dimensionality—the dimension of
S determines the size of the domain of Kt . On the other hand, if we suppose the
generator at time t depends only on the dynamic parametersDt , we can use dynamic
programming to obtain a lower-dimensional problem.

Framework 2 (DynamicUP) In the DynamicUP setting, for an initial penalty on
the initial hidden state, κprior(p0), and a penalty on the time-t generator, γt (Dt ), our

total penalty is given by R(Q) =
(
1
k
α(Q)

)k′
, where we now have

α(Q) = κprior(p0) +
∞∑

s=1

γs(Ds).
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In this case, as we ignore the static parameterS, we simplify Theorem 5 through the
identity κt (p) = Kt(p,S). This yields the recursion

κt (p) = inf
Dt

{
inf

p′∈G−1(p,Dt ,Yt )

{
κt−1(p

′) + γt (Dt )
}
}

− m′
t

and again, if we assume infQ α(Q) ≡ 0, we then conclude m′
t ≡ 0.

This formulation of the uncertain filter allows us to use dynamic programming to
solve our problem forward in time. In the setting of Example 1, as the generator is
perfectly known, there is no distinction between the dynamic and static cases.

A continuous-time version of this setting (for a Kalman–Bucy filter) is considered
in detail in Allan and Cohen (2019a).

4.2.3 Static generators, DR-expectation (StaticDR)

In the above examples, we have regarded the prior as uncertain and used this to
penalize over models. We did not use the data to modify our penalty functionR. The
DR-expectation gives us an alternative approach in which the data guides our model
choice more directly. In what follows, we apply the DR-expectation in our filtering
context and observe that it gives a slightly different recursion for the penalty function.
Again, we can consider models where our generator is constant (i.e., depends only
on S) or changes dynamically (i.e., depends only on Dt ).

Framework 3 (StaticDR) As in the StaticUP framework, we assume that the gen-
erator (A, C) is determined by the static parameter S. For each S, with Q =
Q(A, C, p0) and (A, C) = �(S), we have a penalty R(Q) =

(
1
k
α(Q)

)k′
given by

the log-posterior density

α(Q‖Yt
) = κprior(p0,S) − Lobs (

Q(A, C, p0)
∣∣yt

)+ mt

which is additive, as shown in Theorem 3. Applying Theorem 5, we see that the
penalty can be written κt (p) = infS Kt(p,S), where K0(p,S) = κprior(p,S) and
K satisfies the recursion

Kt(p,S) = inf
Dt

{
inf

p′∈G−1(p,S,Yt )

{
Kt−1(p

′,S) + log cS
(
Ys; ASp′)}

}
− m′

t .

Unlike in the uncertain prior cases, we cannot typically claim that m′
t ≡ 0, instead it

is a random process dependent on our observations.

Remark 14 Comparing Framework 1 (StaticUP) with Framework 3 (StaticDR),
we see that the key distinction is the presence of the log-likelihood term. This term
implies that observations of Y will affect our quantification of uncertainty, rather
than purely updating each model.

Example 2 In the setting of Example 1, recall that X is constant, so we know
(A, C(·)). One can calculate the StaticDR penalty either directly, or through solving
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the stated recursion using the dynamics of p. As in the StaticUP case, the result is
most simply expressed by first calculating p0 from pt through

log

(
p1
0

p2
0

)

= log

(
p1

t

p2
t

)
− t Ȳt log

(a

b

)
− t (1 − Ȳ )t log

(
1 − a

1 − b

)

and then

κt (pt ) = κ0(p0) − log
(
p1
0a

tȲt (1 − a)t(1−Ȳt ) + p2
0b

tȲt (1 − b)t(1−Ȳt )
)

− mt,

where mt is chosen to ensure infp κt (p) = 0. From this, we see that the likelihood
modifies our uncertainty directly, rather than us simply propagating each model via
Bayes’ rule. A consequence of this is that if we start with extreme uncertainty (κ0 ≡
0), then our observations teach us what models are reasonable, thereby reducing our
uncertainty (i.e., we will find κt (p) > 0 for p ∈ (0, 1) when t > 0).

