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Abstract In this paper, we consider a class of nonlinear regression problems without
the assumption of being independent and identically distributed. We propose a corre-
spondent mini-max problem for nonlinear regression and give a numerical algorithm.
Such an algorithm can be applied in regression and machine learning problems, and
yields better results than traditional least squares and machine learning methods.
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Abbreviations
i.i.d.: Independent and identically distributed
MAE: Mean absolute error
MSE: Mean squared error

1 Introduction

In statistics, linear regression is a linear approach for modelling the relationship
between a response variable y and one or more explanatory variables denoted by x:

y = wT x + b + ε. (1)

Here, ε is a random noise. The associated noise terms {εi}mi=1 are assumed to be
i.i.d. (independent and identically distributed) with mean 0 and variance σ 2. The
parameters w, b are estimated via the method of least squares as follows.
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Lemma 1 Suppose {(xi, yi)}mi=1 are drawn from the linear model (1). Then the
result of least squares is

(w1, w2, · · · , wd, b)T = A+c.

Here,

A =

⎛
⎜⎜⎝

x11 x12 · · · x1d 1
x21 x22 · · · x2d 1
· · · · · · · · · · · · · · ·
xm1 xm2 · · · xmd 1

⎞
⎟⎟⎠ , c =

⎛
⎜⎜⎝

y1
y2
· · ·
ym

⎞
⎟⎟⎠ .

A+ is the Moore−Penrose inverse1 of A.

In the above lemma, ε1, ε2, · · · , εm are assumed to be i.i.d. Therefore,
y1, y2, · · · , ym are also i.i.d.

When the i.i.d. assumption is not satisfied, the usual method of least squares does
not work well. This is illustrated by the following example.

Example 1 Denote by N
(
μ, σ 2

)
the normal distribution with mean μ and

variance σ 2 and denote by δc the Dirac distribution, i.e.,

δc(A) =
{
1 c ∈ A,

0 c /∈ A.

Suppose the sample data are generated by

yi = 1.75 ∗ xi + 1.25 + εi, i = 1, 2, · · · , 1517,

where

ε1, · · · , ε500 ∼ δ0.0325, ε501, · · · , ε1000 ∼ δ0.5525,

ε1001, · · · , ε1500 ∼ δ−0.27, ε1501, · · · , ε1517 ∼ N (0, 0.2).

The result of the usual least squares is

y = 0.4711 ∗ x + 1.4258,

which is displayed in Fig. 1.

We see from Fig. 1 that most of the sample data deviates from the regression line.
The main reason is that the i.i.d. condition is violated.

For overcoming the above difficulty, Lin et al. (2016) studied the linear regression
without i.i.d. condition by using the nonlinear expectation framework laid out by
Peng (2005). They split the training set into several groups and in each group the i.i.d.
condition can be satisfied. The average loss is used for each group and the maximum
of average loss among groups is used as the final loss function. They show that the

1For the definition and property of Moore−Penrose inverse, see (Ben-Israel and Greville 2003).
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Fig. 1 Result of least squares

linear regression problem under the nonlinear expectation framework is reduced to
the following mini-max problem.

min
w,b

max
1≤j≤N

1

M

M∑
l=1

(
wT xjl + b − yjl

)2
. (2)

They suggest a genetic algorithm to solve this problem. However, such a genetic
algorithm does not work well generally.

Motivated by the work of Lin et al. (2016) and Peng (2005), we consider nonlin-
ear regression problems without the assumption of i.i.d. in this paper. We propose
a correspondent mini-max problems and give a numerical algorithm for solving this
problem. Meanwhile, problem (2) in Lin’s paper can also be well solved by such
an algorithm. We also have done some experiments in least squares and machine
learning problems.

2 Nonlinear regression without i.i.d. assumption

Nonlinear regression is a form of regression analysis in which observational data are
modeled by a nonlinear function which depends on one or more explanatory variables
(see, e.g., Seber and Wild (1989)).

