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Abstract Asset returns are modeled by locally bilateral gamma processes with zero
covariations. Covariances are then observed to be consequences of randomness in
variations. Support vector machine regressions on prices are employed to model the
implied randomness. The contributions of support vector machine regressions are
evaluated using reductions in the economic cost of exposure to prediction residu-
als. Both local and global mean reversion and momentum are represented by drift
dependence on price levels. Optimal portfolios maximize conservative portfolio val-
ues calculated as distorted expectations of portfolio returns observed on simulated
path spaces. They are also shown to outperform classical alternatives.
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1 Introduction

A number of recent papers have proposed the view that price processes in active
financial markets are pure jump processes with an infinite aggregate jump arrival rate.
By way of examples, we cite Madan (2017a), Madan and Schoutens (2017), Madan
and Wang (2017), Madan, Schoutens, and Wang (2017). The jumps synthesize
unanticipated shocks occurring at surprise times modeled by Poisson arrival times.
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Given the large number of shocks involved, a limit law like the Gaussian law is
employed to describe return distributions. As a consequence, the arrival rate of jumps
aggregated across all jumps, must be infinite. This hypothesis is maintained here in
the context of studying dependencies in price processes. An approach to studying
dependence in the context of jump arrival rate specifications using multivariate arrival
rates with full support in higher dimensions is presented in Madan (2017b) building
on the developments in Buchmann, Madan, and Lu (2016). Alternative approaches
include the use of copulas, Kallsen and Tankov (2006), or multivariate time changes,
Luciano and Semeraro (2010), or factor structures, Marfe (2011). By contrast, the
hypothesis entertained here is that of zero covariation. It may be reasonable to pos-
tulate that even when two markets respond to the same underlying disturbances, they
do so at their own timing. As a consequence, a simultaneous jump in both markets, at
essentially the same point of time in continuous time, may be too extreme a hypoth-
esis. It is therefore supposed here that price processes have zero covariations with no
simultaneous jumps. The paper goes on to develop the consequences of zero covari-
ation for dependence modeling and portfolio theory. The zero covariation hypothesis
is consistent with the view expressed in Epps (1979) and further documented in
Bonanno, Lillo and Mantegna (2001), that covariance requires time and declines with
the horizon.

For zero covariation processes, the first question addressed is how nonzero covari-
ances arise at a particular horizon. It is noted that this is possible only if the integrated
instantaneous variations are themselves stochastic. In fact, the covariance at the
horizon is the covariance of the instantaneous variations integrated over time. A
Markovian formulation then models instantaneous variations as functions of the price
processes themselves. For the pairwise case reported on in some detail, the instanta-
neous variations are taken to depend on the two prices separately or just their ratio.
The result is a pure jump Markov process of the type studied in Bass (1988). For
applications to option pricing we cite Elliott and Osakwe (2006)

The modeling exercise has to choose a functional form for the dependence of
variations on prices and one could begin with a linear representation. However, we
anticipate that there may be no dependence for prices in a certain range with correc-
tive actions inducing alterations in variations when price levels are in extraordinary or
extreme states. The anticipated relation is then nonlinear and a priori, the functional
forms involved are not known. For example, positive drifts may arise when prices rise
substantially and negative ones when they fall significantly, to reflect momentum, or
the other way around for mean reversion. Further, there may be a local mean rever-
sion range coupled with momentum if prices go even further out. As one is in fact
modeling the dependence of parameters of jump arrival rate functions on prices, the
use of unbounded functions like polynomials is inappropriate and even problematic
from the perspective of the existence of processes with the specified jump compen-
sators or arrival rate functions. In this regard we note the conditions developed in
Bass (1988). For the existence of processes, the use of bounded nonlinear functions
is appropriate.

Such considerations suggest the possible use of support vector machine regres-
sions (rsvm). The kernel based approximations developed in Fasshauer and McCourt
(2015) allow for a linear representation in terms of a large number of nonlinear
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functions extracted from a kernel operator that are generally bounded. With a view
towards validating the procedure, the proposed methods are first tested on simulated
data where the true nonlinear dependence is known apriori and the rsvm procedures
are applied to recover the known dependence.

On real market data, local estimates of instantaneous variations are first con-
structed using recent daily time series data. The rsvm procedures are then employed
to relate these to the time series data on the corresponding prices or their ratios.
The specific rsvm method used employs a regularized form of epsilon insensitive
optimization.

The typical support vector machine regression creates a linear combination of hun-
dreds of selected nonlinear transforms to build a prediction function. The output of a
support vector machine regression is a computer program that may be saved and used
for predictions. Given a set of predictors using possibly different prediction archi-
tectures there is then a need to evaluate and compare prediction qualities. This could
be done on the basis of a variety of fit statistics. In judging statistical significance,
fit statistics are often penalized on the basis of the number of estimated coefficients.
One may note in this regard the Akaike information criteria (Akaike (1973)) in select-
ing the order in a time series analysis. However, in an rsvm application it is not clear
how these are to be counted and given the large number of nonlinear transforms
involved the penalty may get quite large. Furthermore, fit statistics do not provide an
assessment of improvements from an economic viewpoint.

For an economic perspective, we turn to developments in two price economies
(Madan and Schoutens (2016)) that evaluate the necessary costs of holding risk expo-
sures. Basically, the cost of an exposure is the spread cost of entering and exiting the
exposure when trading in both directions at adverse terms. The two price economy
provides constructions of lower and upper conservative valuations at which positions
may be offloaded or acquired. We take as an economic cost the spread between these
upper and lower valuations. For the purpose of valuing predictions, one evaluates the
economic cost of the prediction residual seen as a risk exposure. In evaluating dif-
ferent predictors, attention is focused on the percentage reductions in exposure costs
delivered by various models. The percentage cost reduction is an easily interpretable
performance metric.

In estimating daily variations on underlying assets, we follow Madan, Schoutens,
and Wang (2017) and the methods of Madan (2017c¢). The variations are integrals of
jump sizes taken with respect to the arrival rates for the different jump sizes. They
require an estimation of arrival rate function parameters from data on daily returns
using return probability estimates derived from the specification of such arrival rate
functions. Relying on the presence of a large number of jumps per unit time in active
financial markets, unit time distributions are modeled by limit laws, comparable to
the Gaussian law. Pure jump limit laws have the property that their jump arrival rates,
when scaled by the absolute jump size, are decreasing functions of the absolute jump
size (Sato (1999)). This makes the aggregate arrival rate of pure jump limit laws, infi-
nite. In particular compound Poisson processes are not limit laws. Recent research
reported in Madan and Wang (2017) and Madan, Schoutens, and Wang (2017) sug-
gests the need at a minimum of a four parameter model allowing for speed and scale,
equivalently mean and variance of up and down moves to differ with the direction.
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The bilateral gamma process of Kiichler and Tappe (2008) written as the difference
of two independent gamma processes provides such an example, and it is employed
here. It is a generalization of the variance gamma model of Madan and Seneta (1990),
and Madan, Carr, and Chang (1998) that results in equating the speed or variance rate
parameters for the up and down moves.

