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Abstract The main aim of this paper is to introduce the notion of risk excess mea-
sure, to analyze its properties, and to describe some basic construction methods. To
compare the risk excess of one distribution Q w.r.t. a given risk distribution P, we
apply the concept of hemi-metrics on the space of probability measures. This view
of risk comparison has a natural basis in the extension of orderings and hemi-metrics
on the underlying space to the level of probability measures. Basic examples of these
kind of extensions are induced by mass transportation and by function class induced
orderings. Our view towards measuring risk excess adds to the usually considered
method to compare risks of Q and P by the values ρ(Q), ρ(P) of a risk measure ρ.
We argue that the difference ρ(Q)−ρ(P) neglects relevant aspects of the risk excess
which are adequately described by the new notion of risk excess measure. We derive
various concrete classes of risk excess measures and discuss corresponding ordering
and measure extension properties.
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1 Introduction

1.1 Motivation

The evaluation and comparison of risks are basic tasks of risk analysis. For the evalu-
ation of risks, the notion of risk measures—in particular of coherent and convex risk
measures—has been introduced in an axiomatic way for real risks in Artzner et al.
(1999), Delbaen (2002), Föllmer and Schied (2002) and has been extended to vec-
tor risks in Jouini et al. (2004), Burgert and Rüschendorf (2006), and many others.
This notion leads to the comparison of two risks X, Y (resp., distributions Q, P) by
ρ(X) − ρ(Y ) (resp., ρ(P) − ρ(Q)). If the main interest is to compare a risk X to a
benchmark risk Y w.r.t. a common risk measure ρ, then the one-sided distance

D+(X, Y ) = (ρ(X) − ρ(Y ))+, (1)

respectively,

D+(Q, P) = (ρ(Q) − ρ(P))+, (2)

is the induced comparison of risks (where x+ = max(x, 0) denotes the positive part
of x).

We argue that the comparisons in (1), (2) neglect some relevant part of measuring
the risk excess. This deficit can be seen in the analog simple case where for the basic
space E = R

d , the risk of a vector x = (x1, . . . , xd) ∈ R
d is measured by the

Euclidean norm ρ(x) = |x|. In this case,
D+(x, y) = (|x| − |y|)+ (3)

gives a quantitative comparison of the new risk x w.r.t. a benchmark risk y, which
is not informative enough. If |x| = |y|, then the comparisons in (3) would not take
into account whether some or many components of xmight be essentially larger than
those of y. A better measure for the risk excess would be

D+(x, y) =
d∑

i=1

(xi − yi )+. (4)

Another motivation comes from the fact that some concepts which have an impact
on the notion of risk are better defined in a relative manner than in absolute terms:
for example, the concept of “heavy tailedness” of a distribution (and the subsequent
idea of “tail risk”) is easier to define by comparing the “size of the tail” or “speed of
decrease of the density” of the distribution F to the corresponding “size of the tail” or
“speed of decrease of the density” of a benchmark distribution G (say, the standard
Gaussian one). These comparisons can be operationalized in a quantitative measure
of tail risk, e.g., by computing the difference of mass of the distribution F over an
α-quantile w.r.t. to the corresponding mass for the benchmark distribution G over the
same α-quantile, viz.,

Tα(F,G) :=
∫ 1

α

(
F−1(u) − G−1(u)

)

+ du
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or, for operationalizing the comparisons of “speed of decrease of the density” by
something like,

τα(F,G) := F−1(α) − F−1(0.5)

F−1(0.75) − F−1(0.5)
×

(
G−1(α) − G−1(0.5)

G−1(0.75) − G−1(0.5)

)−1

see, e.g., Capéraà and Van Cutsem (1988) in p. 45, Rosenberger and Gasko (2000).
See also the motivation in Section 4.

1.2 Outline

In this paper, we propose to measure the risk excess of a risk distribution Q over
a given risk distribution P by a hemi-metric on the space of probability measures.
Hemi-metrics are a suitable tool for one-sided comparison of risks. When measuring
the risk excess of Q compared to P, it is natural to associate a one-sided distance

D+(Q, P)

on the space (M1(E), �) of probability measures, where � is a given stochastic
(pre)order � (see the forthcoming definition 3 in Section 2). The stochastic order �
is related to the ordering ≤ on the underlying space E. This allows to consider for a
quantitative one-sided comparison of risks at the level of probability measures as an
extension of the order and distance structure on E.

We discuss several classes of risk excess measures D+(Q, P) and consider the
question when these are given as order extensions of hemi-distances d+ on the
underlying space E. Several relevant hemi-distances are induced by mass transporta-
tion and thus give access to natural interpretation. One particular extension is given
by a version of the Kantorovich–Rubinstein theorem for hemi-distances. The paper
develops basic tools and notions for measuring the one-sided risk excess of a risk
distribution Q compared to P.

The paper is organized as follows: in Section 2, we introduce the notion of hemi-
metrics which are basic for obtaining a quantitative description of one-sided distance
in a preordered space (E, ≤). The risk excess measure D+(Q, P) of Q w.r.t. P is
then introduced as a one-sided hemi-metric on the space of probability measures
M1(E). The ordering � on M1(E) is chosen consistent with the preorder ≤ on E
and describing a positive risk excess, i.e., Q � P if Q has no positive risk excess
w.r.t. P. We discuss several examples to describe the meaning of this notion and the
interplay of order and distance.

In Section 3, we study several classes of interesting risk excess comparison mea-
sures and corresponding extension properties of the preorderings on the underlying
space. A general class of risk comparison measures is introduced by considering
worst-case comparison over suitable classes of increasing functions. This is analog to
the worst-case representation of convex and coherent risk measures. There are several
classes of examples.

In Section 4, we describe risk excess measures D+(X, Y ) on the space of random
variables. The class of compound risk excess measures is obtained for those measures
which depend only on the joint law of the random elements (X, Y ). Mass trans-
portation gives a natural way to obtain minimal extensions of compound risk excess



Page 4 of 35 O. P. Faugeras, L. Rüschendorf

measures to risk excess measures in the space of distributions, i.e., which depend only
on the marginal laws of X and Y. Dual representations of these risk excess measures
are obtained by a version of the Kantorovich–Rubinstein theorem for hemi-metrics.
Several examples illustrate these constructions.

In Section 5, we introduce the concept of weak risk excess measure, which is a
risk excess measure without the weak identity property. Similarly to Section 4, a
mass transportation formulation gives a way to obtain weak risk excess measures
as the maximal extension of compound risk excess measures. We also give a dual
representation of this risk excess measure and introduce several examples of weak
excess risk measures constructed from mass transportation problems.

Finally, in Section 6, we consider dependence restrictions on the class of risk
pairs (X, Y ) and consider maximal and minimal excess risks with these restrictions.
These maximal and minimal excess risks do not define risk excess measures, but give
relevant and well-motivated bounds. For one and two-sided restrictions, we obtain
explicit formulas for the bounds.

2 Hemi-metrics and measuring risk excess

2.1 Hemi-metrics

As a motivation for the introduction of measuring the risk excess of distributions,
one could argue that, from the structural and phenomenological point of view, the
concept of risk combines aspects of the metric structure (a risk measure evaluates
some “size” or “norm” on the space of distributions) and of the order structure (there
is an underlying preorder structure on the space of distributions which allows one to
say when one risk is larger than another). Such “quantitative measure of the order” is
encapsulated in the notion of hemi-metric, see Goubault-Larrecq (2013)in Chap. 6,
p. 203. (The terminology is not completely standard and the notion of hemi-metric
is also known of as pseudo quasi-metric in the topology literature, while Nachbin
(1965)in p. 61 calls it a semi-metric). We use the following definition:

Definition 1 (Hemi-metric) A hemi-metric or hemi-distance d+ on a set E is an
application d+ : E×E → Rwhich satisfies the following axioms: for all x, y, z ∈ E,

(A1) positivity: d+(x, y) ≥ 0;
(A2) weak identity: x = y ⇒ d+(x, y) = 0;
(A3) triangle inequality: d+(x, z) ≤ d+(x, y) + d+(y, z).

The main difference with the notion of metric is the omittance of the sym-
metry condition, and assuming only the weak identity property. For establishing
a connection with a preorder ≤ on E, we introduce the notion of a one-sided
hemi-metric.

Definition 2 (One-sided hemi-metric) Let d+ be a hemi-metric on a preordered
set (E, ≤). Then, d+ is called a one-sided hemi-metric on (E, ≤) if

(A4) x ≤ y ⇔ d+(x, y) = 0.
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For two comparable elements, the one-sided hemi-metric of a smaller element x
to a larger element y is zero.

Remark 1 1 If E is a set and d+ a hemi-metric on E, one can endow E with a
preorder structure by setting

x ≤ y ⇔ d+(x, y) = 0. (5)

Then, by construction of ≤, we obtain that d+ is a one-sided hemi-metric on E.
2 Hemi-norms and hemi-metrics:

When E has a vector space structure, a metric d can be induced in a natural
way by a norm ρ, as d(x, y) := ρ(x − y). Similarly, a hemi-norm ρ+ on E,
(i.e., a subadditive, positive homogeneous, non-negative functional ρ+ : E → R

satisfying the weak separation condition x = 0E ⇒ ρ+(x) = 0) defines a
hemi-metric d+ by setting

d+(x, y) := ρ+(x − y). (6)

In addition, if E has a preorder ≤ and ρ+ is a hemi-norm which has the property
that

x ≤ 0E ⇔ ρ+(x) = 0, (7)

then d+ in (6) defines a one-sided hemi-metric.
More generally, if (E, ≤, ρ) is a lattice-ordered normed vector space, one can

construct a one-sided hemi-metric compatible with ≤ by setting

d+(x, y) := ρ((x − y) ∨ 0E ),

where ∨ is the least upper bound operation.
3 To any hemi-metric d+ on E, one can associate its dual hemi-metric d−, obtained

by symmetrization of d+,

d−(x, y) := d+(y, x). (8)

When d+ is a one-sided hemi-metric associated with the order ≤ on E, d− is a
one-sided hemi-metric associated with the corresponding dual order ≥ on E.