Suppose the sample data (training set) is

S = {(x1, y1), (x2, y2), · · · , (xm, ym)},
where xi ∈ X and yi ∈ Y . X is called the input space and Y is called the output (label)
space. The goal of nonlinear regression is to find (learn) a function gθ : X → Y
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from the hypothesis space {gλ : X → Y |λ ∈ �} such that gθ (xi) is as close to yi as
possible.

The closeness is usually characterized by a loss function ϕ such that
ϕ

(
gθ (x1), y1, · · · , gθ (xm), ym

)
attains its minimum if and only if

gθ (xi) − yi = 0, 1 ≤ i ≤ m.

Then the nonlinear regression problem (learning problem) is reduced to an
optimization problem of minimizing ϕ.

Following are two kinds of loss functions, namely, the average loss and the
maximal loss.

ϕ2 = 1

m

m∑
j=1

(
gθ (xj ) − yj

)2
.

ϕ∞ = max
1≤j≤m

(
gθ (xj ) − yj

)2
.

The average loss is popular, particularly in machine learning, since it can be con-
veniently minimized using online algorithms, which process fewer instances during
each iteration. The idea behinds the average loss is to learn a function that per-
forms equally well for each training point. However, when the i.i.d. assumption is not
satisfied, the average loss function method may become a problem.

To overcome this difficulty, we use the max-mean as the loss function. First, we
split the training set into several groups and in each group the i.i.d. condition can be
satisfied. Then, the average loss is used for each group and the maximum of average
loss among groups is used as the final loss function. We propose the following mini-
max problem for nonlinear regression problems.

min
θ

max
1≤j≤N

1

nj

nj∑
l=1

(
gθ (xjl) − yjl

)2
. (3)

Here, nj is the number of samples in group j.
Problem (3) is a generalization of problem (2). Next, we will give a numerical

algorithm which solves problem (3).

Remark 1 Jin and Peng (2016) put forward a max-mean method to give the
parameter estimation when the usual i.i.d. condition is not satisfied. They show that if
Z1, Z2, · · · , Zk are drawn from the maximal distribution M[μ,μ] and are nonlinearly
independent, then the optimal unbiased estimation for μ is

max{Z1, Z2, · · · , Zk}.
This fact, combined with the Law of Large Numbers (Theorem 19 in Jin and Peng

(2016)) leads to the max-mean estimation of μ. We borrow this idea and use the
max-mean as the loss function for the nonlinear regression problem.
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3 Algorithm

Problem (3) is a mini-max problem. The mini-max problems arise in different kinds
of mathematical fields, such as game theory and the worst-case optimization. The
general mini-max problem is described as

min
u∈Rn

max
v∈V

h(u, v). (4)

Here, h is continuous on Rn × V and differentiable with respect to u.
Problem (4) was considered theoretically by Klessig and Polak (1973) in 1973 and

Panin (1981) in 1981. Later in 1987, Kiwiel (1987) gave a concrete algorithm for
problem (4). Kiwiel’s algorithm dealt with the general case in which V is a compact
subset of Rd and the convergence could be slow when the number of parameters is
large.

In our case, V = {1, 2, · · · , N} is a finite set and we give a simplified and faster
algorithm.

Denote

fj (u) = h(u, j) = 1

nj

nj∑
l=1

(
gu(xjl) − yjl

)2
, 	(u) = max

1≤j≤N
fj (u).

Suppose each fj is differentiable. Now, we outline the iterative algorithm for the
following discrete mini-max problem

min
u∈Rn

max
1≤j≤N

fj (u).

The main difficulty is to find the descent direction at each iteration point uk(k =
0, 1, · · · ) since 	 is nonsmooth in general. In light of this, we linearize fj at uk and
obtain the convex approximation of 	 as

	̂(u) = max
1≤j≤N

{fj (uk) + 〈∇fj (uk), u − uk〉}.