The nonlinear projections are first conducted using rsvm in one and two dimen-
sions. Results are presented for a variety of equity assets, commodities, interest rates,
equity indices, and their volatility indices. Examples are provided for when in a
pair of assets one or both may mean revert to the other. There are also examples of
local mean reversion coupled with one or both developing momentum with respect
to the other once the prices have already deviated sufficiently. One may also have
momentum occurring locally.

Models of multivariate dependence across many assets are then constructed by
forming support vector machine regressions of all four bilateral gamma parameters
of motion on all the prices. Path spaces with the estimated model are then gener-
ated by simulation for the investment horizon. Optimal portfolios are constructed for
the simulated joint returns. The portfolio constructions follow the methods of conic
portfolio theory (Madan (2016)) and maximize a conservative lower portfolio valu-
ation. Equivalently, they maximize reward less risk, where the reward is the mean
and the risk is the upper valuation for the negated centered variate. This upper val-
uation is the cost of eliminating risk by accessing the negated centered variate at
adverse market terms. The trade-off between reward and risk is one to one as both are
in the same units of dollars. Comparative tests of zero covariation dependent conic
portfolios with Markowitz mean variance portfolios are presented. It is observed that
zero covariation dependent conic portfolios offer a significantly improved investment
performance on a variety of metrics.

The steps to be taken in the paper may then be summarized as follows. First, it
is established that zero covariation pure jump return processes develop covariance
at a positive time horizon only if the arrival rates of jumps vary stochastically over
time. When arrival rates are parametrically characterized, the parameters must then
be stochastically varying. To ensure the existence of such processes the parame-
ters are taken to vary in a compact set. Consequently, their dependence on observed
stochastic processes must be given by bounded nonlinear functions. Support vector
machine regressions deliver a robust, bounded, nonlinearity. The result is however
complex and is delivered as a computer program as opposed to being expressed as an
analytical functional form.

A stylized model is first developed to test the ability of support vector machines to
capture the true nonlinearity when it is known. This stylized model is then dropped
further in the paper. Support vector machine regressions are then applied to validate
their ability to capture zero covariation dependence in data for bond returns. The
anticipated mean reversion is observed in this context. The methods are extended
next to equity and other asset prices.

The next step is an exploration of the ability of support vector machine regres-
sions to explain the behavior of asset drifts as functions of asset prices. For this
purpose parameters of asset price processes are first estimated daily from a year’s
worth of immediately prior return data. The bilateral gamma model is selected for this
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purpose based on prior studies. The estimation procedure for the model are described
in detail. From such estimates one estimates daily the exponential variations or asset
price drifts. Support vector machine regressions are then employed to explain the
movements in the drifts.

With a view to evaluating the work being done by the computer programs deliv-
ered by support vector machine regressions we formulate a measure of the cost of
holding prediction residuals. The percentage reductions in economic cost serve as
a measure of support vector machine contributions. We then present the results on
asset drift prediction and the economic cost reductions achieved by support vec-
tor machine regressions.For portfolio construction one needs to explain more than
just the asset drifts. The complete dependence of arrival rates must be synthe-
sized. Hence we apply support vector machine regressions on all the four bilateral
gamma parameters on all prices in the portfolio to build zero covariation dependence
structures. Economic cost reductions achieved on all parameters are presented. The
dependence modeling is then complete and permits portfolio construction. Optimal
portfolios are formed to maximize conservative portfolio values calculated as dis-
torted expectations of portfolio returns. Results are shown for two and multi-asset
portfolios with monthly rebalancing and woth comparisons to optimal mean variance
portfolios.

The outline of the rest of the paper is as follows. Section 2 presents results on the
implications of zero covariation. Section 3 takes up the use of support vector machine
regressions and validates these procedures on a stylized model and its simulated data.
The section also presents an analysis of using support vector machine regressions to
model the anticipated dependence present in interest rate data. Section 4 details the
construction of daily variations related to estimating the parameters of motion for
asset prices. Section 5 introduces the economic cost of exposure to prediction resid-
uals as an economic measure of model performance. Section 6 presents bivariate
examples of dependence with zero covariation. Section 7 takes up portfolio theory in
a two-asset context. The multi asset portfolio construction is presented in Section 8
and includes a comparison with Markowitz investment of regularly rebalanced port-
folios. Also presented are monthly rebalanced portfolios over a nine year period for
sets of ten randomly selected stocks. Section 9 concludes.

2 Covariation and covariance
Consider two price processes S; = (S1(¢), ¢ > 0) and So = (S2(¢), ¢t > 0) that are
pure jump processes and exponentials of X1 = (X1(¢),# > 0) and X, = (X2(7), ¢ > 0).
The joint arrival rate function for the pair (X1, X») in the absence of covariation takes
the special form

kx, x,(w,t,x1,x2) = ki (0,1, x1) 1,0 + ka(w, t, x2) 11, =0,
where the dependence on w is adapted.

Further, the relationship between price changes and log price processes is as
follows:
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S1t+h) —81(1) = Z S1(u.) (eAXl(u) . 1)

t<u<t+h

(2t +h) = SH0) = > SH(u) (eAXz(u) _ 1) ’

t<u<t+h

when the sums on the right side are well defined as is the case for finite variation log
price processes. The joint characteristic function at horizon 4 is given by

DX, (), X, () (1, V) = E [exp (iuX1(h) + ivX2(h))]

h 0 o
=FE |:exp (/ dS/ /
0 —00 J —o00
< (eiMX1+ivX2 — 1) kx, x,(w, s, xl,xz)dxldX2)i| .

From the absence of covariation it follows that

00 poo ) ]
/ / (emlerwa — l) kxl,xz(a),t,xl,)q)dxldxz
—00 J —00
)

) o0
:/ (emxl—l)kl (w,t,xl)dx1+/
—o0

(e"”x2 — 1) ko (w, t, x2)dx>.
—00
The covariance of returns for horizon /% is then given by

2

udv

0
DX (h), X2 () (U, V) |lu=p=0 + <5¢X1(h),x2(h)(u, v)|u=u=0)

0
X (%¢X1(h),xz(h)(u, U)|u—v—0)

Evaluating the required derivatives yields the results

r rh o0

/ ds/ x1ki (a),s,xl)dx1:|
LJO -0

r rh

=iE [ dsvl(a),s)j|

LJO

r rh 00

/ ds/ x2ko (w, s, X2) dxzi|
LJO —00

r rh

=iFE / dsvz(a),s):|, where
0

a—u¢x.(h),x2(h)(u, V)|u=v=0 =i E

ad .
%QSXI(h),XQ(h)(u, V)|y=v=0 =i E

o0
v (w, s) :/ x1k1 (w, s, x1)dx

—00

o0
v (w, s) :/ xoko (w, 5, x2) dx),

—00

are the stochastic instantaneous variations.
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Furthermore,