A hemi-metric d+ induces a distance d by symmetrization

d∞(x, y) := max(d+(x, y), d−(x, y)),

or by taking the positive linear combination, say

d1(x, y) := αd+(x, y) + βd−(x, y), α, β > 0.

More generally, a hemi-metric allows defining a “one-sided” topology by setting
the open balls as

B+(x, r) := {y ∈ X , d+(x, y) < r}. (9)

4 The concept of a hemi-metric is implicit in several notions encountered in anal-
ysis, probability, and statistics. For example, recall that a real-valued function f
on a metric space (E, d) is upper semi-continuous at x0 iff

∀ε > 0, ∃δ > 0, d(x, x0) ≤ δ ⇒ db+( f (x), f (x0)) ≤ ε,
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where db+(x, y) := ρ+(x − y) = max(x − y, 0) is the usual basic one-sided
hemi-metric on (R, ≤, |.|) (see Example 3 and (13) below).

2.2 Risk excess measures

After the discussion of hemi-metrics, we are now in a position to introduce the main
object of this paper, which is a measure of the risk excess of a distribution Q w.r.t.
P. To that aim, we assume that a preorder � is defined on the set M1(E) of prob-
ability measures on a measurable space (E, E): P � Q describes that Q has more
risk than P.

Definition 3 (Risk excess measure) A risk excess measure D+ is defined as an
one-sided hemi-metric on the preordered space

(
M1(E), �)

, (or on a subset M ⊂
M1(E)). D+(Q, P) is called the risk excess of Q w.r.t. P.

We illustrate below this concept with the following examples. A general class of
risk excess measure will be presented in a systematic way in Section 3.

Example 1 (Stochastic ordering) On E = R
d , we consider the componentwise

order ≤, which is closely connected with the stochastic order �st : for a measurable
set B ⊂ E, define B↑ = {y ∈ E; ∃x ∈ B s.t. y ≥ x} and say that B is an
increasing set if B = B↑. Denote by I(E) the set of measurable increasing sets of E.

The stochastic order �st is defined on M1(Rd) by

Q �st P ⇔ Q(B) ≤ P(B),

for all measurable sets B ∈ I(E). A corresponding risk excess measure is given by

Dst+ (Q, P) := sup{(Q(B) − P(B))+; B ∈ I(E)}. (10)

There exists no risk excess of Q w.r.t. P, i.e.,

Dst+ (Q, P) = 0 ⇔ Q(B) ≤ P(B), ∀B ∈ I(E),

⇔ Q �st P.

By the well-known Strassen theorem (see Strassen (1965) and e.g., Rüschendorf
(2013) in Theorem 1.18, p. 22), this is equivalent to the existence of random vectors
X ∼ Q, Y ∼ P s.t. X ≤ Y a.s.

In other words, the distribution Q is considered more safe than P if one can con-
struct representationsX of Q andY of P s.t. all coordinates ofX are lower than those
of Y. Q has a positive risk excess w.r.t. P if some of the components of any represen-
tation X of Q exceed the corresponding components of any representation Y of P. Of
course, this gives a very strict notion of no risk excess.

Example 2 (Levy–Prokhorov) Let E be a space with a hemi-metric d+. Define
a “one-sided” topology on E by setting the open balls as in (9). Let E be the cor-
responding Borel σ−algebra. For two probability measures P, Q ∈ M1(E, E) ,
define

DLP+ (Q, P) = inf{ε > 0 : Q(A) ≤ P(Aε) + ε, Aopen}, (11)
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where Aε := {x ∈ E : ∃a ∈ A, d+(a, x) < ε} = ∪x∈AB+(x, ε). Then, DLP+ is a
one-sided risk excess measure and DLP+ (Q, P) = 0 iff Q(A) ≤ P(A) for all A ∈ E .

One can replace Aε by Aε] := {x ∈ E : ∃a ∈ A, d+(a, x) ≤ ε}, and the open
sets by the closed set in the definition (11), see Dudley (1968), Dudley (1976) in
sect. 8, Dudley (2002) in Chap. 11.3. For the one-sidedness, if Q(A) ≤ P(A) for all
A ∈ E , then, for every ε > 0, Q(A) ≤ P(A) ≤ P(Aε) + ε, since A ⊂ Aε . Hence,
DLP+ (Q, P) ≤ ε. Letting ε ↓ 0 yields DLP+ (Q, P) = 0. Conversely, if DLP+ (Q, P) =
0, there exists a sequence εn ↓ 0 s.t. for all closed sets A, Q(A) ≤ P(Aεn )+εn. Since
Aεn ↓ A = A , this yields Q(A) ≤ P(A) for all closed sets A. Hence, Q(A) ≤ P(A)

also for all A ∈ E .

2.3 Examples of hemi-metrics

Hemi-metrics are suitable tools to measure one-sided distances. We illustrate the
meaning of this notion and the interplay of order and distance via the following
example, which will be used constantly throughout the paper.

Example 3 (Standard examples on (E, ≤))

1 Discrete one-sided hemi-metric:
Let (E, ≤) be a preordered space, then

d≤
+(x, y) =

{
0 ifx ≤ y
1 else

(12)

defines a one-sided hemi-metric on (E, ≤), which we call the discrete one-sided
hemi-metric on (E, ≤).

2 l p hemi-metric:
On E = R

1, one can decompose the absolute value into its positive and negative
parts |x | = x+ + x− = ρ+(x) − ρ+(−x), viz., into two hemi-norms satisfying
(7). As a consequence of (6), the metric

|x − y| = d+(x, y) − d+(−y, −x) = d+(x, y) + d−(x, y)

is decomposed as a sum of two one-sided hemi-metrics (d+, d−) associated with
the dual orders (≤, ≥). The basic one-sided hemi-metric

db+(x, y) := (x − y)+ (13)

describes in a quantitative way the ordering relationship ≤. Compared to the
discrete hemi-metric (12), it also contains information on the magnitude of the
one-sided departure of two elements.

Similarly on (E, ≤) = (Rd , ≤) supplied with the componentwise (product)
order

x ≤ y ⇔ xi ≤ yi , 1 ≤ i ≤ d,

the l p hemi-norms, defined as
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l p+(x) :=
(

d∑

i=1

(
x+
i

)p
)1/p

, 1 ≤ p < ∞, (14)

l∞+ (x) := max
{
x+
i

}

induce the one-sided l p hemi-metrics

d p
+(x, y) := l p+(x − y), 1 ≤ p ≤ ∞.

Several of the hemi-metrics have a direct interpretation and extensions as risk
measures for probability distributions. We give two examples:

Example 4 1 τ−quantiles:
Consider on the real line E = R

1, the hemi-norm

ρτ (x) := τ x+ + (1 − τ)x− = τ x+ + (1 − τ)(−x)+, 0 < τ < 1 (15)

induces, by Remark 1 and (6), a hemi-metric

dτ (x, y) := ρτ (x − y). (16)

It is well known that this hemi-metric can be used to define τ−quantiles qτ (Y )

(viz., the Value at Risk) of a random variable Y as a minimizer of E[ρτ (Y − y)],
i.e.,

qτ (Y ) := F−1
Y (τ ) = arg inf

y
E [ρτ (Y − y)] (17)

= arg inf
y
E[dτ (Y, y)] = VaRτ (Y ), (18)

see Koenker (2005) in p. 5. Note, however, that the order induced by dτ reduces
to the trivial order =, as dτ (x, y) = 0 iff x = y.

2 Half-space depth, departure in direction u:
A multivariate generalization of the preceding example can be defined as follows.
On E = R

d , we define for any unit vector u an ordering (the length in the
direction u), by

x ≤u y ⇔ uT (y − x) ≥ 0, (19)

where xT denotes the transpose of x. With this ordering,

du+(x, y) =
{
1 if uT (y − x) > 0
0 else

(20)

defines, as in (12), a one-sided hemi-metric. It is one if the length of y in direction
u is greater than that of x, and is zero else.

This one-sided hemi-metric has, as basic application, the definition of the
half-space depth function, which describes the degree of outlyingness of a point
x ∈ R

d w.r.t. a probability measure P on Rd . It is defined as

D+(x, P) := inf
u∈Sd−1

∫
du+(x, y)dP(y)

= inf
u∈Sd−1

∫
1{uT (y−x)>0}dP(y), (21)
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where Sd−1 is the unit sphere of Rd . Several modifications of this definition are
useful to describe a one-sided degree of outlyingness (or risk) or quantitative
versions of it. Two relevant examples are

D1+(x, P) := inf
u∈S+

d−1

∫
1{uT (y−x)>0}dP(y), (22)

or

D2+(x, P) := inf
u∈S+

d−1

∫ (
uT (y − x)

)+
dP(y),

where S+
d−1 = Sd−1 ∩ R

d,+ is the part of the unit sphere in the positive cone
x ≥ 0. We mention that a very general approach to multivariate quantiles can be
found in Faugeras and Rüschendorf (2017).

At last, we briefly mention some examples of one-sided hemi-metrics which may
appear in related contexts.

Example 5 1 Schur-order ≤S on Rd :
The majorization, or Schur order≤S, is useful to compare vectors x, y ∈ R

d with
identical sums w.r.t. their degree of dispersion, see e.g., Marshall et al. (2011).
In a natural way, this ordering extends to an ordering on M1(Rd), comparing
the relative degree of dispersions of two measures. Let x, y ∈ R

d , 	(d) the set of
permutations of {1, . . . , d}. The Schur-ordering on Rd x ≤S y is defined by,

d∑

k=l

xγ (k) ≤
d∑

k=l

yβ(k), l = 2, . . . , d,

d∑

k=1

xγ (k) =
d∑

k=1

yβ(k) (23)

where γ, β ∈ 	(d) are the decreasing rearrangements of x and y:

xγ (1) ≥ xγ (2) ≥ . . . ≥ xγ (d), yβ(1) ≥ yβ(2) ≥ . . . ≥ yβ(d).