Next, we find uk+1, which minimizes 	̂(u). In general, 	̂ is not strictly convex
with respect to u, and thus it may not admit a minimum. Motivated by the alternating
direction method of multipliers (ADMM, see, e.g., Boyd et al. (2010) and Kellogg
(1969)), we add a regularization term and the minimization problem becomes

min
u∈Rn

{
	̂(u) + 1

2
‖u − uk‖2

}
.

By setting d = u − uk , the above is converted to the following form

min
d∈Rn

{
max

1≤j≤N
{fj (uk) + 〈∇fj (uk), d〉} + 1

2
‖d‖2

}
, (5)

which is equivalent to
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min
d,a

(
1

2
‖d‖2 + a

)
(6)

s.t. fj (uk) + 〈∇fj (uk), d〉 ≤ a, ∀ 1 ≤ j ≤ N. (7)

Problem (6)−(7) is a semi-definite QP (quadratic programming) problem. When
n is large, the popular QP algorithms (such as the active-set method) are time-
consuming. So we turn to the dual problem.

Theorem 1 Denote G = ∇f ∈ R
N×n, f = (f1, · · · , fN)T . If λ is the solution of

the following QP problem

min
λ

(
1

2
λT GGT λ − f T λ

)
(8)

s.t.
N∑

i=1

λi = 1, λi ≥ 0. (9)

Then d = −GT λ is the solution of problem (6)−(7).

Proof See Appendix.

Remark 2 Problem (8)−(9) can be solved by many standard methods, such as
active-set method (see, e.g., (Nocedal and Wright 2006)). The dimension of the
dual problem (8)−(9) is N (number of groups), which is independent of n (number
of parameters). Hence, the algorithm is fast and stable, especially in deep neural
networks.

Set dk = −GT λ. The next theorem shows that dk is a descent direction.

Theorem 2 If dk �= 0, then there exists t0 > 0 such that

	(uk + tdk) < 	(uk), ∀ t ∈ (0, t0).

Proof See Appendix.

For a function F, the directional derivative of F at x in a direction d is defined as

F ′(x; d) := lim
t→0+

F(x + td) − F(x)

t
.

The necessary optimality condition for a function F to attain its minimum (see
Demyanov and Malozemov (1977)) is
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F ′(x; d) ≥ 0, ∀d ∈ R
n.

x is called a stationary point of F.
Theorem 2 shows that when dk �= 0, we can always find a descent direction. The

next theorem reveals that when dk = 0, uk is a stationary point.

Theorem 3 If dk = 0, then uk is a stationary point of 	, i.e.,

	′(uk; d) ≥ 0, ∀d ∈ R
n.

Proof See Appendix.

Remark 3 When each fj is a convex function, 	 is also a convex function. Then,
the stationary point of 	 becomes the global minimum point.

With dk being the descent direction, we use line search to find the appropriate step
size and update the iteration point.

Now, let us conclude the above discussion by giving the concrete steps of the
algorithm for the following mini-max problem.

min
u∈Rn

max
1≤j≤N

fj (u). (10)

Algorithm.
Step 1. Initialization
Select arbitrary u0 ∈ R

n. Set k = 0, termination accuracy ξ = 10−8, gap tolerance
δ = 10−7, and step size factor σ = 0.5.

Step 2. Finding Descent Direction
Assume that we have chosen uk . Compute the Jacobian matrix

G = ∇f (uk) ∈ R
N×n,

where

f (u) = (f1(u), · · · , fN(u))T .

Solve the following quadratic programming problem with gap tolerance δ (see,
e.g., Nocedal and Wright (2006)).

min
λ

(
1

2
λT GGT λ − f T λ

)

s.t.
N∑

i=1

λi = 1, λi ≥ 0.

Take dk = −GT λ. If ‖dk‖ < ξ , stop. Otherwise, goto Step 3.
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Step 3. Line Search
Find the smallest natural number j such that

	
(
uk + σ jdk

)
< 	(uk).

Take αk = σ j and set uk+1 = uk + αkdk, k = k + 1. Go to Step 2.