82 r rh 00 h

— , —p—0 = FE d k .S, d

auav¢X|(h),X2(h)(’4 V) |lu=v=0 _/0 S/_OOM 1 (w,s,x1) M/O
o0

ds/ Xoko (w, s, x2) dx2:|
—00

h h
=F [ dsvl(a),s)/ dsvz(a),s):|.
0 0

The covariance is thus given by

h h
Cov(Xi(h), Xp(h)) = E |:/ dsvi(w, s)/ dsvy(w, s):|
0 0

h h
—E |:/ dsvi(w, s)i| E |:/ dsvy(w, s)j| .
0 0

Define the integrated instantaneous variations by

t
Vi(w, 1) :/ dsvi(w,s), i =1,2.
0

We have to evaluate the integrated instantaneous variations of the two variables and
then evaluate their covariance. If the integrated instantaneous variations are con-
stant as they would be when the jump arrival rates are deterministic functions of the
jump size with no dependence on w, then this covariance will be zero. The same is
true if the jump arrival rates are deterministic functions of the jump size and time.
Furthermore, if the two jump arrival rate functions depend deterministically on two
independent random variables the covariance will once again be zero. For covariance
to occur at some horizon, the two jump arrival functions must be adapted to the same
or otherwise correlated variates. These considerations lead us to consider models for
the arrival rates as nonlinear functions of the two price levels or their ratios. We note
here that there is an extensive literature studying the relationship between covariation
and covariance for semimartingales with continuous sample paths and we cite in thus
regard Barndorff-Nielsen and Shephard (2004). The interest here is restricted to pure
jump processes for reasons presented later in the paper.

We are essentially modeling the dependence of the parameters of arrival rate func-
tions on variables of interest. It is anticipated that these parameters may move around
but belong to a compact set. Of necessity then the dependence of such parameters
on selected variables of interest must then be nonlinear. Given data sets x; at which
points y; are to be predicted, the use of linear regression postulates an underlying
relationship of the form

y=a+p'x
where the coefficients «, B are estimated by linear regression. One may also intro-
duce nonlinearities using squares and cross products but the postulated function form
will not have a compact range.

Gaussian process regression and support vector machine regressions employ ker-
nel functions K (x, x") that map the Hilbert space of square integrable functions with
respect to a base measure to itself and define candidate functions of the form
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) =Y K (xi, x)yi.

The coefficients «; are estimated to optimize a variety of prediction performance
metrics. The structure of kernel functions ensures that the range is compact. A variety
of kernels are available with the most popular being the Gaussian kernel. Parameters
of the kernel also enter the optimization. Here we employ Gaussian kernels.

3 A stylized model, simulated estimation, and bond market dynamics

Covariances can arise at longer horizons with dependencies that occur over time, if,
for example, arrival rates of price motion depend on the price levels themselves. In
this case one may have, for example, that

kx, x, (@, 1, x1, x2) = ki (w0, $1(22), S2(22), £, x1) 11y=0
+ ka(w, S1(t2), S$2(t2), t, x2) 1y, —o0.

A further special case models forces at work that try to keep the ratio within
bounds by directly creating just a dependence on the ratio of the prices. In this case,

kx, x,(@,t,x1,x2) = ki (a), %, t, xl) 1,0+ k2 <a), %, t, x2> 1;,—0.
By way of a specific example to be simulated, take k1, k> in the bilateral gamma class
with parameters depending on the ratio of the levels.

Let X1(0) = X2(0) = 0. Further,i suppose that for | log(S1/S2)| < « the arrival
rates are not dependent on the ratio. For price relatives within a bound the two pro-
cesses, conditional on the maintenance of the bound, are just independent bilateral
gamma processes. Dependencies may occur when price relatives violate the bound.
The next subsection models the creation of dependence via an exponential tilting of
the arrival rate functions.

3.1 Creating dependence by exponential tilting

The base Lévy measure or arrival rate function is that of a bilateral gamma process
introduced, for example, in Madan, Schoutens, and Wang (2017) with

_x _
e br e bn

1.0+ cpi—1i<0.
x|

k(x) =cp

There will be some constant base drift in the stock over time given the base arrival
rate function. With a view to creating dependence, consider changing this drift by
exponential tilting that alters the relative rates of positive and negative jumps. The
use of such a procedure in well established for premium calculations in Insurance
and in the construction of risk neutral distributions for option pricing. We cite in this
regard Naik and Lee (1990), Gerber and Shiu (1994), Carr and Wu (2004) and Elliott,
Chan and Shiu (2005) among others. Here we employ the procedure to introduce
dependence.

) Springer Open



Probability, Uncertainty and Quantitative Risk (2018) 3:5 Page 9 of 29

On applying an exponential tilt, the arrival rate function shifts to

ef(%fe)x e{ﬁw)m
CpTlx>0 + CnTlx<O-

One then has another bilateral gamma process with parameters

1 1

= —_9
b, by
11 4o
b, by ’
or that
b/ — bP
P 1—-06b,
S
n 1+6b,
For positivity of parameters it is necessary that either
0<6 !
<0< —
by

0r0<—9<hl.

Therefore, for @ > 0 let

1
0=—nfor0<n<1
bp

and for 6 < 0 let

1
—0=—nfor0<n<]l.
b

For |log(S1/S2)| < o we suppose no tilt and & = 0. Mean reversion is organized
by taking 8 < O for §1/S2 > exp(a) and 8 > O for S1/S> < exp(—«a). More
specifically, for S; > S5 let

1 S
—0 = E (1 — exp (—a,, max (S—; — e“,O)))

while for S| < §» let

1 S
f=— (1 — exp <—a,, max (e"‘ — —1, 0))) .
b, S,

Mean reverting drifts are introduced when the ratio departs from initial levels
severely in either direction. Otherwise we have independence. The result is a fourteen
parameter model with dependence and parameters

ap7 bp7 Cp’a}’h b}’la Cn,

/ / / / / / /
a,, by, c, a, by, c, o,
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where the primed parameters are for k», the Lévy measure for the second stock while
the nonprimed parameters are for kj, the Lévy measure for the first stock. In the
primed case, we have for S, > S

1 S
-0 = o (1 —exp <—a;, max (S—Z —e¥, O)))
n 1
1 Y
0 = Z (1 — exp (—a}, max (e_“ - S—T, 0))) :

When we tilt the Lévy measure to

and for S; < S,

k(x)ef™

the effect on the drift is as follows. The original drift is

1 r 1 -
E[AS] = ( ) ( ) —1
1-b, 1+ b,
1 \"/ 1 \@ |
1-— b’p 1+,
‘p Cn
1 1
b, 1+ by -1
I = =5 —0b, +0b,,

_( 1 —6b, )cp( 1+6b, >c"
1=+ Db, 14 (0 + )b,

3.2 Simulated data

and it goes to

which is

We simulated 10,000 paths of 252 days for two stock prices with bilateral gamma
parameters as those for INTC and IBM on 20170131

by Cp by, Cn
INTC 0.0070 1.6988 0.0058 1.6988
IBM 0.0058 2.0106 0.0057 1.6552

and the stocks starting at 100 and the value of « = 0.05, and the parameters
ap, ap, a,, a, all set equal to 2. Figure 1 presents the conditional drifts for the change
in the two stock prices as a function of the ratio of each stock price to the other price.