Remark 15 It is interesting to ask what the long-term behaviour of these uncertain
filters will be. In Cohen (2017), the long run behaviour of the DR-expectation based
on i.i.d. observations is derived and, in principle, a similar analysis is possible here.
Using the asymptotic analysis of maximum likelihood estimation for hidden Markov
models in Leroux (1992) or Douc et al. (2011), we know that the MLE will converge
with probability one to the true parameter, under appropriate regularity conditions.
Here, the presence of the prior influences this slightly, however, this impact vanishes
as t → ∞. With further regularity assumptions, one can also show that the log-
likelihood function, divided by the number of observations, almost surely converges
to the relative entropy between a proposed model and the true model (see, for exam-
ple, Leroux (1992) section 5). If one also knew that the relative entropy is smooth
and convex, the analysis of Cohen (2017) Theorems 4 and 5 is possible, showing
that the DR-expectation corresponds to adding a term related to the sampling vari-
ance of the hidden state4. In particular, as the number of observations increases,
the DR-expectation will converge to the expected value under the filter with the true
parameters.

4.2.4 Dynamic generators, DR-expectation (DynamicDR)

As in the uncertain prior case, it is often impractical to calculate a recursion for
K(p,S) given the high dimension ofS. We therefore consider the case when (A, C)

depends only on the dynamic parameters Dt .

Framework 4 (DynamicDR) As before, for each {Ds}s≥0, withQ = Q(A, C, p0)

and (At , Ct ) = �(Dt ), we have a penalty R(Q) =
(
1
k
α(Q)

)k′
given by the log-

posterior density

α(Q‖Yt
) = κprior(p0) − logLobs (

Q(A, C, p0)
∣
∣yt

)+ mt .

4One difficulty is that the analysis of Cohen (2017) considers the divergence to the MLE model, rather
than the true model. This allows a slightly finer control over the asymptotic behaviour, which would need
to be replicated in the filtering setting.
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From Theorem 3, we know that the log-posterior density is additive. Applying Theo-
rem 5, and the identity κt (p) = Kt(p,S), we conclude that the penalty κt (p) in (6)
can be computed from the recursion

κt (p) = inf
Dt

{
inf

p′∈G−1(p,Dt ,Yt )

{
κt−1(p

′) + γprior(t,Dt ; {Ys}s<t )

− log
(
cDt (Yt ; AD

t pt−1)
)}}

− m′
t ,

with initial value κ0(p) = π(p), where m′
t is chosen to ensure infp∈S+

N
κt (p) = 0 for

all t.

Remark 16 We expect that there will be less difference between the dynamic
uncertain prior and dynamic DR-expectation settings than between the static uncer-
tain prior and static DR-expectation settings. This is because there is only limited
learning possible in the dynamic DR-expectation, as Dt may vary independently at
every time, so the DR-expectation has only one value with which to infer the value
of each Dt . This increases the relative importance of the prior term γprior, which
describes our understanding of typical values of the generator. In practice, the key
distinction between the dynamic DR-expectation and uncertain prior models appears
to be when the initial penalty is near zero—in this case, the DR-expectation regular-
izes the initial state quickly, while the uncertain prior model may remain near zero
indefinitely.

Example 3 In the setting of Example 2, as the dynamics are perfectly known, there
is again no difference between the dynamic and static generator DR-expectation
cases.

A continuous-time version of this setting (for a Kalman–Bucy filter) is considered
in Allan and Cohen (2020).

5 Expectations of the future

The nonlinear expectations considered above do not consider how the future will
evolve. In particular, we have focussed our attention on calculating Eyt (φ(Xt )), that
is, on the expectation of functions of the current hidden state. In other words, we can
consider our nonlinear expectation as a mapping

Eyt : L∞(σ (Xt ) ⊗ Yt ) → L∞(Yt ).

If we wish to calculate expectations of future states, then we may wish to con-
sider doing so in a filtration-consistent manner. This is of particular importance when
considering optimal control problems.