≤S is a preorder: x ≤S y and y ≤S x only imply that the components of each
vector are equal, but not necessarily in the same order. Geometrically, x ≤S y
if and only if x is in the convex hull of all vectors obtained by permuting the
coordinates of y. When x, y stands for a pair of discrete probability measures
on the same set of d-points, the norming condition (23) is satisfied as the sum is
normalized to one.

Say that x and y are Schur-comparable if
∑n

i=1 xi = ∑n
i=1 yi . The degree

of dispersion is measured by the following one-sided hemi-metric: for Schur-
comparable elements x, y, define

d+(x, y) := sup
l=2,...,d

(
d∑

k=l

[xγ (k) − yβ(k)]
)

+
.

One has, for Schur-comparable elements:
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x ≤S y iffd+(x, y) = 0.

Specialized to discrete probability measures, this gives a one-sided hemi-metric
measuring the degree of dispersion or “variance”.

2 One-sided Hausdorff hemi-metric on closed subsets:
Let (E, d) be a metric space. Set

d+(A, B) := sup inf
y∈A x∈B

d(x, y). (24)

Then, for closed sets A, B, it holds that d+(A, B) = 0 ⇔ A ⊂ B, and d+ is a
one-sided hemi-metric on (C(E), ⊂), the set of closed subsets of E.

3 Risk excess measures induced by function classes

3.1 Motivation and definition

For a law invariant, convex risk measure ρ on M1(Rd), one has a representation of
the form

ρ(Q) = sup
ν∈A

(Eν(X) − α(ν)) , (25)

where X ∼ Q, A is a class of scenario measures and α(ν) is a penalization term, see
Föllmer and Schied (2002). This representation suggests to consider for a class F of
real functions on E the following hemi-metric

DF+ (Q, P) := sup
f ∈F

(∫
f d(Q − P)

)

+
. (26)

Let MF := {P ∈ M1(E) : sup f ∈F
(∫

f d P
)
+ < ∞} and define on MF the

preorder

P �F Q ⇔
∫

f d P ≤
∫

f dQ, ∀ f ∈ F . (27)

Then, DF+ is a risk excess measure on
(
MF , �F

)
.

Another motivation comes from the theory of probability metrics, where some
metrics on the space of probability measures are defined by duality from a class of
functions: DF+ in (26) is the natural one-sided analog of the probability metrics DF

induced by a functional class F ,

DF (Q, P) = sup
f ∈F

∣∣∣∣
∫

f d(Q − P)

∣∣∣∣ ,

which go under the name of probability metrics with a ζ -structure in Rachev (1991)
or integral probability metrics in Müller (1997). We are thus naturally inclined to
define:

Definition 4 (F-induced risk excess measure) The risk excess measure DF+ on(
MF , �F

)
defined in (26) is called the F-induced risk excess measure.
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Example 6 Example 1 can be regarded as an F-induced excess risk measure, by
considering F = {1B : B ∈ I(E)}.

Remark 2 On a probability space (,B, μ), let X be a random variable with
image measure μX = Q. By (25), any law-invariant convex coherent risk measure

ρ has a representation of the form DF+ (Q, δ0) where F =
{
x dνX

dμX (x), ν ∈ A
}
, μ is

an underlying measure dominating A, μX and νX the image measures of μ, ν by X.
Indeed,

Eν(X) =
∫

Xdν =
∫

X
dν

dμ
dμ =

∫
x
dνX

dμX
dμX =

∫
x
dνX

dμX
dQ.

So the notion of risk excess measure can be seen as an extension of the notion of risk
measures.

3.2 Extension and restrictions of orders and hemi-metrics

For risk excess measures, an important aspect is to have a kind of consistency w.r.t.
some ordering ≤ on E, i.e.,F consists of increasing functions w.r.t. ≤. In this respect,
the following order extension properties are useful.

Proposition 1 (Extension and restriction of order) 1 If � is a preorder on
M1(E), then, the relation ≤r , defined, for x, y ∈ E, by

x ≤r y ⇔ δx � δy, (28)

defines a preorder on E.≤r is called the restriction of the preorder� onM1(E).
2 Conversely, if≤ is a preorder on E, then the stochastic order�st defines a partial

order on M1(E), such that its restriction ≤r is identical to ≤.

Proof 1 The proof follows by direct verification.
2 By definition, we have

x ≤r y ⇔ δx �st δy ⇔ 1B(x) ≤ 1B(y), ∀B ∈ I(E)

⇔ [x ∈ B ⇒ y ∈ B, ∀B ∈ I(E)]. (29)

In particular, restricted to principal up-sets B = {z}↑, the implication (29)
becomes

x ≥ z ⇒ y ≥ z, for all z ∈ E,

which is equivalent to x ≤ y. Therefore, x ≤r y ⇒ x ≤ y. Conversely, if x ≤ y,
(29) is satisfied, by definition of an up-set.

Remark 3 For a closed partial order ≤ on a Polish space E, the result follows
directly from Strassen theorem (see Example 1).
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Analogously, we can also extend and restrict in a consistent way the discrete one-
sided hemi-metric d≤

+ of Example 3, Eq. (12) into the risk excess measure

Dst+ (Q, P) = sup
{
(Q(B) − P(B))+ ; B ∈ I(E)

}
.

of Example 1.

Proposition 2 (Extension and restriction of discrete hemi-metrics)

1 If D+ is a risk excess measure on
(
M1(E), �)

, then

dr+(x, y) := D+(δx , δy)

defines a one-sided hemi-metric on (E, ≤r ), called the restriction of D+ on E.
2 If d≤

+ is the discrete hemi-metric on (E, ≤) of (12) , then Dst+ is an extension of
d≤
+ into a risk excess measure on (M1(E), �st ) such that the restriction dr+ of
Dst+ is equal to d≤

+ .

Proof 1 The proof follows by direct verification and Proposition 1.
2 The restriction of Dst+ to E writes

dr+(x, y) := Dst+ (δx , δy) = sup{(1B(x) − 1B(y))+ ; B ∈ I(E)},

which is {0, 1}−valued and a one-sided hemi-metric on E by Proposition 2 part
1. By Proposition 1 part 2,

dr+(x, y) = 0 ⇔ x ≤r y ⇔ x ≤ y.

Therefore, dr+(x, y) = 1x�y = d≤
+(x, y).

Remark 4 The construction of the previous proposition, based on the Dst+ of
Example 1, which encodes the order ≤ into �st , is consistent w.r.t. the order ≤, in
the sense that the restriction of Dst+ is the discrete one-sided hemi-metric dr+ = d≤

+ ,
which encodes the original order ≤. However, for a one-sided hemi-metric d+ on
(E, ≤) different from the discrete one, the extention Dst+ is in general inconsistent
w.r.t. the hemi-metric d+, in the sense that the restriction of the risk excess measure
Dst+ is not the original d+ but is again the discrete one-sided hemi-metric d≤

+ . This is
illustrated in the following diagram:



Probability, Uncertainty and Quantitative Risk  (2018) 3:6 Page 13 of 35

The question of consistently extending/restricting a one-sided hemi-metric d+ into
a risk excess measure D+, according to the diagram,

will be treated by mass transportation in Section 4.

It is interesting to observe that, in general, there may exist many extensions of
a one-sided hemi-metric on E to a risk excess measure on M1(E), as seen in the
following example. We will discuss some general extensions in Section 4.

Example 7 (Positive orthant ordering) On E = R
d , consider the class Fuo of

upper orthant indicators,

Fuo :=
{
1[z,∞), z ∈ R

d
}

=
{
1{z}↑ , z ∈ R

d
}

.

Fuo induces on M1(E) the upper orthant ordering �uo defined by

Q �uo P ⇔ F(z) ≤ G(z), ∀z ∈ R
d ,

where F(z) = Q([z, ∞)) and G(z) = P([z, ∞)) stand for the survival functions of
Q and P. So it will be easier for Q to be less risky than P for this order than for the
stochastic order, where the comparison has to be made for all increasing sets. The
Fuo-induced risk excess measure DFuo+ is given by

Duo+ (Q, P) := DFuo+ (Q, P) = sup
z∈Rd

(F(z) − G(z))+.

Note that the restriction ≤uo on E = R
d of the partial order �uo in the sense of

Proposition 1 is identical to the usual componentwise ordering, i.e., ≤uo=≤. The
restriction duo+ of the risk excess measure Duo+ in the sense of Proposition 2 is the
discrete one-sided hemi-metric d≤

+ (see Example 3 and (12)):

duo+ (x, y) := Duo+ (δx, δy) =
{
0 if x ≤ y
1 if x � y

= d≤
+(x, y).

As a consequence, both risk excess measures Duo+ and Dst+ of Example 1 induce
the same componentwise ordering ≤ on E = R

d and also induce the same restriction
as hemi-metric on E. Duo+ and Dst+ are both extensions of the same discrete one-sided
hemi-metric d≤

+ on E from Example 3 (a), as is illustrated in the diagram below:
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Example 8 (Increasing convex ordering) On E = R, consider the class of excess
functions Ficx := {πt , t ∈ R}, with πt (x) := (x − t)+. Then, on the class of distri-
butions M1

1 with finite first moment, the induced ordering �Ficx is identical to the
increasing convex order,

�Ficx=�icx .

For X ∼ Q and Y ∼ P in M1
1, the generated risk excess measure DFicx+ is given by

Dicx+ (Q, P) := DFicx+ (Q, P) = sup
t∈R

(�X (t) − �Y (t))+ , (30)

where �X (t) := E(X − t)+ = Eπt (X), �Y (t) := E(Y − t)+ = Eπt (Y ) are
the mean excess functions. Dicx+ measures the risk excess of Q w.r.t. P in terms of
the corresponding mean excess functions. When restricted to the class of probability
measures with identical first moments, �Ficx is also identical to the convex ordering,

�Ficx=�icx=�cx .