Observe that for levels below alpha for the log price ratio in absolute value, the
process is a pair of independent bilateral gamma processes. When the ratio leaves
this region we have mean reversion with a negative drift for a high own price and a
positive drift for a low own price.

Figure 2 presents graphs of the two contemporaneous returns and the associated
stock prices. We may observe the expected absence of covariance. However, there
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DBC E[deltaS] vs ratio
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Fig. 1 Presented are the true conditional drifts in the two stock prices, S; and S, in basis points as a
function of the ratio of own price to other price. The graphs present the consequence of modeling the
dependence of local parameters of motion on prices

ri vsr2
01 T T T T T T

0.05 - . S |
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S1

Fig. 2 The upper panel presents a graph of the two simulated contemporaneous returns reflecting mean
reversion dependence in the tails with a central motion that is one of independent increments by con-
struction. The lower panel presents a graph of the second simulated stock price as a function of the first
simulated stock prices. We observe the tendency of the two prices to maintain a stable ratio between
themselves
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is dependence as seen by a plot of the two stock prices against each other across a
subsample of days and paths presented.

We now train a Gaussian process regression to learn the dependence of the change
in the first stock price as a function of the ratio of the two prices, own to other on a
subsample of days and paths. Figure 3 presents the result.

We see that a Gaussian process regression is capable of learning the existing
dependence.

3.3 A two-dimensional analysis of pure discount bond data

We anticipate that bond prices of different maturities must be dependent but may
also have no covariation if they are pure jump processes moving at their own times
that are not synchronized across the maturity spectrum. The dependence comes from
a possible dependence of drift via the dependence of parameters of motion on the
prices themselves.

To investigate this further, daily time series of pure discount bonds were con-
structed from data on yields to maturity each day for a variety of maturities. The data
comes at specific maturities that vary each day. By interpolation, pure discount bond
prices were derived for the fixed maturities of 1, 3, 6, 9, and 12 months and 2, 5,
10, 15, and 20 years . The data set went from January 3, 2007, to August 29, 2017,
for 2782 days. Beginning on December 19, 2007, and employing on a rolling basis
of 252 days of past returns on each of the 10 time series, bilateral gamma parame-
ters of motion were estimated for the logarithm of the pure discount bond prices (see
the next section for further estimation details). One obtains as a result, 2530 sets of
bilateral gamma parameters for each of the ten pure discount bonds.

For an analysis of dependence, consider first just the dependence between the pure
discount bond price for maturities of one and five years. From the bilateral gamma
parameters we inferred for each day the expected exponential variation in the price as

1 \P( 1 \*
(=) (=)

E[deltaS] vs ratio
I

100

* True Function
*  GPR Leamed Gaussian
- GPRardmatem32
GPR ardmaterms2

E[deltas]

50
075 08 085 09 095 105 11 115 12 125

1
ratio 110 2

Fig. 3 The true dependence is presented by the piecewise linear curve. The predicted dependence
estimated by a Gaussian process regression is given by the curved line
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For the analysis of the possible nonlinear dependence of drifts on the two con-
tinuously compounded rates for the one and five year maturities we estimated a
support vector machine regression using a Gaussian kernel. Figure 4 and present the
estimated drift response surfaces.

There is a sufficient nonlinearity in the drift response that creates potential depen-
dence in the absence of any covariation as the processes remain independent bilateral
gamma processes unless rates move to extreme regions. We observe that when rates
are high the price drifts are positive indicating a drop in rates with the opposite
occurring when rates are low.

4 Estimating exponential variations

The estimation of exponential variations daily is based on estimating the parameters
of an uncentered distribution of returns that may be estimated from say 252 days of
data on immediately prior continuously compounded returns. Critical to such an exer-
cise is the choice of the parametric class of distributions. Clearly the class must be
capable of fitting the data but hopefully not be so wide as to permit over fitting. The
imposition of structural restrictions helps to reduce parameters and simultaneously
avoid over fitting. On the other hand some parametric richness helps in differentiat-
ing possibilities away from imposing too many symmetries. In this regard we rely
on experience in fitting return distributions both risk neutrally and in the time series
data.

The theoretical structural restriction is to appeal to a limit law for the distribu-
tion. This is on the grounds that the number of price moves involved in the unit time

driftin basis points

H

0,035

p’o’o’n‘.“

driftin basis points

N

0,035

001 0005

Fig. 4 Exponential variations of one and five year bond prices as a function of the one and five year spot
rates in the upper and lower panels respectively. Positive drifts at high rates and vice versa for low rates
reflect mean reversion in the bond prices
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of a day, though finite, is quite large. The limit laws arise at infinitely many moves
and have been characterized as the self decomposable laws by Lévy (1937) and
Khintchine (1938). They are a subclass of the infinitely divisible distributions with a
further restriction on the associated Lévy density. Arrival rates of jumps when scaled
by the absolute jump size must be decreasing functions of the absolute jump size
(Sato (1999)). The self decomposable laws also have provably unimodal distributions
and thereby refrain from overfitting a multiple of modes.

There are asymmetries between the way market prices rise and how they fall. It is
often said that markets take the escalator up and the elevator down. Recently these
differences were explored and documented in Madan and Wang (2017), and Madan,
Schoutens and Wang (2017). Further, appealing to price moves being surprises occur-
ring at surprise times modeled by Poisson arrival times for fixed jump sizes, we
employ a pure jump price process. Thus we refrain from employing a continuous
component either deterministic or random in the price process or its logarithm. The
random continuous processes impose a symmetry between the upward and downward
motion and do not permit a split between the two. They are also processes of infinite
variation that do not permit the two processes of upward and downward motion to
be separated. Already the use of limit laws stretches reality by allowing for infinitely
many moves. Infinite variation is yet another stretch away from reality.

A particularly simple pure jump process with a self decomposable law at unit time
is given by the variance gamma model of Madan and Seneta (1990) and Madan,
Carr and Chang (1998). The jump arrival rate function when scaled by the absolute
jump size is just a negative exponential of the absolute jump size, a clearly decreas-
ing positive function. It permits a separation of the upward and downward motion,
with both processes being gamma processes with separate scale parameters and the
same shape or speed parameters. Madan and Wang (2017), Madan, Schoutens and
Wang (2017) document that identical speeds on the two sides may be overly restric-
tive and they employ the bilateral gamma process of Kiichler and Tappe (2008). This
is a difference of two gamma processes with their own speed and scale parameters.
It is observed that the upward motion has a higher speed and lower scale parameter
when compared to the same for the downward motion. Other asymmetric construc-
tions of price motion could also be employed by entertaining the differences of other
subordinators.