Definition 8 For a fixed horizon T > 0, suppose that for each t < T we have
a mapping E(·|Yt ) : L∞(YT ) → L∞(Yt ). We say that E is a Y-consistent convex
expectation if E(·|Yt ) satisifes the following assumptions, analogous to those above,
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• Strict Monotonicity: for any ξ1, ξ2 ∈ L∞(YT ), if ξ1 ≥ ξ2 a.s., then E(ξ1|Yt ) ≥
E(ξ2|Yt ) a.s., and if, in addition, E(ξ1|Yt ) = E(ξ2|Yt ) then ξ1 = ξ2 a.s.;

• Constant triviality: for b ∈ L∞(Yt ), E(b|Yt ) = b;
• Translation equivariance: for any b ∈ L∞(Yt ), ξ ∈ L∞(YT ), E(ξ + b|Yt ) =

E(ξ |Yt ) + b;
• Convexity: for any λ ∈ [0, 1], ξ1, ξ2 ∈ L∞(YT ),

E(λξ1 + (1 − λ)ξ2|Yt ) ≤ λE(ξ1|Yt ) + (1 − λ)E(ξ2|Yt );
• Lower semicontinuity: for a sequence {ξn}n∈N ⊂ L∞(YT ) with ξn ↑ ξ ∈

L∞(YT ) pointwise, E(ξn|Yt ) ↑ E(ξ |Yt ) pointwise for every t < T ;

and the additional asssumptions

• {Yt }t≥0-consistency: for any s < t < T , any ξ ∈ L∞(YT ),

E(ξ |Ys) = E(E(ξ |Yt )|Ys);
• Relevance: for any t < T , any A ∈ Yt , E(IAξ |Yt ) = IAE(ξ |Yt ).

The assumption of Y-consistency is sometimes simply called recursivity, time
consistency, or dynamic consistency (and is closely related to the validity of the
dynamic programming principle), however, it is important to note that this depends
on the choice of filtration. In our context, consistency with the observation filtration
Y is natural, as this describes the information available for us to make decisions.

Remark 17 Definition 8 is equivalent to considering a lower semicontinuous con-
vex expectation, as in Definition 3, and assuming that for any ξ ∈ L∞(YT ) and any
t < T , there exists a random variable ξt ∈ L∞(Yt ) such that E(IAξ) = E(IAξt ) for
all A ∈ Yt . In this case, one can define E(ξ |Yt ) = ξt and verify that the definition
given is satisfied (see Föllmer and Schied (2002b) and Cohen and Elliott (2010)).

Much work has been done on the construction of dynamic nonlinear expecta-
tions (see, for example, Epstein and Schneider (2003), Duffie and Epstein (1992), El
Karoui et al. (1997), and Cohen and Elliott (2010); and references therein). In par-
ticular, there have been close relations drawn between these operators and the theory
of BSDEs (for a setting covering the discrete-time examples we consider here, see
Cohen and Elliott (2010) and Cohen and Elliott (2011)).

Remark 18 The importance of Y-consistency is twofold: First, it guarantees that,
when using a nonlinear expectation to construct the value function for a control
problem, an optimal policy will be consistent in the sense that (assuming an opti-
mal policy exists) a policy which is optimal at time zero will remain optimal in the
future. Second, {Yt }t≥0-consistency allows the nonlinear expectation to be calculated
recursively, working backwards from a terminal time. This leads to a considerable
simplification numerically, as it avoids a curse of dimensionality in intertemporal
control problems.
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Remark 19 One issue in our setting is that our lack of knowledge does not simply
line up with the arrow of time—we are unaware of events which occurred in the
past, as well as those which are in the future. This leads to delicacies in questions of
dynamic consistency. Conventionally, this has often been considered in a setting of
“partially observed control”, and these issues are resolved by taking the filter state
pt to play the role of a state variable, and solving the corresponding “fully observed
control problem” with pt as underlying. In our context, we do not know the value
of pt , instead we have the (even higher dimensional) penalty function Kt as a state
variable.