In this example, the restriction dicx+ of Dicx+ is

dicx+ (x, y) := Dicx+ (δx , δy) = sup
t∈R

(πt (x) − πt (y))+ .

On the one hand,

dicx+ (x, y) = 0 ⇔ πt (x) ≤ πt (y), ∀t ∈ R

⇔ [x ≥ t ⇒ y ≥ t], ∀t ∈ R

⇔ x ≤ y.

On the other hand, if x > y, then dicx+ (x, y) = supt∈R (πt (x) − πt (y)). By consid-
ering all cases, t ≤ y, y ≤ t ≤ x, and x ≤ t , one sees that the supremum takes the
value x − y. Hence, the restriction dicx+ of Dicx+ is given by

dicx+ (x, y) = (x − y)+ = db+(x, y),

which is the basic one-sided hemi-metric of (13).
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4 Risk excess measures for random variables and minimal extension by
mass transportation

4.1 Compound risk excess measures

So far we have considered risk excess measures as one-sided hemi-metrics on the
space of probability distributions, i.e., as a mapping D+ : M × M �→ [0, ∞],
for M ⊂ M1(E), acting on a pair (Q, P) of probability measures on E. Like for
risk measures ρ : X �→ R defined on a space of random variables X ⊂ L0

E =
L0
E (,A, μ) := {X :  → E} (see e.g., Föllmer and Schied (2002)), it is natural to

define risk excess measures D+ : X×X �→ R, also on a spaceX of random variables.
This allows to consider the risk of a random element X ∈ E as a relative property:

there is a joint modeling of the vector (X, Y ) ∈ X2, defined on a common probabil-
ity space (,A, μ), so that the risk of X :  �→ E can be considered in relation to
the random element Y :  �→ E , regarded as a benchmark. In the context of insur-
ance and financial mathematics, Y can stand for the value of an alternative portfolio,
of a hedge, of a market indicator, or the wealth of an insurer. For example, an insurer,
facing the prospect of losing a claim amount X, may wish to evaluate its perceived
risk with respect to its reserve capital Y: the ”risk” X does not have the same poten-
tial consequences whether Y is small or large compared to X. In the same vein of
reasoning, because of the fluctuating and (usually) inflating nature of fiat money in
the post-1973, petro-dollar based, current monetary system, one may be interested in
evaluating the value of a financial asset X w.r.t. the price of a commodity Y considered
as a standard, like gold or oil, whose supply is limited in essence.

For X ⊂ L0
E = L0

E (,A, μ) a set of random variables on (,A, μ) with values
in (E, ≤), we consider the pointwise ordering on X induced by ≤. We identify ran-
dom elements in L0

E which are identical a.s. and similarly X ≤ Y means that X ≤ Y
μ-a.s.

Definition 5 (Risk excess measure on X) For X ⊂ L0
E , a risk excess measure D+

on X is a one-sided hemi-metric on X.

Definition 6 (Compound risk excess measure on X) A risk excess measure Dc+ on
X is called a compound risk excess measure on X if Dc+(X, Y ) depends only on the
joint distribution μ(X,Y ) of (X, Y ).

Example 9 1 An example of a risk excess measure onX which is not compound is

D+(X, Y ) := sup
ω∈

(X (ω) − Y (ω))+.

However, since random elements in L0
E which are identical μ-a.s are identified,

it is natural to consider only compound risk excess measure, e.g., the essential
supremum version

D+(X, Y ) := esssupμ(X − Y )+
instead.
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2 On (,A, μ), let A0 ∈ A, with 0 < μ(A0) < 1, be a class of scenarios consid-
ered as “low risk”, while its complement A1 :=  \ A0 is considered as “high
risk”. Then, for some safety coefficient α > 1,

D+(X, Y ) := esssupμ,A0
(X − Y )+ + α esssupμ,A1

(X − Y )+,

with esssupμ,A(X − Y )+ := inf{c ∈ R; μ((X − Y )+ ≥ c) ∩ A) = 0}, or

D+(X, Y ) :=
∫

A0

(X − Y )+dμ + α

∫

A1

(X − Y )+dμ,

define non-compound risk excess measures, which values α times more the risk
excess (X − Y )+ for the high risk scenarios than for the low risk ones.

Remark 5 1 The notation Dc+ in Definition 6 stresses that Dc+ depends on the
joint distribution μ(X,Y ) and not solely on the marginals μX , μY of (X, Y ), as is
the case in Definition 3. See also Zolotarev (1997, Rachev (1991) for the similar
notion of compound probability metric. For risk measures ρ(X) on X, there is
the analog notion of law-invariant risk measures which depend only on the law
μX of the random variable.

2 There are two main reasons why compound risk measures on X are of particu-
lar importance. Firstly, they allow to define extensions as excess risk measures
D+ : M × M → [0, ∞] on subclasses M ⊂ M1(E) defined by the induced
set of distributions of elements of X (see Section 4.3). Secondly, the fact that they
depend only on the joint distribution μ(X,Y ) induces the possibility of statistical
estimation of the risk excess D+(X, Y ) by their empirical analogs. This property
is most relevant for the application of risk excess measures.

3 Like in the case of probability metrics, it is also possible to describe compound
risk excess measures formally on the subclassM(2) of bivariate laws μ(X,Y ) for
X, Y ∈ X. For details in the case of probability metrics, see Rachev (1991).

4.2 Construction of a compound risk excess measure from a one-sided
hemi-metric d+ on E

There is a natural way to construct such a compound risk excess measure on a set X
of r.v. in (E, ≤): let d+ be a one-sided hemi-metric on (E, ≤), and let X be the set of
random variables X s.t. there exists x, y ∈ E s.t. Ed+(X, x) < ∞ and Ed+(y, X) <

∞. The notion of excess risk of Y w.r.t. X is measured by d+(X, Y ). The latter can be
turned into a deterministic value, e.g., by taking its expectation, so that one obtains a
hemi-metric on X,

Dc+(X, Y ) := Ed+(X, Y ). (31)

Note that (31) depends only on the joint distribution of (X, Y ): it is indeed a
compound risk excess measure defined on a space X of random variables.

Indeed, one has:

Proposition 3 For any measurable one-sided hemi-metric d+ on (E, ≤), (31)
defines a finite one-sided compound risk excess measure on X.
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Proof For all X, Y ∈ X, there exists x, y ∈ E s.t. Ed+(X, x) < ∞ and
Ed+(y, Y ) < ∞. Hence, by the triangle inequality,

Ed+(X, Y ) ≤ Ed+(X, x) + d+(x, y) + Ed+(y, Y ) < ∞.

Equation (31) is therefore well defined and is obviously a compound risk excess
measure. For the one-sidedness property, X ≤ Y a.s. ⇔ d+(X, Y ) = 0 a.s. ⇔
Dc+(X, Y ) = 0 follows from the one-sidedness and non-negativity of d+.

Remark 6 Formula (31) gives a natural way to obtain a compound excess risk
measure from a one-sided hemi-metric d+ on the ambient space E. Note that not all
compound excess risk measures can be written in this form. For example, let (d+,i )i∈I
be a countable family of one-sided hemi-metrics on E, then

Dc+(X, Y ) := sup
i∈I

Ed+,i (X, Y )

defines a compound excess risk measure which can not be written as in (31) for
some d+.

4.3 Minimal extension of a compound risk excess measure

A compound risk excess measure Dc+, depending on the joint distribution μ(X,Y ),
can be turned by mass transportation into a risk excess measure on M1(E), i.e.,
depending only on the pair of marginals μX , μY , where M1(E) is supplied with the
stochastic ordering �st consistent with the underlying order ≤ on X.

Definition 7 Let Dc+ be a compound excess risk excess measure. The minimal

extension Din f
+ on M1(E) of Dc+ by mass transportation is given by

Din f
+ (Q, P) := inf

X,Y∈X,X∼Q,Y∼P
Dc+(X, Y ). (32)

The fact that Din f
+ is indeed a one-sided risk excess measure on the space of

probability measures is given in the following proposition:

Proposition 4 1 If (E, ≤) is a Polish space with a closed partial order, and if
Dc+ is weakly lower-semicontinuous, in the sense that

(Xn, Yn)
d→ (X, Y ) ⇒ Dc+(X, Y ) ≤ lim inf Dc+(Xn, Yn), (33)

then Din f
+ is a one-sided risk excess measure on (M1(E), �st ), where �st is the

stochastic order.
2 If Dc+(X, Y ) = Ed+(X, Y ), as in (31), for d+ a lower semi continuous one-

sided hemi-metric on (E, ≤), then Din f
+ is a one-sided risk excess measure on(

M1(E), �st
)
.

Proof 1 (A1) is obvious. (A2) follows from the fact that Dc+ satisfies (A2): for

X ∼ Q, 0 ≤ Din f
+ (Q, Q) ≤ Dc+(X, X) = 0. Regarding (A3): for (,A, μ)
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a non-atomic probability space and E a Polish space, any bivariate measure
α ∈ M1(E2) can be obtained as the image measure of μ by some measurable
mapping, see e.g., Berkes and Philipp (1979). Therefore, for all ε > 0, there
exists random variables (X, Y1) ∼ α = αQP , where α ∈ M1

(
E2

)
has marginals

Q, P and there exists random variables (Y2, Z) ∼ β = βPR with marginals
P, R s.t.

Din f
+ (Q, P) + ε

2
≥ Dc+(X, Y1), and Din f

+ (P, R) + ε

2
≥ Dc+(Y2, Z).