The estimation is conducted to match by weighted least squares the bilateral
gamma model tail probabilities to their observed counterparts. The data on daily
returns is sorted in increasing order and points k; are extracted by interpolation of the
empirical distribution function such that the probability of returns being less than k;

isi/100 fori =1, ---,99. The observed tail probabilities are
;= i 1 + (1 i 1
Yi = 100 ki <0 100 k;>0-

For the model probabilities with scale and speed parameters b,, c, and by, ¢,
for the positive and negative moves, respectively, we employ the bilateral gamma
characteristic function

) Springer Open



Probability, Uncertainty and Quantitative Risk (2018) 3:5 Page 15 of 29

1 Cp 1 Cp
E uX)| = .
[expiux)] (1 — iubp> (1 ¥ iub,,)

The bilateral gamma process is given in terms of two independent standard gamma
processes yp, yn by

X (1) = bpyp(cpt) — byyu(cnl).

The density may be obtained by Fourier inversion of the characteristic function.
Starting values are derived from an estimation of the variance gamma process that is
a special case of the bilateral gamma with ¢, = ¢, = C. The variance gamma arrival
rate function (Madan and Seneta (1990), Carr, Geman, Madan, and Yor (2002)) has
the form c

kyg(x) = ] (exp (—Mx) 10 + exp(—=Glx|) 1 <o) ey
and b, = 1/M, b, = 1/G. The closed form for the variance gamma density
(Carr and Madan (2014)) is

(GM)©
2011 (C) /2 (S5M) 72

G—-—M _ G+M
exp( 5 x)|x|c 1/2K01/2< > |x|>,

where K, (x) is the modified Bessel function and C, G, M are the variance gamma
parameters associated with its arrival rate function (1). The variance gamma density
is used to estimate variance gamma tail probabilities to first fit the variance gamma
model to observed tail probabilities to get starting points for the bilateral gamma
estimation. In both cases, with y; being the model tail probability the weighted least
squares optimization criterion employs the Andersen and Darling (1952) weights to

minimize )
7= Z (i — i) .
— yi(l = yi)
Once the parameters have been estimated the exponential variation for the day in
basis points is given by

1 Cp 1 Cn
n = 10000 —1].
1-5,) \1+b,

For all the underlying assets, time series of exponential variations 7,,, are constructed
for asset m on day ¢. Also employed are the time series of prices p,, ; for the price
of asset m on day ¢. The collection of variations and price histories are the inputs for
support vector machine nonlinear regressions designed to learn how the variations
depend on the prices.

fve(x) =

5 Economic cost of exposure to model residuals
The nonlinear models constructed by support vector machines form linear combina-

tions of a large number of nonlinear transforms of the original data. The particular
nonlinear transforms employed are selected by the optimization algorithm out of a
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much larger base set of transforms. The parameter estimation algorithms employ reg-
ularization tradeoffs and numerous fit statistics for determining the selected predictor.
We then seek a uniform basis for comparing and contrasting the various predictors.
One could use least squares, weighted least squares, or other weighted norms with
related issues on specifying the weights to be employed. The possibilities are many
and the principles to be used in formulating the final criterion quite unclear. In any
case, the variety of goodness-of-fit criteria or distance metrics available generally pay
little attention to economic matters and are directed towards statistical considerations
like the ability to derive distributional properties in some stylized ideal environments.
These statistical results enable one to assert that the observed improvement would
have been unlikely to occur by chance and so it should be viewed as a significant
improvement. Instead of judging improvements on such a statistical basis we ask if
the improvement represents an economic advancement.

For the development of an economic assessment for a predictor we seek an answer
in terms of the economic cost of the error or the residual. Consider then the perspec-
tive for predicting a target y with a prediction y delivered by some model. Suppose
the target is a cash flow that we have to pay out. Further suppose we may arrange to
receive the prediction y. In the absence of a prediction we make no such arrangement
and then 3 = 0. The random net position is then y — y and we recognize that it is
unlikely to be zero.

Now, under the traditional law of one price, all risky positions are worth what
one could buy or sell them for as one can always trade in both directions at the
same price. If you buy something for a price it is worth that price and you receive a
value equal to what you paid for it. Similarly, if you sell something for a price the
value delivered equals the price. There are no costs associated with risky positions.
However, economic analysis may be conducted on replacing the fiction of the law of
one price by that of a two price economy where it is recognized that prices for trading
with the market depend on the direction of trade and you have to buy at higher prices
than what you can sell for. You do not receive an equal value and the cost of a risky
position may be modeled by the spread between the upper and lower valuations. The
economic cost of prediction errors may then be taken to be this spread. Importantly,
it is useful to note that economic costs are invariant to perturbation by constants as
they affect both the upper and lower valuations equally.

The economic theory of two price economies as developed in Madan (2012, 2015),
Cherny and Madan (2010), or Madan and Schoutens (2016) demonstrates in the first
instance that this spread is the difference between the supremum and infimum of a
number of valuations conducted using a set of test probabilities or scenarios. Asso-
ciated with the set of test probabilities is a set of acceptable risks that are precisely
those with a nonnegative valuation under all test probabilities. Under two further
assumptions, one reducing acceptability to the distribution functions for the risk, and
the other, requiring the additivity of lower and upper valuations across risks with no
negative comovements, termed comonotone additivity, the lower and upper valua-
tions may be represented by distorted expectations. First the distribution function is
composed with a concave/convex distribution function on the unit interval and then
expectations are taken for the lower/upper valuation. The composition serves as a
distortion of probabilities lifting lower tail probabilities for the lower valuation and
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lowering lower tail probabilities for the upper valuation. The resulting expectations
may also be seen as Choquet (1953) expectations with respect to nonadditive proba-
bilities. Here, we evaluate the economic cost of prediction errors using such distorted
expectations.

The concave distortion used for the lower valuation, termed minmaxvar, was
introduced in Cherny and Madan (2009) and is given by the parametric form

1\ Ity
W) =1— (1—u1+V> .

Other well known distortions from the insurance literature include the Wang (2000)
transform. The greater the value of y, the more concave the distortion with no distor-
tion occurring at y = 0. The set of test probabilities approving risk acceptability are
all alternative probabilities Q satisfying

O(A) < W (P(A)), forall sets A,

where P is the original or true physical probability (Madan, Pistorius, and Stadje
(2017)). The upper valuation may be obtained using the complementary distortion

VW) =1-—w( —u).

The value of distortion parameter y employed in our calculations of economic cost is
0.75 as hedge fund returns are just acceptable at such a level as reported in Eberlein
and Madan (2009). Hence, such a distortion is sufficiently conservative.

By way of an example, we note that the percentage reductions in economic cost
delivered by least squares and support vector machine regressions in explaining
the exponential variations for the prices of one-year pure discount bonds, using as
explanatory variables the one and five-year rates, are 6.12 and 15.88%, respectively.
The corresponding values for the five-year pure discount bonds are 7.12 and 38.39%.
Though the absolute levels of economic cost vary and rise with the chosen stress level
y, the percentage reductions rendered by models are comparable across a wide range
of such levels.

6 Bivariate examples of zero covariation dependence

This section presents results on rsvm regressions of exponential variations of assets
on the ratio of its price to that of a benchmark asset. Also presented are results of
rsvm regressions of exponential variations on the own price and the benchmark price
taken separately. Let us first consider sector ETF’s relative to the S&P 500 index
and the index response to the sector ETF. Table 1 report the percentage reductions
in economic exposure costs attained by linear and rsvm regressions of exponential
variations of the ETF’s and the SPX, respectively, on the ratio and the two prices
separately. We see considerable cost savings related to using the prices separately as
opposed to the ratio though results for the latter may be more easily graphed.