In the following sections, we will outline how our earlier approach can be extended
to provide a dynamically consistent expectation, and how enforcing dynamic consis-
tency will modify our perception of risk.

5.1 Asynchronous expectations

Wewill focus our attention on constructing a dynamically consistent nonlinear expec-
tation for random variables in L∞(σ (XT ) ⊗ YT ), given observations up to times
t < T . Throughout this section, we will use the following construction:

Definition 9 Suppose we have a nonlinear expectation

EyT
: L∞(σ (XT ) ⊗ YT ) → L∞(YT )

constructed for our nonlinear filtering problem, as above, and are given a a
Y-consistent family of maps

�E(·|Yt ) : L∞(YT ) → L∞(Yt ).

We then extend �E to variables in L∞(σ (XT ) ⊗ YT ) by the composition

�E(·|Yt ) := �E(EyT
(·)|Yt ).

Given this definition, our key aim is to construct the Y-consistent family �E(·|Yt ),
in a way which “agrees” with our uncertainty in the underlying filter. As we are in
discrete time, we can construct aY-consistent family through recursion, if we have its
definition over each single step. The definition of the DR-expectation can be applied
to generate these one-step expectations in a natural way.

Definition 10 For R an additive penalty function (Definition 4), we define the
one-step expectation, for ξ ∈ L∞(Yt+1), by

�E(ξ |Yt ) = ess supQ∈Q
{
EQ

[
ξ − Rt+1(Q)|Yt

]}
,

where the essential supremum is taken among the bounded Yt -measurable random
variables. Using this, we define a Y-consistent expectation L∞(σ (XT ) ⊗ YT ) →
L∞(Yt ) by recursion,

�E(ξ |Yt ) = �E( �E (ξ |Yt+1) |Yt ) = �E(· · · �E(EyT
(ξ)|YT −1) · · · |Yt ).
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Remark 20 It is necessary to use the penalty Rt+1 in this definition, as our
penalty should include the behaviour of the generator Ct+1(·), which determines the
distribution of Yt+1|Xt+1.

Recall that, as Y is generated by Y, the Doob–Dynkin lemma states that any Yt+1-
measurable function ξ is simply a function of {Ys}s≤t+1, so we can write

ξ(ω) = ξ̂ (Yt+1, {Ys}s≤t ). (8)

For any conditionally Markov measure Q, if Q has generator (At , Ct (·))t≥0, it
follows that

EQ[ξ |Yt ] =
∫

Rd

ξ̂ (y, {Ys}s≤t )
(
1�Ct+1(y)Atpt

)
dμ(y).

In particular, we apply this to our penalty function to define the function R̂ such that

R̂t+1(Yt+1, p,S,Dt+1, {Ys}s≤t )=
(
1

k

(
Kt(pt ,S)+γt+1

(
S,Dt+1, {Ys}s≤t+1, pt

))
)k′

.

(9)
Applying this to our definition of �E , we obtain the following representation.

Lemma 2 The one-step expectation �E can be written

�E(ξ |Yt ) = ess sup
Q∈Q

{
EQ[ξ − Rt+1(Q)|Yt ]

}

= ess sup
S,Dt+1,p

{∫

Rd

(
ξ̂
(
y, {Ys}s≤t

)− R̂t+1
(
y, p,S,Dt+1, {Ys}s≤t

))

(
1�Ct+1(y)At+1p

)
dμ(y)

}
,

where K is the dynamic penalty constructed in Theorem 5 and (At+1, Ct+1(·)) ≡
�(S,Dt+1).

Proof Write

�E(ξ |Yt ) = ess sup
Q∈Q

{
EQ[ξ |Yt ] − EQ[Rt+1(Q)|Yt ]

}
.

We know that

EQ[ξ |Yt ] =
∫

Rd

ξ̂ (y, {Ys}s≤t )
(
1�Ct+1(y)At+1pt

)
dμ(y),

which depends on Q only through At+1, Ct+1 and pt , or equivalently, through the
parameters S, Dt+1 and pt . In particular, as R is additive, we can substitute in its
structure and simplify using the definition of K in Theorem 5 to obtain

�E(ξ |Yt ) = ess sup
Q∈Q

{

EQ[ξ |Yt ]

− EQ

[(
1

k

(
K(pt ,S)+γt+1(S,Dt+1, {Ys}s≤t+1, pt )

)
)k′ ∣

∣
∣Yt

]}

.
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Using the definition of R̂, we change these conditional expectations to integrals, and
obtain the desired representation.