By the gluing lemma, see e.g., Villani (2003) in p. 208, there exists a trivariate
measure γ = γQPR s.t. its projection on the first two marginals is α and its pro-
jection on the last two marginals is β. In addition, γ can be obtained as the image
measure of μ for some measurable mapping. In other words, there exists a joint
construction of a random vector (X̃ , Ỹ , Z̃) on the probability space (,A, μ)

s.t. μX̃ ,Ỹ ,Z̃ = γ and

Din f
+ (Q, P)+ ε

2
≥ Dc+

(
μX̃ ,Ỹ

)
, and Din f

+ (P, R)+ ε

2
≥ Dc+

(
μỸ ,Z̃

)
. (34)

By (A3) for the compound risk excess Dc+,

Dc+
(
μX̃ Z̃

)
≤ Dc+

(
μX̃ Ỹ

)
+ Dc+

(
μỸ Z̃

)

which gives with (34),

Din f
+ (Q, R) ≤ Dc+

(
μX̃ Z̃

)
≤ Din f

+ (Q, P) + Din f
+ (P, R) + ε.

Letting ε ↓ 0 gives (A3) for Din f
+ .

For the one-sidedness property (A4), if Din f
+ (Q, P) = 0, then there exists a

sequence (Xn, Yn) of random variables on (,A, μ), all with fixed marginals
Q, P , s.t. Dc+(Xn, Yn) → 0. Since M1(Q, P) the set of probability measures
on E × E with marginals Q, P is weakly compact in M1

(
E2

)
, one can extract

a subsequence n′ s.t. (Xn′ , Yn′)
d→ (X, Y ) for some (X, Y ) with marginals Q, P .

By the assumption on Dc+,

Dc+(X, Y ) ≤ lim inf Dc+(Xn, Yn) = 0

which entails X ≤ Y , μ-a.s. by (A4’). The latter is equivalent to Q �st P by
Strassen theorem (see Theorem 1.18 in Rüschendorf (2013)). The converse is
obvious.

2 If (Xn, Yn)
d→ (X, Y ), by Skorohod’s representation theorem, there exists

(X̃n, Ỹn)
a.s.→ (X̃ , Ỹ ), with (X̃n, Ỹn)

d= (Xn, Yn), (X̃ , Ỹ )
d= (X, Y ). Therefore,

lower semi-continuity of d+ and Fatou’s lemma entails,

Dc+(X, Y ) = Ed+(X̃ , Ỹ ) ≤ E[lim inf d+(X̃n, Ỹn)]
≤ lim inf Ed+(X̃n, Ỹn) = lim inf Dc+(Xn, Yn),

i.e., (33) is satisfied.
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4.4 Dual representations of minimal extensions

Define L1 := L1({P, Q}) as the set of functions f : E → R integrable w.r.t. P
and Q, Cb as the set of bounded continuous functions f : E → R, and Lip1 =
Lip1(E, d+) as the set of 1-Lipschitz functions f : E → R w.r.t. d+, i.e., s.t. for all
x, y ∈ E ,

f (y) − f (x) ≤ d+(y, x)

holds. Note that for f ∈ Lip1(E, d+) and y ≤ x , we have f (y)− f (x) ≤ d+(y, x) =
0, i.e., f is increasing w.r.t. the order induced by d+ on E. Hence, Lip1(E, d+) is a
subset of the set of increasing functions.

For a compound excess risk measure Dc+ of the kind in (31), the minimal extension

Din f
+ on M1(E) of Dc+ by mass transportation, as in (32), admits a representation

as a F-induced risk excess measure, as in (26), which is given by the following
Kantorovich–Rubinstein-type theorem for hemi-metrics:

Theorem 1 (Kantorovich–Rubinstein theorem for minimal risk excess measure)
On a Polish space E, supplied with a closed order ≤, and a lower semi-continuous
one-sided hemi-metric d+, the minimal extension Din f

+ of the compound risk excess
measure Dc+(X, Y ) = Ed+(X, Y ) has the dual form

Din f
+ (Q, P) = sup

f ∈Lip1∩L1

(∫
f d(Q − P)

)

+
(35)

= sup
f ∈Lip1∩Cb

(∫
f d(Q − P)

)

+
.

In other words, Din f
+ is identical to a F-induced risk excess measure DF+ of (26),

with F = Lip1b, the class of bounded Lipschitz functions w.r.t. d+.

Proof The proof is similar to the method used to prove the Kantorovich–
Rubinstein theorem for metric spaces, see e.g., Rachev and Rüschendorf (1998),
Villani (2003), with some slight modifications. Let M1(Q, P) be the set of proba-
bility measures π on E × E with marginals Q, P . For ( f, g) ∈ L1(Q) × L1(P), set

J ( f, g) :=
∫

f dQ +
∫

gdP.

Let

�d+ := {( f, g) ∈ L1(Q) × L1(P); f (x) + g(y) ≤ d+(x, y), for all x, y ∈ E} ,

and C2b be the set of pairs of real-valued functions ( f, g) which are continuous and
bounded. Set

S(Q, P) := sup
�d+

J ( f, g). (36)

• Step one: One has the easy inequality,

DLip1∩L1

+ (Q, P) ≤ Din f
+ (Q, P). (37)
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Indeed, for all f ∈ Lip1(d+) ∩ L1 and π ∈ M(Q, P),
(∫

f (x)Q(dx) −
∫

f (y)P(dy)

)

+
=

(∫
( f (x) − f (y))π(dx, dy)

)

+

≤
∫

d+(x, y)π(dx, dy).

Taking the inf on the right and the sup on the left entails the stated
inequality (37).

• Step two: Kantorovich’s duality, Din f
+ (Q, P) = S(Q, P) = sup�d+ J ( f, g).

Since d+ ≥ 0 is l.s.c., this follows from Rachev and Rüschendorf (1998) in
Theorem 2.3.1 (b) or Villani (2003) in Theorem 1.3.

• Step three: in view of the first two steps, it remains to show that

DLip1∩L1(Q)
+ (Q, P) ≥ Din f

+ (Q, P),

i.e., that

sup
f ∈Lip1∩L1(Q)

(∫
f d(Q − P)

)

+
≥ sup

�d+
J ( f, g).

Assume that d+ is bounded.
For f continuous bounded, define the d+− convex conjugate of f by

f ∗(y) := inf
x∈E{d+(x, y) − f (x)}.

One obviously has f (x)+ f ∗(y) ≤ d+(x, y), for all x, y ∈ E . Therefore, if x �→
d+(x, y) is bounded l.s.c. and f ∈ Cb, then f ∗ is well defined and bounded.

Moreover, by the triangle inequality, one also has

d+(x, y) − f (x) ≤ d+(x, y′) + d+(y′, y) − f (x).

Taking the infimum on x on both sides yields

f ∗(y) − f ∗(y′) ≤ d+(y′, y) = d−(y, y′),

where d− is the opposite dual hemi-metric defined in (8): f ∗ is d−-Lipschitz.
Note that if f (x) + g(y) ≤ d+(x, y) for all x, y, then f ∗(y) ≥ g(y).
Define the double conjugate by

f ∗∗(x) := inf
y∈E{d+(x, y) − f ∗(y)}.

One has f ∗∗(x) ≥ f (x): by definition,

f ∗∗(x) = inf
y∈E supx ′

{
d+(x, y) − d+(x ′, y) + f (x ′)

}

≥ f (x),

by taking x = x ′ in the last equation.
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Moreover, f ∗∗ is this time d+-Lipschitz: the triangle inequality d+(x, y) −
f ∗(y) ≤ d+(x, x ′) + d+(x ′, y) − f ∗(y) yields, by taking the infimum on y,
f ∗∗(x) − f ∗∗(x ′) ≤ d+(x, x ′).
We obtain: f ∗∗(x) = infy{d+(x, y) − f ∗(y)} ≤ − f ∗(x) by taking y = x .

On the other hand, since f ∗ is 1-Lipschitz w.r.t. d−, one has

− f ∗(x) ≤ d+(x, y) − f ∗(y),

which yields − f ∗(x) ≤ f ∗∗(x). Hence, f ∗∗ = − f ∗ .
Denoting φ := − f ∗, and since f ∗ is d−-Lipschitz, φ is d+-Lipschitz (and

bounded thus integrable). In view of all of the above, ( f, g) ∈ �d+ ∩ C2b implies
( f ∗∗, f ∗) ∈ �d+ and J ( f, g) ≤ J ( f ∗∗, f ∗) = J (φ, −φ). Hence,

sup
�d+∩C2

b

J ( f, g) ≤ sup
φ∈Lip1∩L1(Q)

J (φ, −φ) ≤ sup
φ∈Lip1∩L1(Q)

(∫
φd(Q − P)

)

+
,

(38)
which had to be proved.

Combining (37) with (38), yields the desired result for the case of a bounded
hemi-metric d+.

• Step 4: One can remove the assumption that d+ is bounded. For d+ a general
l.s.c. hemi-metric, one can reason as in Villani (2003) in Theorem 1.3, step 3
with dn+ = d+/(1 + n−1d+), so that 0 ≤ dn+ ≤ d+ and dn+ ↑ d+ pointwise.

Remark 7 The dual formulation of Theorem 1 gives another proof of the sec-
ond part of Proposition 4, since the set of increasing bounded Lipschitz functions
generates the stochastic order (see the argument in Example 8).

4.5 Examples of minimal risk excess measures

The following propositions give explicit representations of the minimal risk excess
measure for several hemi-metrics. We first consider the discrete hemi-metric d≤

+ :

Proposition 5 (Minimal risk excess measure arising from the stochastic order)

1 Let E = R
d be supplied with the (closed) component-wise order ≤. The discrete

hemi-metric d≤
+ of (12) generates, via Proposition 3, the compound risk excess

measure

Dc+(X, Y ) = μ(X � Y ). (39)

This induces, as minimal extension by mass transportation on M1(Rd), the
stochastic ordering one-sided risk excess measure of (10):

Din f
+ (Q, P) = Dst+ (Q, P). (40)

2 A dual representation of (40) is given by

Din f
+ (Q, P) = sup

f ↑,0≤ f ≤1

(∫
f d(Q − P)

)

+
. (41)
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Proof 1 Since ≤ is a closed order, C := {(x, y) ∈ E × E, x � y} is an open
set and d≤

+(x, y) = 1C (x, y) is a {0, 1}-valued l.s.c. function. By Kellerer (1984)
and Rüschendorf (1986) in Lemma 1, (see also Villani (2003)) in Theorem 1.27,

Din f
+ (Q, P) = sup

{
Q(A) − P

(
AC

)
, A ⊂ E, A closed

}
,

where AC := {y ∈ E, ∃x ∈ A, (x, y) /∈ C} = {y ∈ E, ∃x ∈ A, x ≤ y} = A↑.
Since A ⊂ A↑,

Din f
+ (Q, P) = sup

{
Q(A) − P

(
A↑)

, A ⊂ E, A closed
}

= sup {(Q(A) − P(A))+, A ∈ I(E), A closed} = Dst+ (Q, P).