For graphs of the rsvm predicted exponential variation as a function of the own
to benchmark price ratio there are two graphs for each of the nine sector ETF’s. One
for the sector ETF’s exponential variation and one for that of the S&P 500 index.
These are presented in Fig. 5 for a sample of asset pairs. Unlike linear regressions
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Table 1 The first four columns present the reduction in economic cost achieved in explaining exponential
variations in the levels of the ETF’s

Economic cost reductions in explaining Economic cost reductions in explaining
exponential variations of ETF’s exponential variations of SPX
Numerator  Linear Linear rsvm rsvm Linear Linear rsvm rsvm
ratio to plus ratio to plus ratio vector ratio vector
SPX SPX SPX SPX
XLB 0.0258 0.2144 0.0383 0.3810 0.0070 0.1626 0.0099 0.3389
XLE 0.0518 0.2123 0.0335 0.3524 0.0015 0.1209 0.0708 0.3327
XLF 0.0248 0.1060 0.2361 0.3363 0.0064 0.0502 0.0510 0.2827
XLI 0.1772 0.1298 0.1187 0.3645 0.1277 0.1010 0.0968 0.3205
XLK 0.0788 0.0539 0.0823 0.3788 0.0269 0.0483 0.0781 0.2928
XLP 0.0212 0.0320 0.0002 0.0515 0.0555 0.0818 0.1153 0.3746
XLU 0.0985 0.1970 0.0026 0.1405 0.1331 0.0844 0.2153 0.2949
XLV 0.0026 0.1199 0.0355 0.2565 0.0022 0.1505 0.0497 0.3636
XLY 0.0979 0.0286 0.2210 0.2233 0.0903 0.0551 0.2754 0.3465

The variables used are the ratio of price to spx (S&P 500 index) and the two variables separately. Prediction
is by linear regression or support vector machine regression. The last four columns switch to explaining
exponential variations in the level of the spx index using the ratio to the ETF and the two variates of the
ETF and the spx index separately

xIb evar vs price relative to spx xi evar vs price relative to spx Xly evar vs price relative to spx

xlb evar
xii evar
Xly evar

0022 0024 0026 0028 003 0032 0.024 0.025 0.026 0.027 0.028 0024 0026 0028 003 0032 0034 0036 0038
xlb2spx Price Relative xli2spx Price Relative xly2spx Price Relative
spx evar vs price relative to xib spx evar vs price relative to xli spx evar vs price relative to xly

spxevar
spxevar
spxevar

EE) 2 28 90 3 34 36 98 40 42 a4

32 a4 % 98 40 42 44 46 % a7 38 3 40
spxexib Price Relative spxexii Price Relative spxexy Price Relative
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Fig. 5 For a selection of asset pairs the graphs present a support vector machine prediction of exponen-
tial variations in a chosen asset as a function of its price relative to the selected other benchmark price.
Inverse relation reflect mean reversion in both directions while positive relations reflect momentum in
both directions. The nonlinearity allows for a variety of possibilities
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where the relationship between two entities is symmetric by construction, nonlin-
ear dependencies estimated by support vector machines can be asymmetric with the
first responding to the second in a certain way while second responds to the first in
different way or not at all.

When an increase in an asset price relative to a benchmark price is associated with
an increase in the asset price’s drift then we have momentum upwards. Otherwise we
have mean reversion upwards. Similarly a drop relative to a benchmark being related
to a fall in the asset’s own drift reflects downward momentum and downward mean
reversion otherwise. We observe that xIb mean reverts to the index but the index has
momentum on both sides relative to xIb. xli is in a momentum state with respect to
the spx on both sides while the latter mean reverts to these. spx mean reverts to xly
while the latter is flat with respect to spx.

Other interesting bivariate examples also presented in Fig. 5 are JPM relative to
XLF, gold relative to bitcoin, and the SPX relative to the VIX. We observe that JPM
has momentum relative to XLF on both sides while XLF mean reverts to JPM. Bitcoin
reverts to gold while the latter is flat with respect to the former. Finally, both the SPX
and the VIX are in a state of momentum with respect to the other on both sides.

7 Portfolio theory for two assets with zero covariation

Given that exponential variations appear to vary in some interesting and rational ways
with the price levels suggests that the bilateral gamma parameters must themselves be
nonlinear functions of the prices. As all four parameters are required to be positive,
we consider regressing their logarithms on the prices and, in fact, use the log prices.
Anticipating nonlinearities, we apply support vector machine regressions for each of
the four parameters to build their dependence on the vector of prices. In this section,
we first consider just the case of two assets and take, for example, JPM and XLF.
Synthesizing the parametric dependence then requires eight support vector machine
regressions. For the two assets JPM and XLF, we performed an rsvm of the loga-
rithms of the four parameters on the two prices. The economic cost reductions on the
four parameters of scale and speed up and down on jpm were 45.35, 2.73, 33.53, and
2.17 percent, respectively. The corresponding values for xIf are 41.40, 14.25, 28.18,
and 16.74 percent. We next take as starting values initial prices in the middle of the
data range at 39.06 and 12.00 for JPM and XLF, respectively, to simulate a thousand
paths of length 252 days for the two price processes with bilateral gamma returns
reflecting the rsvm estimated dependence of both speed and scale parameters on the
current level of the two prices. Figure 6 presents a graph of the thousand pairs of
continuously compounded returns to year end.

For the portfolio construction we vary the proportion invested in JPM from one
to 99 percent at intervals of one percent to construct the matrix of size 99 by 1000
that represents the return on the 99 portfolios. The portfolios are valued at their lower
or bid price using minmaxvar at a stress level of 0.75. Figure 7 graphs the value of
the portfolio as a function of the proportion invested in JPM. The maximum occurs
at 55% in this example. The principles of zero covariation return simulation and
portfolio selection are generalized to multiple assets in the next section.
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Fig. 6 Simulated returns on JPM and XLF over a year from model allowing all four parameters of a local
bilateral gamma evolution to depend on both prices using support vector machine regression parameter
predictions that are then input into a bilateral gamma simulator

8 Multi asset portfolio construction

By way of an illustration, we consider the construction of a portfolio invested in
the nine sector exchange traded funds and the S&P 500 index. First, we construct
the time series of bilateral gamma parameters for all ten assets. This was done for
each day from January 3, 2008, to February 16, 2017, for a total of 2298 days using
for each day the immediately prior 252 daily returns. We then perform 40 support
vector machine regressions for each of the four parameters for each of the ten assets
onto the data on the current prices for all ten assets. Table 2 presents the resulting
sample percentage reductions in economic residual exposure cost delivered by the
support vector machine regressions. The reductions are over 70% for the set of scale
parameters and generally well over 20% for the speed parameters.