Remark 21 There is a surprising form of double-counting of the penalty here. To
see this, let’s assume φ does not depend on Y. If we consider ξt+1 = Eyt+1(φ(Xt+1)),
then we have included a penalty for the proposed model at t + 1, that is,

ξt+1 = Eyt+1(φ(Xt+1)) = sup
p∈S+

N

{
∑

i

piφ(ei) −
(
1

k
(Kt+1(p)

)k′}

,

where Kt+1(p) is the penalty associated with the filter state at time t + 1, which
includes the penalty γt+1 on the parameters S and Dt+1.

When we calculate �E(ξt+1|Yt ), we do so by using the penalty K(pt ,S) +
γt+1(S,Dt+1, {Ys}s≤t+1, pt ), which again includes the term γt+1 which penalizes
unreasonable values of the parameters S and Dt+1. This “double counting” of the
penalty corresponds to us including both our “uncertainty at time t + 1” (in Eyt+1 ),
and also our “uncertainty at t about our uncertainty at t + 1” (in �E(·|Yt )).

Remark 22 One should be careful in this setting, as the recursively-defined non-
linear expectation will be optimized for a different value of S at every time. As S is
considered to be a static penalty, this is an internal inconsistency in the modelling
of our uncertainty—we always estimate assuming that S has never changed, but
evaluate the future by considering our possible future opinions of the value ofS.

5.2 Review of BSDE theory

While it is useful to give a recursive definition of our nonlinear expectation, a better
understanding of its dynamics is of practical importance. In what follows, for the
dynamic generator case, we consider the corresponding BSDE theory, assuming that
Yt can take only finitely many values, as in Cohen and Elliott (2010). We now present
the key results of Cohen and Elliott (2010), in a simplified setting.

In what follows, we suppose that Y takes d values, which we associate with the
standard basis vectors in R

d . For simplicity, we write 1 for the vector in R
d with all

components 1.

Definition 11 Write P̄ for a probability measure such that {Yt }t≥0 is an i.i.d.
sequence, uniformly distributed over the d states, and M for the P̄-martingale differ-
ence process Yt − d−11. As in Cohen and Elliott (2010), M has the property that any
Y-adapted P̄-martingale L can be represented by Lt = L0 + ∑

0≤s<t ZsMs+1 for
some Z (and Z is unique up to addition of a multiple of 1).

Remark 23 The construction of Z in fact also shows that, if L is written Lt =
L̃(Y1, ..., Yt−1, Yt ), then e�

i Zt = L(Y1, ..., Yt−1, ei) for every i (up to addition of a
multiple of 1).
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We can then define a BSDE (Backward Stochastic Difference Equation) with
solution (ξ, Z):

ξt (ω) −
∑

t≤u<T

f (ω, u, ξu(ω), Zu(ω)) +
∑

t≤u<T

Zu(ω)Mu+1(ω) = ξT (ω), (10)

where T is a finite deterministic terminal time, f aY-adapted map F : �×{0, ..., T }×
R × R

d → R, and ξT a given R-valued YT -measurable terminal condition. For
simplicity, we henceforth omit the ω argument of ξ , Z, and M.

The general existence and uniqueness result for BSDEs in this context is as
follows:

Theorem 6 Suppose f is such that the following two assumptions hold:

(i) For any ξ , if Z1 = Z2+k1 for some k, then f
(
ω, t, ξt , Z

1
t

) = f
(
ω, t, ξt , Z

2
t

)
,

P̄-a.s. for all t.
(ii) For any z ∈ R

d , for all t, for P̄-almost all ω, the map

ξ �→ ξ − f (ω, t, ξ, z)

is a bijection R → R.