2 By Kantorovich–Rubinstein Theorem 1,

Din f
+ (Q, P) = sup

f ∈Lip1(Rd ,d+)

(∫
f d(Q − P)

)

+

= sup
f ↑,0≤ f ≤1

(∫
f d(Q − P)

)

+
. (42)

Note that one can restrict to the set of increasing functions such that 0 ≤ f ≤ 1
by shifting the function by a constant.

Next, we consider, for E = R, the basic one-sided hemi-metric db+(x, y) =
(x − y)+, introduced in (13), describing the magnitude of one-sided departure in a
quantitative way. ForX = L1(μ) the set of random variables on (,A, μ)with finite
first moment, d+ induces the compound one-sided risk excess measure

Dc+(X, Y ) = Edb+(X, Y ) = E(X − Y )+ (43)

on X. The corresponding minimal risk excess is given in the following result:

Proposition 6 (Minimal risk excess arising from mean exceedance) 1 The
minimal extension of (43) to a risk excess measure on M1(R) by mass
transportation is given by

Din f
+ (Q, P) = inf

X∼Q,Y∼P
E(X − Y )+

= sup
f ∈Lip1, f ↑

(∫
f d(Q − P)

)

+
= DLip1,↑

+ (Q, P),

where Lip1,↑ the class of increasing, 1-Lipschitz functions (w.r.t. |.|).
The ordering induced by Din f

+ on M1(R) is the stochastic order �st .
2 One has the following explicit representation:

Din f
+ (Q, P) = E

(
F−1(U ) − G−1(U )

)

+ , (44)

where F,G are the distribution functions of Q, P, and U ∼ U[0,1] is uniformly
distributed on [0, 1].
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Proof 1 With the assumption on X, Kantorovich–Rubinstein Theorem 1 spe-
cializes to

Din f
+ (Q, P) = sup

f ∈Lip1(R,db+
)

(∫
f d(Q − P)

)

+
. (45)

Note that f ∈ Lip1
(
R, db+

)
is equivalent to f (y) − f (x) ≤ (y − x)+, i.e., f

increasing and 1-Lipschitz w.r.t. the absolute value |.| norm.
The fact that the order induced by Din f

+ onM1(R) is the stochastic order �st

follows from Proposition 4. Alternatively, a direct proof is as follows: let n ≥ 1
be a positive integer, X ∼ Q, Y ∼ P . By Markov’s inequality,

P(X − Y ≥ n−1) ≤ P
(
(X − Y )+ ≥ n−1

)
≤ nE[(X − Y )+].

Taking the infimum over X ∼ Q, Y ∼ P yields that Din f
+ (Q, P) = 0 implies

that X − Y < n−1 with probability one. Letting n → ∞ yields X ≤ Y a.s.
Hence,

Din f
+ (Q, P) = 0 iff there exists X ∼ Q, Y ∼ P s.t.X ≤ Y a.s.

and the latter is equivalent to Q �st P , by Strassen theorem.
2 f (x) = x+ is convex, hence f (x − y) is submodular (or quasi-antitone in the

terminology of Cambanis et al. (1976), or supernegative or 2-negative in the
terminology of Tchen (1980)). This implies (44) by results of Cambanis et al.
(1976) in Theorem 2, or Tchen (1980) in Corollary 2.3 (see also Rüschendorf
(2013)).

Remark 8 (Comparison with the stop-loss metric) Note that for t ∈ R, the com-
pound one-sided risk excess measure Dc+(X, t) = E(X−t)+ = �X (t) is the average
risk excess over the threshold t, which stands for the stop-loss premium of a reinsurer
in insurance theory. Rachev and Rüschendorf (1990) consider the stop loss metric as
the difference of two stop loss premiums, which would write with our conventions of
notations (see Eq. (2.2) in Rachev and Rüschendorf (1990)) as,

Ds(X, Y ) = sup
t∈R

|�X (t) − �Y (t))|.

One could obtain from it the corresponding hemi-metric which was introduced in
(30), in relation to the increasing convex order,

Ds+(X, Y ) = sup
t∈R

(�X (t) − �Y (t)))+,

which is distinct from the minimal risk excess Din f
+ . This follows from the triangle

inequality for (X − t)+:

(X − t)+ − (Y − t)+ ≤ (X − Y )+
and taking the infimum yields that

Ds+(X, Y ) ≤ Din f
+ (Q, P).
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In other words, the hemi-metric obtained by a one-sided comparison of risks through
their stop-loss premiums is always majorized by the minimal risk excess. See also
remark 9 for similar considerations for the tail risk.

In risk theory, it is also of interest to compare the expected risks above their
distributional α-quantiles: this is the basis for the conditional tail expectation

CT Eα(X) := E[X |X ≥ qα(X)], CT Eα(Y ) := E[Y |Y ≥ qα(Y )],
where qα(X), qα(Y ) denote the corresponding α−quantiles of X ∼ Q with c.d.f. F,
Y ∼ P , with c.d.f. G. In order to obtain a coherent risk measure and to generalize
to possibly non-continuous distributions (see Burgert and Rüschendorf (2006)), it is
useful to instead consider the expected shortfall. Define, for λ ∈ [0, 1], the extended
c.d.f.s of F, G as

F(x, λ) := P(X < x) + λP(X = x) = F(x−) + λ(F(x) − F(x−))

G(y, λ) := P(Y < y) + λP(Y = y) = G(y−) + λ(G(y) − G(y−)).

Define also the distributional transforms of X and Y as

U1 := F(X, V ), U2 := G(Y, V ), (46)

where V ∼ U(0,1) is independent of (X, Y ), see Rüschendorf (2009). The expected
shortfalls are then defined as ESα(X) := E[X |U1 ≥ α], respectively as ESα(Y ) :=
E[Y |U2 ≥ α].

For the one-sided comparison of the risk excess of X w.r.t. Y over their α-quantiles,
we therefore consider the excess risk of their expected shortfall defined by the
following one-sided compound risk excess measure Dα,c

+ (X, Y )

Dα,c
+ (X, Y ) = E

(
X1U1≥α − Y1U2≥α

)
+ , (47)

where U1, U2 are as in (46). We obtain the following result:

Proposition 7 (Minimal tail risk excess) 1 The minimal extension of (47) to a
risk excess measure onM1(R) by mass transportation has the representation

Dα,in f
+ (Q, P) := inf

X∼Q,Y∼P
EDα,c

+ (X, Y )

= E

[(
F−1(U ) − G−1(U )

)

+ 1U≥α

]
, (48)

where U ∼ U[0,1] is uniformly distributed on [0, 1].
2 The ordering �α induced by Dα,in f

+ is given by

Q �α P ⇔ F−1(u) ≤ G−1(u) ∀u ≥ α,

which corresponds to the classical stochastic order restricted to the upper tail.

Proof 1 Denote by Fα the law of Xα := X1U1≥α = X1F(X,V )≥α and by Gα the
law of Yα := Y1U2≥α = Y1G(Y,V )≥α . Then,

Dα,in f
+ (Q, P) = inf

Xα∼Fα,Yα∼Gα

.E(Xα − Yα)+
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Since Xα = F−1(U1)1U1≥α with U1 ∼ U[0,1], Fα is the image of the Lebesgue
measure on [0, 1] induced by the transformation u �→ F−1(u)1u≥α . Similarly,
Gα is the image of the Lebesgue measure on [0, 1] induced by the transforma-
tion u �→ F−1(u)1u≥α . Therefore, for U ∼ U(0,1), the comonotone pair of
random variables X̃α = F−1(U )1U≥α and Ỹα = G−1(U )1U≥α is admissible for
(Fα,Gα).

By submodularity, as in Proposition 6,

E(Xα − Yα)+ ≥ E

[(
F−1(U ) − G−1(U )

)

+ 1U≥α

]
,

which implies the result.
2 Follows from (48).

Remark 9 It is interesting to note that the expected shortfall of X is given by

ESα(X) = 1

1 − α
E

[
F−1(U )1U≥α

]
.

As expected, the minimal extension risk excess measure dominates the normalized
one-sided difference of expected shortfalls:

Dα,in f
+ (Q, P) ≥ (1 − α) (ESα(X) − ESα(Y ))+ ,

where Y ∼ P, X ∼ Q.

5 Weak risk excess measures

5.1 Motivation and definition

In view of the mass transportation approach of (32), one may inquire whether there
exist other schemes of obtaining a risk excess measure D+(Q, P), in the sense
of Definition 3, from a compound risk excess measure Dc+(X, Y ), in the sense of
Definition 6. In particular, it is natural to investigate the following “maximal
extension” in the sense of mass transportation,

Dsup
+ (Q, P) := sup

X,Y∈X,X∼Q,Y∼P
Dc+(X, Y ). (49)

Obviously, Din f
+ (Q, P) ≤ Dsup

+ (Q, P).
However, Dsup

+ is not a risk excess measure: although (A1) and (A3) are obviously
satisfied, (A2) is not. Indeed,

Dsup
+ (Q, Q) = 0 ⇔ X ∼ Q, Y ∼ Q implies Dc+(X, Y ) = 0.