We next simulate a thousand price paths of length 252 days, for the ten assets, start-
ing at an intermediate value, with bilateral gamma returns reflecting the computed
dependence of parameters on the vector of ten current asset prices. The support vector
machine returns 40 computer programs that may be used to evaluate this dependence,
with each program evaluating a linear transform of possibly hundreds of nonlinear
transforms. The ten starting prices were 38.5, 77.7, 14.3, 41.0, 29.6, 38.1, 37.4, 43.5,
50.7, and 1514.7. From these path spaces we evaluate the 10 by 1000 matrix R of
continuously compounded returns to year end for the ten assets.
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Fig. 7 The graph show the zero covariation portfolio value computed as a distorted expectation of port-
folio returns when local parameters of bilateral gamma motion depend nonlinearly on the two prices. The
nonlinear dependence is estimated using support vector machine regressions. The value is presented as a

function of the Proportion invested in the stock JPM

Table 2 Presented are the percentage reductions in economic cost achieved by support vector machine
regressions of each of four bilateral gamma parameters of motion on the set of all ten asset prices being

used to form the portfolio

Economic cost reductions in explaining bilateral gamma parameter variations

Asset bp cp bn cn

XLB 0.7118 0.2730 0.6917 0.2373
XLE 0.7949 0.3700 0.8182 0.3712
XLF 0.8790 0.2651 0.8370 0.5581
XLI 0.7720 0.2388 0.7558 0.3569
XLK 0.8003 0.1720 0.7375 0.2468
XLP 0.5554 0.3532 0.6455 0.3757
XLU 0.7228 0.2954 0.7372 0.3354
XLV 0.6854 0.1767 0.6415 0.2234
XLY 0.8094 0.1730 0.7756 0.2469
SPX 0.7848 0.3644 0.7383 0.4737
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The portfolio is selected to maximize a conservative lower price for the portfolio
value with cash flow to portfolio weights x given by

10
Cj(x) =) xi exp(Ri)).

i=1

The portfolio objective is a conservative portfolio value calculated as a distorted
expectation of the portfolio cash flows using minmaxvar at stress level 0.75. We
solve for two portfolios, the first being long only while the second allows short posi-
tions constrained to be above negative 2.5%. In each case the portfolio weights are
constrained to sum to unity. The two sets of portfolio weights are presented in Table 3.

The long only portfolio invests in XLB, XLP, XLY, and SPX. The short con-
strained portfolio increases the investment in the aforementioned assets and shorts the
following at the maximum level: XLE, XLF, XLI, XLK, XLU, and XLV. Such
a portfolio selection could be run regularly, say once a month and the portfolio rebal-
anced to the new weights that are adapted to a current analysis of zero covariation
dependence across the ten assets.

8.1 Rebalancing zero covariation dependence portfolios

We report here on applying conservative portfolio value maximization for portfolio
selection with rebalancing every 21 days. The objective maximized is the distorted
expectation of portfolio cash flows three months out after they are simulated by
locally bilateral gamma processes reflecting parameter dependence on price levels.
The dependence is calibrated by support vector machine regressions using the imme-
diately prior 252 daily parameter values for dependent variables and the vector of
contemporaneous prices as the independent variables. The number of shares held are

Table 3 The Table presents the portfolio weights attained by maximizing conservative portfolio values
calculated as distorted expectations of portfolio returns for two portfolio selections

Portfolio weights

Long only Constrained short
XLB 0.3894 0.4552
XLE 0.0000 0.0250
XLF 0.0000 0.0250
XLI 0.0000 0.0250
XLK 0.0001 0.0250
XLP 0.3268 0.3809
XLU 0.0001 0.0250
XLV 0.0000 0.0250
XLY 0.2085 0.2391
SPX 0.0751 0.0748

The first is constrained to be long only while the second has a maximum short position of 2.5%
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constant between rebalancing dates. Figure 8 presents the daily mark-to-market value
of the rebalancing portfolio strategy along with the prices of the component assets.
Figure 9 presents the mark-to-market value using different stress levels for
portfolio selection for a long only strategy and a strategy constraining the short
side to 2.5%.
Table 4 presents a representative set of 20 portfolio weightings adopted over time
along with the proportion of points they represent.

8.2 Comparison with Markowitz portfolio selection

This section reports on comparing the conservative portfolio value maximizing port-
folio at stress level 0.75 and short position constraint of 2.5% with portfolios that are
rebalanced along Markowitz lines. For a covariance matrix X and mean return vector
., the Markowitz portfolio used is

»-! w
X = Ty
However, as is well known, such portfolios can be quite unbalanced with large long
and short positions that may even be totally unreasonable and impossible to hold or
implement. To make them reasonable they were scaled to a volatility target of 20%
with the rest of the funds held as cash. The covariance matrix was estimated from
data on 252 immediately prior returns. For the mean returns we used first, the sample

average over the past 252 days and second the exponential variation as estimated
from the bilateral gamma process parameters.

Monthly Rebalanced Portfolio vs Components

Value

Augoa Dect0 May12 sep1a Fob1s Junte

Dates.

Fig. 8 Mark to market value of conservative portfolio value maximizing portfolio with zero covariation
dependence modeling using support vector machine regressions of bilateral gamma process parameters.
The portfolios were rebalanced every 21 days. The dependence modeling used prior 252 day support vector
machine regressions of local parameters of bilateral gamma motion on all asset prices in the portfolio.
Also shown are the price paths of the components
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Fig. 9 Mark to market values for long only strategy in the upper panel and long short with a short side
constraint of 2.5% in the lower panel. The different curves represent different stress level used for the
calculation of conservative portfolio vale as a distorted expectations of portfolio returns

Presented in Fig. 10 are the time paths of accumulated portfolio values starting
with a 100 dollar investment, rebalanced monthly or every 21 days, using the three
rebalancing portfolio selections.

We observe that the overall performance delivered by using sample averages for
the mean returns is dominated by the use of mean returns extracted from distribution
fitting. The conservative portfolio value maximizing portfolio delivers a smoother
outcome with, an already observed, more stable set of portfolio weightings.

8.3 Performance statistics on randomly selected portfolios

To evaluate the consistency of improvements offered by conservative portfolio value
maximization of zero covariation portfolio selection (ZCP) with Markowitz type
portfolios using sample averages for means (MVA) and using the exponential vari-
ation of bilateral gamma processes for means (MVBGEV), we randomly selected
ten stocks out of 214 a hundred times. For each selection we implemented the three
monthly rebalancing strategies over the data period from January 3, 2008, through
February 2, 2017. This is a period of 2298 days that includes the financial crisis.
Table 5 presents the percentiles of performance measures on the three strategies over
the entire sample. We observe significant improvements in the total return, Sharpe
ratios, gain-loss ratios, and Acceptability Indices (Cherny and Madan (2009)). The
max drawdowns and kurtosis are smaller while the skewness is increased.
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Table 4 The Table shows a representative set of portfolio weights in the ten assets adopted at different
points in time over the various rebalancings