Then, for any terminal condition ξT essentially bounded, YT -measurable, and with
values in R, the BSDE (10) has a Y-adapted solution (ξ, Z). Moreover, this solution
is unique up to indistinguishability for ξ and indistinguishability up to addition of
multiples of 1 for Z.

In this setting, we also have a comparison theorem:

Theorem 7 Consider two discrete-time BSDEs as in (10), corresponding to coef-
ficients f 1, f 2, and terminal values ξ1T , ξ2T . Suppose the conditions of Theorem 6 are
satisfied for both equations, let

(
ξ1, Z1

)
and

(
ξ2, Z2

)
be the associated solutions.

Suppose the following conditions hold:

(i) ξ1T ≥ ξ2T P̄-a.s.
(ii) P̄-a.s., for all times t and every ξ ∈ R and z ∈ R

d ,

f 1(ω, t, ξ, z) ≥ f 2(ω, t, ξ, z).

(iii) P̄-a.s., for all t, f 1 satisfies

f 1
(
ω, t, ξ2t , Z1

t

)
− f 1

(
ω, t, ξ2t , Z2

t

)
≥ min

j∈Jt

{(
Z1

t − Z2
t

) (
ej − d−11

)}
,

where Jt := {i : P̄(Xt+1 = ei |Ft ) > 0}.
(iv) P̄-a.s., for all t and all z ∈ R

d , ξ �→ ξ−f 1(ω, t, ξ, z) is an increasing function.

It is then true that ξ1 ≥ ξ2 P̄-a.s. A driver f 1 satisfying (iii) and (iv) will be called
“balanced”.

Finally, we also know that all dynamically consistent nonlinear expectations can
be represented through BSDEs:
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Theorem 8 The following two statements are equivalent.

(i) �E(·|Yt ) is a Yt -consistent, dynamically translation invariant, nonlinear expec-
tation.

(ii) There exists a driver f which is balanced, independent of ξ , and satisfies the
normalisation condition f (ω, t, ξt , 0) = 0, such that, for all ξT , the value of
ξt= �E(ξT |Yt ) is the solution to a BSDE with terminal condition ξT and driver f.

Furthermore, these two statements are related by the equation

f (ω, t, ξ, z) = �E(zMt+1|Yt ).

5.3 BSDEs for future expectations

By applying the above general theory, we can easily see that our nonlinear expecta-
tion has a representation as the solution to a particular BSDE.

Theorem 9 Write

ξt := �E (φ (
XT , {Yt }t≤T

)∣∣Yt

)
.

The dynamically consistent expectation satisfies the BSDE

ξt+1 = ξt − f (Zt ; κt ) + ZtMt+1

with driver

f
(
Zt ; R̂t+1

)

:= ess sup
p,S,Dt+1

∑

i

{(
Zi − R̂t+1(ei, p,S,Dt+1, {Ys}s≤t )

) (
1�Ct+1(ei)At+1p

)

− d−1Zi
}

,

where (At+1, Ct+1(·)) ≡ �(S,Dt+1).

Proof As ξt+1 is Yt+1-measurable, by the Doob–Dynkin lemma there exists a
Borel measurable function ξ̂t+1 such that ξt+1 = ξ̂t+1(Yt+1) (omitting to write
{Ys}s≤t as an argument). We write Zt for the vector containing each of the val-
ues of this function. From the definition of M, as in the proof of the martingale
representation theorem in Cohen and Elliott (2010), it follows that

ξt+1 − E
P̄
[ξt+1|Yt ] = ZtMt+1 and E

P̄
[ξt+1|Yt ] =

∑

i

d−1Zi.

We then calculate, using Lemma 2 (simplified to our finite-state setting and omitting
{Ys}s≤t as an argument),
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ξt − E
P̄
[ξt+1|Yt ]

= �E(ξt+1|Yt ) − E
P̄
[ξt+1|Yt ]

= ess sup
p,S,Dt+1

{
∑

i

(
Zi − R̂t+1(ei, p,S,Dt+1)

)(
1�Ct+1(ei)At+1p

)
−E

P̄
[ξt+1|Yt ]

}

= f (Zt ; κt ).