This implies that X ≤ Y a.s. for all possible realizations X ∼ Q, Y ∼ Q. But for
X, Y independent with the same law Q, this would require that X ≤ Y a.s. which is
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only true for Q being a one-point distribution. These considerations imply that Dsup
+

can not be compatible with a reflexive order relation: axiom (A4) can not be satisfied
either.

Nonetheless, Dsup
+ , as a supremum over all joint constructions of (X, Y ) ∼

(Q, P), gives the best possible upper bound on the compound risk excess measure in
the sense of mass transportation,

Dc+(X, Y ) ≤ Dsup
+ (Q, P),

and therefore has a natural interpretation as a worst-case comparison, which is
appealing for risk applications.

These considerations motivate the introduction of a weakened notion of risk excess
measure, without axiom (A2) and with axiom (A4) restricted to a strict order ≺, i.e.,
a transitive and irreflexive relation. Therefore, we propose the following definitions:

Definition 8 (Weak risk excess measure) Let ≺ be a strict order on M1(E). A
one-sided weak risk excess measure Dw+ on

(
M1(E), ≺)

is an application Dw+ :
M1(E) × M1(E) → R which satisfies axioms (A1), (A3), and (A4).

Definition 9 (Maximal extension) Let Dc+ be a compound excess risk mea-
sure. The maximal extension Dsup

+ on M1(E) of Dc+ by mass transportation is
given by (49).

Remark 10 1 The concept of one-sided weak risk excess measure is an asym-
metric analog of the concept of moment function in the theory of probability
metrics, see Rachev (1991) in Chap. 3.3, or Rachev et al. (2013) in Chapters 3.4.
and 8.2. In addition, the adjunction of axiom (A4) makes it compatible with a
notion of order. Obviously, a one-sided risk excess measure for a preorder � is
a one-sided weak risk excess measure for the strict order ≺ defined by

P ≺ Q ⇔ P � Q andP �= Q.

2 The relation between the minimal Din f
+ and maximal Dsup

+ extensions obtained
from a compound risk excess measure Dc+, is given in the following improved
triangle inequality:

Dsup
+ (Q, R) ≤ Din f

+ (Q, P) + Dsup
+ (P, R),

where P, Q, R are three probability measures on E, see Rachev et al. (2013) in
Theorem 3.4.1.

Define onM1(E) the following strict order ≺sup by

Q ≺sup P ⇔ sup(supp(Q)) ≤ inf(supp(P)), (50)

where supp(.) denotes the support of a distribution. The analog of Proposition 4 for
the maximal extension, which shows that Dsup

+ is indeed a one-sided weak risk excess
measure, is given in the following proposition:



Probability, Uncertainty and Quantitative Risk  (2018) 3:6 Page 27 of 35

Proposition 8 Dsup
+ obtained in (49) from a compound excess risk measure

Dc+(X, Y ) = Ed+(X, Y ) of the form (31) is a one-sided weak risk excess measure
on (M1(E), ≺sup).

Proof (A1) and (A3) are trivially satisfied. For (A4), if Dsup
+ (Q, P) = 0, then for

all X ∼ Q, Y ∼ P , Ed+(X, Y ) = 0. Markov’s inequality entails that for all ε > 0,
d+(X, Y ) ≤ ε a.s. Hence, d+(X, Y ) = 0 a.s., i.e X ≤ Y a.s. for all X ∼ Q, Y ∼ P .
This can only hold if the support of Q is completely to the left of the support of P.
The converse direction is trivial: if Q ≺sup P , then for all couplings X ∼ Q, Y ∼ P ,
X ≤ Y a.s., and thus supX∼Q,Y∼P Ed+(X, Y ) = 0.

5.2 Dual representation of maximal one-sided weak risk excess measure

A dual representation of the maximal one-sided weak risk excess measure Dsup
+ asso-

ciated with the compound risk excess measure Dc+(X, Y ) = Ed+(X, Y ) of the form
in (31) is given in the following theorem:

Theorem 2 (Dual Representation) Let E be a Polish space, supplied with the
one-sided hemi-metric d+, and let Dc+(X, Y ) = Ed+(X, Y ) be the corresponding
compound excess risk measure,

1 if d+ is upper or lower semi-continuous, then duality holds:

Dsup
+ (Q, P) = inf

�d+

{∫
f dQ +

∫
gdP

}
,

where

�d+ := { ( f, g) ∈ Lip1(d+) × Lip1(d−), f (x) ≥ 0, g(y) ≥ 0,

f (x) + g(y) ≥ d+(x, y), (x, y) ∈ E2}.
2 if d+ is upper semi-continuous, then the supremum is attained for some proba-

bility measure.

Proof 1 Since a lower or upper semi-continuous function is a supremum or infi-
mum of continuous functions, d+ is a Baire function. Hence, the duality Theorem
2.3.8 (a) in Rachev and Rüschendorf (1998) applies, since d+ ≥ 0 is obviously
majorized from below (i.e., belongs to Pm(S) in the notation of Theorem 2.3.8
in Rachev and Rüschendorf (1998)). Therefore, Theorem 2.3.8 (a) entails

sup

{∫
d+(x, y)μ(dx, dy)

}
= inf{

∫
f dQ +

∫
gdP}, (51)

where the infimum on the right side is taken in

�1 := { f ∈ L1(Q), g ∈ L1(P), d+(x, y) ≤ f (x) + g(y), (x, y) ∈ E2}.
Let γ1, γ2 two real-valued constants s.t. γ1 + γ2 = 0 and set for ( f, g) ∈ �1,

( f̃ := f − γ1, g̃ := g− γ2). Then, ( f̃ , g̃) ∈ �1 and J ( f, g) = ∫
f dQ + ∫

gdP
remains invariant when one replaces ( f, g) by ( f̃ , g̃), i.e., J ( f, g) = J ( f̃ , g̃).
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Therefore, if f takes some negative values, then, setting γ1 = inf f (x) entails
f̃ ≥ 0 and the infimum in (51) can be restricted to

�2 := { f ∈ L1(Q), g ∈ L1(P), f (x) ≥ 0, d+(x, y) ≤ f (x) + g(y), (x, y) ∈ E2}.
By symmetry, the infimum in (51) can further be restricted to

�3 :={f ∈L1(Q), g∈L1(P), f(x)≥0, g(y)≥0, d+(x, y)≤ f(x)+g(y),(x, y)∈E2}.
Assume d+ is upper bounded. For ( f, g) ∈ �3, set f∗(y) := supx (d+(x, y)−

f (x)) and f∗∗(x) := supy(d+(x, y) − f∗(y)). Then, ( f∗∗, f∗) ∈ �1, g ≥ f∗,
f ≥ f∗∗. Hence, J ( f, g) ≥ J ( f∗∗, f∗). Moreover, by the triangle inequality,

d+(x, y) − g∗(y) ≤ d+(x, x ′) + d(x ′, y) − f (y)

and taking the supremum in y yields

f∗∗(x) − f∗∗(x ′) ≤ d+(x, x ′).
Hence, f∗∗ ∈ Lip1(d+), whereas a similarly calculation shows that f∗ ∈
Lip1(d−). Therefore, the infimum in (51) can further be restricted to �d+ , as
claimed.

The general case, for d+ unbounded, proceeds by approximation, as in
Theorem 1.

2 Follows from Theorem 2.3.10 in Rachev and Rüschendorf (1998).

5.3 Examples of maximal extensions

We discuss for some of the examples in Section 4 the corresponding worst-case risk
excess Dsup

+ . First, we consider the discrete one-sided hemi-metric d≤
+ of (12) on

E = R
d , supplied with the product order ≤. The associated compound risk excess

measure is given by (39):

Dc+(X, Y ) = μ(X � Y ),

for X ∼ Q, Y ∼ P , and its minimal extension (41) coincides with the induced risk
excess measure Dst+ (see (10)) compatible with the stochastic order. The maximal
extension is given in the following proposition:

Proposition 9 (Maximal Risk excess for stochastic ordering) 1 Let D≤,sup
+ be

the one-sided weak risk excess measure on (M1(R), ≺sup) obtained by maxi-
mal extension of the discrete compound risk measure Dc+ in (39). D≤,sup

+ has the
representation:

D≤,sup
+ (Q, P) = 1 − sup

x∈Rd
(F(x) − G(x)), (52)

where F,G are the c.d.f.s of Q, P, respectively.
2 The restriction of D≤,sup

+ on E, obtained by setting d<+ (x, y) := D≤,sup
+ (δx , δy),

defines a weak one-sided hemi-metric compatible with the strict order <, i.e.,

d<+ (x, y) = 1x≥y,
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with d<+ satisfying axioms (A1), (A3), and (A4) for the strict order < associated
with ≤.

Proof 1 Note that by Strassen theorem, (see, e.g., Rachev and Rüschendorf
(1998) in Theorems 3.5.1 and 3.5.5 or Rüschendorf (1991) in Theorems 4 and 5),

D≤,sup
+ (Q, P) = sup

X∼Q,Y∼P
μ(X � Y ) = 1 − inf

X∼Q,Y∼P
μ(X ≤ Y )

= 1 − sup(Q(B1) + P(B2) − 1),

where the supremum is over all pair of subsets B1, B2 ⊂ E s.t. B1 × B2 ⊂ B :=
{(x, y); x ≤ y}. But for B1 × B2 ⊂ B, it follows that B↓

1 × B↑
2 ⊂ B, where

B↓
1 = {x ∈ R

d : ∃x̄ ∈ B1 s.t.x ≤ x̄} and B↑
2 = {y ∈ R

d : ∃ȳ ∈ B2 s.t.y ≥ ȳ}
are the decreasing, resp. increasing, completions of B1, B2. Then, it is easy to
see that one can enlarge B↓

1 , B↑
2 to intervals of the form (−∞, x], [x, ∞). As a

result the maximal extension is given by

D≤,sup
+ (Q, P) = 2 − sup

x∈Rd
{F(x) + G(x)}

= 1 − sup
x∈Rd

{F(x) − G(x)},

where G(x) = P([x, ∞)).
2 Formula (52) yields

D≤,sup
+ (δx , δy) = 1 − sup

z∈Rd
{1z≥x − 1z≥y} = 1x≥y .