4 Experiments

4.1 The linear regression case

Example 1 can be numerically well solved by the above algorithm with

fj (w, b) = (wxj + b − yj )
2, j = 1, 2, · · · , 1517.

The corresponding optimization problem is

min
w,b

max
1≤j≤1517

(wxj + b − yj )
2.

The numerical result using the algorithm in Section 3 is

y = 1.7589 ∗ x + 1.2591.

The result is summarized in Fig. 2. Note that the mini-max method (black line)
performs better than the traditional least squares method (pink line).

Fig. 2 Results of the two methods
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Table 1 Comparisons of the two methods

Method D2 D1

Traditional method 1.2789 1.2878

Mini-max method 0.1755 0.1848

Next, we compare the two methods. Both l2 distance and l1 distance are used as
measurements.

D2 :=
√

(w − ŵ)2 + (b − b̂)2.

D1 := |w − ŵ| + |b − b̂|.
We see from table 1 that mini-max method outperforms the traditional method in

both l2 and l1 distances.
Lin et al. (2016) have mentioned that the above problem can be solved by genetic

algorithms. However, the genetic algorithm is heuristic and unstable especially when
the number of groups is large. In contrast, our algorithm is fast and stable and the
convergence is proved.

4.2 The machine learning case

We further test the proposed method by using the CelebFaces Attributes Dataset
(CelebA)2 and implement the mini-max algorithm with a deep learning approach.
The dataset CelebA has 202599 face images among which 13193 (6.5%) have eye-
glass. The objective is eyeglass detection. We use a single hidden layer neural
network to compare the two different methods.

We randomly choose 20000 pictures as the training set among which 5% have eye-
glass labels. For the traditional method, the 20000 pictures are used as a whole. For
the mini-max method, we separate the 20000 pictures into 20 groups. Only 1 group
contains eyeglass pictures while the other 19 groups do not contain eyeglass pictures.
In this way, the whole mini-batch is not i.i.d. while each subgroup is expected to be
i.i.d.

The traditional method uses the following loss

loss = 1

20000

20∑
i=1

1000∑
j=1

(σ (Wxij + b) − yij )
2.

The mini-max method uses the maximal group loss

loss = max
1≤i≤20

1

1000

1000∑
j=1

(σ (Wxij + b) − yij )
2.

2see http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Here, σ is an activation function in deep learning such as the sigmoid function

σ(x) = 1

1 + e−x
.

We perform the two methods for 100 iterations. We see from Fig. 3 that the mini-
max method converges much faster than the traditional method. Figure 4 also shows
that the mini-max method performs better than the traditional method in accuracy.
(Suppose the total number of the test set is n, and m of them are classified correctly.
Then the accuracy is defined to be m/n.)

The average accuracy for the mini-max method is 74.52% while the traditional
method is 41.78%. Thus, in the deep learning approach with a single layer, the mini-
max method helps to speed up convergence on unbalanced training data and improves
accuracy as well. We also expect improvement with the multi-layer deep learning
approach.

5 Conclusion

In this paper, we consider a class of nonlinear regression problems without the
assumption of being independent and identically distributed. We propose a corre-
spondent mini-max problem for nonlinear regression and give a numerical algorithm.
Such an algorithm can be applied in regression and machine learning problems, and
yields better results than least squares and machine learning methods.

Fig. 3 Loss of the two methods
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Fig. 4 Accuracy of the two methods

Appendix

Proof of Theorem 1

Consider the Lagrange function

L(d, a; λ) = 1

2
‖d‖2 + a +

N∑
j=1

λj (fj (uk) + 〈∇fj (uk), d〉 − a).

It is easy to verify that problem (6)−(7) is equivalent to the following minimax
problem.

min
d,a

max
λ≥0

L(d, a; λ).

By the strong duality theorem (see, e.g., (Boyd and Vandenberghe 2004)),

min
d,a

max
λ≥0

L(d, a; λ) = max
λ≥0

min
d,a

L(d, a; λ).