The answer follows by rearrangement.

6 A control problem with uncertain filtering

In this final section, we consider the solution of a simple control problem under
uncertainty, using the formal structures previously developed. In some ways, this
approach is similar to those considered by Bielecki et al. (2017), where the DR-
expectation is replaced by an approximate confidence interval. (Taking k′ = ∞ in
a StaticDR model would give a very similar problem to the one they consider.) A
key complexity in doing this is that our uncertainty does not agree with the arrow of
time—at time t, we do not know the future values of {Ys, Xs}s>t (as is typical for
stochastic control), but we also do not know the values of {Xs}s≤t , even though these
have an indirect impact on our costs.

Suppose a controller selects a control u from a set U, which we assume is a count-
able union of compact metrizable sets. Controls are required to be Y-predictable
(i.e., ut is Yt−1-measurable), and we write U for the space of such controls, and
u = (u1, ..., uT ) for the vector of controls at every time.

A control has an impact on the generator of X, Y , through modifying the penalty
function γ , which describes the “reasonable” models for the transition matrix A and
the distribution of observations C. In particular, for a given u the term γt in the
additive structure of Rt is permitted to depend on ut . We assume γt (· · · ; ut ) is con-
tinuous in ut for every value of its other arguments. This is a variant on a standard
weak formulation of the control problem—our agent no longer selects the genera-
tors (A, C(·)) directly, but instead modifies the penalty determining which values of
(A, C(·)) are ‘reasonable models’.

In order to separate the effects of past controls (which determine the agent’s under-
standing of the present hidden state), and future controls (which modify the future
dynamics), we write �Eu,K(·|Yt ) for the Y-consistent expectation generated by the
single-step expectations (omitting {Ys}s≤t as an argument)

�Eut+1,Kt (ξ |Yt )

= ess sup
p,S,Dt+1

∫

Rd

(
ξ̂ (y) − R̂t+1(y, p,S,Dt+1; ut+1, Kt )

)

·
(
1�Ct+1(y)At+1p

)
dμ(y),
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where

R̂t+1(Yt+1, p,S,Dt+1; ut+1, Kt )=
(
1

k
(Kt (pt ,S)+γt+1(Yt+1,S,Dt+1, pt ; ut+1))

)k′

.

(11)
We then observe that �Eu,K(·|Yt ) is formally independent of (u1, ..., ut−1). Neverthe-
less, the effective value of Kt depends on (u1, ..., ut−1), as these now appear in the
γ terms appearing in Theorem 5.

The controller wishes to minimize an expected cost

�Eu,K0

(

C(XT , {Ys}s≤T ) +
∑

t<T

Lt ({Ys}s≤t , ut+1)

)

,

where K0 = κprior is the uncertainty before the control problem begins. Here C is a
terminal cost, which may depend on the hidden state XT , and L is a running cost,
which depends on the control ut+1 used at time t. We assume C and L are continuous
in u (almost surely). We think of the cost Lt as being paid at time t, depending on the
choice of control ut+1 (which will affect the generator at time t + 1). For notational
simplicity, we omit Y as an argument when unnecessary.

Remark 24 We do not allowLt to depend onXt , as this may lead to paradoxes (as
the agent could learn information about the hidden state by observing their running
costs).

For a given control process u, we define the remaining cost

J (ω, t, K,u) = �Eu,K

⎛

⎝C(XT ) +
∑

t≤s<T

Ls(us+1)

∣
∣
∣Yt

⎞

⎠

and hence the value function

V (ω, t, K) = inf
u∈U

�Eu,K

⎛

⎝C(XT ) +
∑

t≤s<T

Ls(us+1)

∣
∣
∣Yt

⎞

⎠ .

Remark 25 We define our expected cost using the Y-consistent expectation �Eu,K ,
rather than the (inconsistent) DR-expectation Eyt , as this leads to time-consistency
in the choice of controls.