Remark 11 Comparing this result with those of Proposition 2 and Example 7, one
sees that the discrete one-sided hemi-metric d≤

+(x, y) = 1y�x and the corresponding

compound risk excess measure has many extensions on M1(Rd) and, in particular,
we obtain

Duo+ ≤ Dst+ ≤ D≤,sup
+ .

The following diagram illustrates the different embeddings of structures, through
their hemi-metrics:

Next, we investigate the maximal one-sided weak risk excess extension for the
basic hemi-metric (13): on E = R, for X ∼ F, Y ∼ G, let Dc+(X, Y ) = E(X − Y )+
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be the average risk excess as in (43). The maximal risk excess extension by mass
transportation is given by the following proposition.

Proposition 10 (Risk excess from exceedance in average) Let Db,sup
+ (Q, P) be

the maximal one-sided weak risk excess extension, obtained by mass transporta-
tion of the compound risk excess measure Dc+(X, Y ) = E(X − Y )+. One has the
representation

Db,sup
+ (Q, P) = E

[(
F−1(U ) − G−1(1 −U )

)

+

]
, (53)

where F,G are the c.d.f.s of Q, P, respectively.

Proof The argument for the maximal risk excess extension is similar to that of the
minimal risk excess extension.

In the previous propositions, the order induced by the maximal extension is very
strong. For insurance applications, in particular for comparing tail risk, it is of interest
to restrict the comparisons to the upper tails of the distributions, see Proposition 7
in Section 4. Finally, we give the result for the tail excess compound risk measure
Dc,α

+ (X, Y ) in (47), which induces a more interesting order:

Proposition 11 (Tail risk excess) 1 Let 0 < α < 1, then the maximal extension
Dα,sup

+ is given by

Dα,sup
+ (Q, P) = (1 − α)Dsup

+ (Qα, Pα), (54)

where Qα, Pα are the conditional distributions of Q, P on their upper α-
quantiles intervals [qα(Q), ∞), [qα(P), ∞).

2 Correspondingly, a suitable consistent ordering ≺α onM1(R) is given by

Q ≺α P ⇔ G−1(u) ≤ F−1(1 − u + α), for allα ≤ u ≤ 1,

where F,G are the c.d.f.s of Q, P. For the maximal extension, the random
variables are chosen counter-monotonic in the upper part of the distribution.

Proof Similar to the proof of Proposition 10.

6 Extensions with dependence constraints

6.1 Setup

In Sections 4 and 5, we considered risk excess measures D+(Q, P) obtained as min-
imal and maximal extensions obtained by mass transportation of a compound risk
excess measure, i.e., over the class of all dependence structures of (Q, P). In this
section, we consider a relevant modification of this method by restricting the class
of possible dependence structures. This setup allows to take into consideration some
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known side information on the dependence structure of (Q, P), like various bounds
on positive or negative dependence, see e.g., Rüschendorf (2013) in Chapter 5.

We consider the setup E = R with hemi-metric d+ and the compound excess risk
measure Dc+(X, Y ) = Ed+(X, Y ) of the kind (6), where X, Y ∈ X have marginals
Q, P . If C = CX,Y is a copula of (X, Y ), we also write ECd+(X, Y ) to stress the
dependence on C, and we denote by C the set of all bivariate copula functions. Let
D ⊂ C denote a subclass of copulas which describe the information on the depen-
dence structure. Then, it is natural to consider the worst and best-case extension of
Dc+ over D.

Definition 10 (Minimal and maximal extension with dependence restriction) For
a subclass D ⊂ C:
• The minimal extension with dependence restriction D of Dc+ is defined as

DD,in f
+ (Q, P) := inf{ECd+(X, Y ), X ∼ Q, Y ∼ P,C ∈ D}. (55)

• Similarly, the maximal extension with dependence restriction D is defined as

DD,sup
+ (Q, P) := sup{ECd+(X, Y ), X ∼ Q, Y ∼ P,C ∈ D}. (56)

In the case without dependence restriction, i.e., when D = C, we get the minimal
and maximal extensions Din f

+ , Dsup
+ of (32) and (49) considered in Sections 4 and 5.

Remark 12 By the previous discussion of Section 4 (see Proposition 4), it is clear
that DD,in f

+ is a risk excess measure on
(
M1(E), �st

)
only in case that D contains

the upper Fréchet bound M, defined by M(u, v) = min(u, v), 0 ≤ u, v ≤ 1. So
typically the restricted extensions will not satisfy the properties (A2) and (A4) of a
one-sided risk excess measure on

(
M1(E), �st

)
.

Despite that, the extensions (55) and (56) have a natural motivation as best, resp.,
worst-case excess risk taking into account the dependence restrictions. On the level of
random variables, the class of pairs (X, Y ) with CXY ∈ D and X ≤ Y may be empty
even if Q �st P. Therefore, the unrestricted extensions Din f

+ , resp., Dsup
+ , would

under, resp., over estimate the real risk excess. As a consequence, this is a strong
indication for the relevance of the notion of minimal, resp., maximal risk excess with
dependence restriction D.

6.2 Explicit results for extensions with positive and negative dependence
restriction

We now consider two particular classes of dependence restrictions D which allow
determination of the minimal, resp., maximal, extensions in explicit form. Denote for
copulas C0,C1 ∈ C by

D≤(C0) := {C ∈ C;C ≤ C0} (57)
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and by

D≥(C1) := {C ∈ C;C ≥ C1} (58)

the class of all copulas which are smaller than C0, resp., bigger than C1, in the lower
orthant ordering �lo (equivalently in the upper orthant ordering �uo). (57) describes
a negative dependence restriction, (58) a positive dependence restriction: for the case
C0 = C1 = �, the independence copula �(u, v) = uv, 0 ≤ u, v ≤ 1, these
restrictions correspond to negatively quadrant dependent (NQD), resp., positively
quadrant dependent (PQD), random variables, as defined by Lehmann (1966), see
Nelsen (2006) in p. 186.

Then, for d+(x, y) = (x − y)+, we obtain the following explicit result.

Proposition 12 (Minimal and maximal risk excess with positive/negative depen-
dence restriction)

1 For D = D≤(C0), we obtain the explicit formula for the minimal risk excess
extension

DD,in f
+ (Q, P) = EC0

(
X0 − Y 0

)

+ , (59)

where X0 ∼ Q, Y 0 ∼ P and CX0,Y 0 = C0.
2 For D = D≥(C1), we obtain the explicit formula for the maximal risk excess

extension
DD,sup

+ (Q, P) = EC1

(
X1 − Y 1

)

+ , (60)

where X1 ∼ Q, Y 1 ∼ P and CX1,Y 1 = C1.

Proof 1 For (X, Y ) with X ∼ Q, Y ∼ P and CX,Y = C ≤ C0, it follows from
the submodularity argument, as in the proof of Proposition 6 that

E(X − Y )+ ≥ E(X0 − Y 0)+,

since f (x − y) = (x − y)+ is submodular and (X, Y ) ≤sm
(
X0, Y 0

)
, with ≤sm

the supermodular ordering. Taking the infimum yields the result.
2 The argument is similar.

Remark 13 • Taking for D the two-sided dependence information

D = D(C0,C1) = {C ∈ C;C1 ≤ C ≤ C0},
we obtain for DD,in f

+ the same formula as in (59) and for DD,sup
+ the same

formula as in (60). Thus, this information simultaneously shrinks the upper and
the lower bound for the risk excess.

• The concept of minimal, resp., maximal risk excess can also be introduced for
the general case (E, ≤) and general compound risk excess measures Dc+. In this
case, D denotes a class of dependence structures of random elements X, Y ∈ E.
Even if Din f

+ and Dsup
+ do not satisfy on the level of distributions the risk excess

measure axioms (A2) and (A4), they describe the relevant bounds for the risk
excess with dependence information D.
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7 Conclusion

We proposed a quantitative one-sided comparison of probabilistic risks via the con-
cept of risk excess measures, obtained as order extensions of hemi-metrics on the
underlying space E. Like for the case of risk measures, the choice of a suitable
hemi-metric and corresponding excess risk measure for a particular application will
depend on the problem considered and the notion of order one wants to quantify. For
reliability, insurance mathematics, finance, epidemiology, etc... different notions of
orders and distances are related to the problem at hand. In this regard, the examples
proposed, together with their explicit formulas, are helpful. Together with the exten-
sion/restriction properties of Section 3, and the dual representations of Sections 4
and 5, they can serve as a guide for the interpretation of the excess risk measure and
coherence w.r.t. order and distance on the ambient space E.

We leaved aside the statistical aspects, but let us just mention that one can obtain
empirical versions of the various risk excess measures D+(P, Q) presented here by
replacing P, Q in their definitions by the corresponding empirical measures Pn, Qn .
For excess risk measures which have an explicit formula, statistical estimation is
straightforward by plugging in the empirical measures Pn, Qn instead of P, Q. For
the F-induced risk excess measures of Section 3, and for risk excess measures
obtained by minimal and maximal extensions (Sections 4 and 5) of a compound one,
their dual representation as a supremum (or infimum) over a functional class allows
to consider their estimation via Glivenko–Cantelli-type theorems indexed by function
classes. This is one supplementary interest of these dual formulations. For example,
for theF-induced risk excess measure of (26), since x+ ≤ |x |, one has obviously that

DF+ (Qn, Pn) = sup
F∈F

(∫
f d(Qn − Pn)

)

+
≤ sup

F∈F

∣∣∣∣
∫

f d(Qn − Pn)

∣∣∣∣ ,

i.e., the risk excess measure is majorized by the corresponding integral probability
metric and the convergence of the latter follows from classical results on abstract
empirical process, see e.g., Sriperumbudur et al. (2012).
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