Set e = (1, 1, · · · , 1)T , the above problem is equivalent to

max
λ≥0

min
d,a

(
1

2
‖d‖2 + a + λT (f + Gd − ae)

)
.

Note that

1

2
‖d‖2 + a + λT (f + Gd − ae) = 1

2
‖d‖2 + λT (f + Gd) + a(1 − λT e).
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If 1 − λT e �= 0, then the above is −∞. Thus, we must have 1 − λT e = 0 when
the maximum is attained. The problem is converted to

max
λi≥0,

∑N
i=1 λi=1

min
d

(
1

2
‖d‖2 + λT Gd + λT f

)
.

The inner minimization problem has the solution d = −GT λ and the above
problem is reduced to

min
λ

(
1

2
λT GGT λ − f T λ

)

s.t.
N∑

i=1

λi = 1, λi ≥ 0.

Proof of Theorem 2

Denote u = uk, d = dk . For 0 < t < 1,

	(u + td) − 	(u)

= max
1≤j≤N

{fj (u + td) − 	(u)}
= max

1≤j≤N
{fj (u) + t〈∇fj (u), d〉 − 	(u) + o(t)}

≤ max
1≤j≤N

{fj (u) + t〈∇fj (u), d〉 − 	(u)} + o(t)

= max
1≤j≤N

{t (fj (u) + 〈∇fj (u), d〉 − 	(u)) + (1 − t)(fj (u) − 	(u))} + o(t)

(
Note thatfj (u) ≤ 	(u) = max

1≤k≤N
fk(u)

)

≤t max
1≤j≤N

{fj (u) + 〈∇fj (u), d〉 − 	(u)} + o(t).

Since d is the solution of problem (5), we have that

max
1≤j≤N

{
fj (u) + 〈∇fj (u), d〉 + 1

2
‖d‖2

}

≤ max
1≤j≤N

{
fj (u) + 〈∇fj (u), 0〉 + 1

2
‖0‖2

}

= max
1≤j≤N

{fj (u)}
=	(u).
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Therefore,

max
1≤j≤N

{fj (u) + 〈∇fj (u), d〉 − 	(u)} ≤ −1

2
‖d‖2.

⇒ 	(u + td) − 	(u) ≤ −1

2
t‖d‖2 + o(t).

⇒ 	(u + td) − 	(u)

t
≤ −1

2
‖d‖2 + o(1).

⇒ lim sup
t→0+

	(u + td) − 	(u)

t
≤ −1

2
‖d‖2 < 0.

For t > 0 small enough, we have that

	(u + td) < 	(u).

Proof of Theorem 3

Denote u = uk . Then, dk = 0 means that ∀d ,

max
1≤j≤N

{fj (u) + 〈∇fj (u), d〉} + 1

2
‖d‖2 ≥ max

1≤j≤N
fj (u). (11)

Denote
M = max

1≤j≤N
fj (u).

Define
� =

{
j |fj (u) = M, j = 1, 2, · · · , N

}
.

Then (see Demyanov and Malozemov (1977))

	′(u; d) = max
j∈�

〈∇fj (u), d〉. (12)

When ‖d‖ is small enough, we have that

max
1≤j≤N

{fj (u) + 〈∇fj (u), d〉}
=max

j∈�
{fj (u) + 〈∇fj (u), d〉}

=M + max
j∈�

〈∇fj (u), d〉.

In view of (11), we have that for ‖d‖ small enough,

max
j∈�

〈∇fj (u), d〉 + 1

2
‖d‖2 ≥ 0.

For any d1 ∈ R
n, by taking d = rd1 with sufficient small r > 0, we have that

max
j∈�

〈∇fj (u), rd1〉 + r2

2
‖d1‖2 ≥ 0.

max
j∈�

〈∇fj (u), d1〉 + r

2
‖d1‖2 ≥ 0.
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Let r → 0+,
max
j∈�

〈∇fj (u), d1〉 ≥ 0.

Thus, we fulfill the proof by combining with (12).
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