Remark 26 We see that the calculation of the value function is a “minimax” prob-
lem, in that V minimizes the cost, which we evaluate using a maximum over a set of
models. However, given the potential for learning, the requirement for time consis-
tency, and the uncertainties involved, it is not clear that one can write V explicitly in
terms of a single minimization and maximization of a given function.

Remark 27 As the filter-state penalty K is a general function depending on the
control, and Y only takes finitely many states, it is not generally possible to express
the effect (on K) of a control through a change of measure relative to some reference
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dynamics. In particular, we face the problem that controls us for times s < T have
an impact on the terminal cost VT = �Eu,KT

(C(XT )|YT ), through their impact on the
uncertainty KT . Unlike in a traditional control problem, VT is not independent of u
given YT ; this is problem of the ‘arrow of time’ mentioned at the start of this section.
For this reason, even though we model the impact of a control through its effect on
the generator, we cannot give a fully “weak” formulation of our control problem, and
are restricted to a “Markovian” setting with K as a state variable.

Theorem 10 The value function satisfies a dynamic programming principle, in
particular, if an optimal control u∗ exists, then for every t ≤ T ,

V (ω, t − 1, Kt−1) = �Eu,K

(
Vt

(
ω, t − 1, K(u∗,Kt−1)

t

) ∣
∣Yt−1

)
+ Lt−1

(
u∗

t

)
,

where K
(u∗,Kt−1)
t is the one-step solution of the recursion of Theorem 5 using the

control u∗.
A similar result also holds if we only assume an ε-optimal control exists for every

ε > 0.

Proof This effectively falls into the setting of our abstract dynamic programming
principle (in particular, Corollary 1), with a time reversal. For any control u, using
the recursivity of �E and writing κt = κ

(u,κt−1)
t for simplicity, we have

J (ω, t − 1, Kt−1,u)

= �Eu,Kt−1

⎛

⎝C(XT ) +
∑

t−1≤s≤T

Ls(us+1)

∣∣
∣Yt−1

⎞

⎠

= �Eu,Kt−1

(
J (ω, t, κt ,u)

∣∣Yt−1
)+ Lt−1(ut ).

In reversed time τ = T − t , we have the state variable zτ = KT −t , which is
defined using a backward recursion (in terms of τ ) by Theorem 5. The operator Aτ

is then given by

Aτ [J (ω, T − τ − 1, KT −τ−1,u), u, KT −τ−1]
:= �Eu,KT −τ−1

(
J (ω, T − τ, KT −τ , u)

∣
∣Yt−1

)+ LT −τ−1(uT −τ ),

which is monotone and continuous in its first argument. The result then follows from
Corollary 1.

Remark 28 The appeal to Corollary 1 is slightly complicated by the fact that V is
a random variable, rather than simply a scalar value. The reader can verify that this
does not affect the proof of Theorem 4 significantly, as we are in a finitely generated
probability space (so measurable selection arguments remain straightforward), and
the operator A forces the solution to have the desired measurability through time.

By combining this dynamic programming property with the definition of the one-
step expectation, we can write down a difference equation which V must solve.
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Theorem 11 The value function of the control problem satisfies the recursion

V (ω, t, Kt )

= inf
u∈U

ess supp,S,Dt+1

{∫

Rd

(
V
(
ω, t, K

u,Kt−1
t

)
+ Lt+1(y, u)

− R̂t+1 (y, p,S,Dt+1; ut+1, Kt )
) (

1�Ct+1(y)At+1p
)

dμ(y)
}

and terminal value

V (ω,T , KT ) := EyT

(
C
(
XT , {Ys}s≤T

))
.

Here, K
u,Kt−1
t is the value of Kt starting at Kt−1, with control u at time t, and

evolving following Theorem 5 and R̂ is as in (11).

Corollary 2 A control is optimal if and only if it achieves the infimum in the
formula for V above.

Remark 29 If we assume that the terminal cost depends only on XT (and not
on Y), and the running cost does not depend on Y, then one can observe a Markov
property to the control problem, that is, Vs is conditionally independent of Y given
Ks . The corresponding optimal controls can then also be taken only to depend on Ks .
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