Representative set of portfolio weights

Case XLB XLE XLF XLI XLK XLP XLU XLV XLY SPX  Proportion
1 0.0523 0.9476 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0412
2 0.0332 0.0109 0.0009 0.0951 0.3310 0.2003 0.0017 0.0074 0.2164 0.1031 0.0515
3 0.0204 0.0280 0.0077 0.0814 0.1241 0.3973 0.0969 0.1012 0.1219 0.0211 0.0515
4 0.0345 0.0059 0.0066 0.0619 0.0347 0.4284 0.0942 0.2637 0.0400 0.0299 0.0412
5 0.2067 0.0181 0.0324 0.0695 0.2047 0.0227 0.0052 0.1395 0.1573 0.1439 0.0515
6 0.0251 0.0383 0.0307 0.0378 0.1759 0.2667 0.1005 0.1520 0.1108 0.0621 0.0412
7 0.0768 0.0001 0.0021 0.0251 0.1245 0.5682 0.0403 0.0105 0.1524 0.0000 0.0412
8 0.0000 0.0000 0.0091 0.0427 0.0689 0.1566 0.5222 0.0750 0.1248 0.0008 0.0206
9 0.0705 0.0369 0.0203 0.1316 0.2206 0.1342 0.0020 0.0145 0.2109 0.1585 0.0619
10 0.0932 0.0789 0.0202 0.0564 0.1695 0.3448 0.0144 0.0489 0.1480 0.0256 0.0412
11 0.0208 0.0347 0.0199 0.0389 0.1390 0.2325 0.0936 0.2176 0.1596 0.0434 0.0515
12 0.0030 0.0112 0.0296 0.0192 0.0492 0.1491 0.0095 0.5572 0.1378 0.0344 0.0619
13 0.0890 0.0230 0.0185 0.0295 0.0365 0.3761 0.0434 0.2522 0.0921 0.0398 0.0619
14 0.0436 0.0267 0.0059 0.0123 0.0162 0.5480 0.0309 0.2151 0.0747 0.0266 0.0309
15 0.0059 0.0001 0.0378 0.0307 0.0850 0.1360 0.2117 0.1262 0.3324 0.0343 0.1134
16 0.0916 0.0514 0.0740 0.0766 0.2355 0.1043 0.0272 0.1210 0.0943 0.1241 0.0412
17 0.0095 0.0013 0.1043 0.0188 0.1431 0.1913 0.1892 0.1516 0.0829 0.1080 0.0206
18  0.0536 0.0919 0.0008 0.0469 0.1348 0.2775 0.1269 0.1252 0.1063 0.0360 0.0309
19 0.0760 0.1378 0.1097 0.0585 0.0006 0.0816 0.0004 0.2136 0.2159 0.1059 0.0825
20  0.3218 0.2616 0.0586 0.1035 0.0653 0.0012 0.0006 0.0866 0.0392 0.0616 0.0619

Also presented in the
weightings in that row

final column are the proportion

of rebalancings

Max Short 2.5%

represented by the portfolio

Mark to Market Values

120

,W‘v‘a

Stress 0.75 Max Short 2.5 Bid Maximization
—— MV sample average

—— MV BG Evar

Aug09

Dec10

May12

Dates

Sept3

Feb15

Jun1é

Fig. 10 Shown are the time paths of portfolio values attained by conservative portfolio value maximiza-
tion with zero covariation returns reflecting dependence of local bilateral gamma parameters of motion
on all asset prices in the portfolio as estimated by support vector machine regressions. Also shown are
the paths of mean variance optimization using for mean sample averages and exponential variations as
estimated by bilateral gamma parameter estimates on a year’s worth of immediately prior daily returns
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Table 5 The Table presents percentiles of ten performance statistics for three investment strategies

Performance statistics

Percentile ~ ZCP MVA MVBGEV  Percentile ZCP MVA MVBGEV
Total returns Sharpe ratios

5 193.2717  68.9452 76.7186 5 0.4656 0.1947 0.2326
25 2554264  120.9758  127.8869 25 0.6057 0.2951 0.3367
50 306.5203  161.9877  174.9696 50 0.6931 0.3797 0.4392
75 367.5754  233.1460  258.1319 75 0.7969 0.5046 0.5674
95 4934716  444.3992  454.0174 95 0.9288 0.7307 0.7309
Gain loss ratios Proportion positive

5 1.1344 1.0667 1.0875 5 0.4541 0.4354 0.4392
25 1.1699 1.0880 1.1091 25 0.4601 0.4433 0.4475
50 1.1928 1.1074 1.1334 50 0.4652 0.4506 0.4539
75 1.2257 1.1461 1.1665 75 04711 0.4550 0.4608
95 1.2504 1.2088 1.2028 95 0.4769 0.4656 0.4696
Acceptability index Max draw down

5 0.0225 0.0113 0.0146 5 35.9336 435110 39.9070
25 0.0282 0.0148 0.0179 25 50.1653 62.3000 49.4967
50 0.0318 0.0179 0.0215 50 60.4912 80.1955 64.5189
75 0.0365 0.0236 0.0268 75 71.4947 106.1338 94.8317
95 0.0400 0.0326 0.0314 95 114.6504  170.1741 149.8968
Skewness Kurtosis

5 7.0578 5.4547 6.2779 5 183.2202  150.5144 160.6891
25 11.4880 11.7356 12.6388 25 349.2345  370.6285 394.1370
50 15.0425 16.6281 20.6671 50 493.9739  558.1219 751.9566
75 18.6804 23.0900 26.7035 75 658.1477  868.8013 1053.7356
95 23.6825 29.3793 34.2800 95 900.6095  1194.4466  1464.7390
Peakedness Tailweightedness

5 0.8146 0.8313 0.8322 5 0.0106 0.0062 0.0029
25 0.8386 0.8598 0.8611 25 0.0159 0.0119 0.0095
50 0.8600 0.8781 0.8953 50 0.0220 0.0194 0.0159
75 0.8807 0.9039 0.9213 75 0.0282 0.0287 0.0276
95 0.9030 0.9387 0.9625 95 0.0342 0.0417 0.0406

They are zero covariation (ZCP) returns modeling with local bilateral gamma parameters of motion
depending nonlinearly on all ten asset prices. Support vector machine regressions estimate the dependence.
Also shown are mean variance portfolio selection with sample averages for means (MVA) and bilateral
gamma exponential variations for the means (MVBGEV)

9 Conclusion

Price processes are modeled to have continuously compounded returns given by
locally bilateral gamma processes with zero covariations between them. It is observed
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that covariances can arise at specific horizons only if integrated variations are
stochastic. This observation suggests that perhaps variations are Markovian and func-
tionally dependent on the price processes themselves. Anticipating the absence of
such dependence except when price relativities are strained leads to the conjecture
that the dependencies must be nonlinear. For stylized models with a known nonlin-
ear dependence, it is verified that support vector machine regressions are capable of
detecting the prevailing nonlinearity. For variations to depend on prices, the param-
eters of the underlying bilateral gamma process should depend on prices. Support
vector machine regressions are then employed to model parameter variations as
depending nonlinearly on prices.

Given the complexity of support vector machine regression outputs, we seek statis-
tics that capture the level of improvement delivered by such models. Model residuals
are seen as liabilities to be paid out that have a conservative value when seen as
an asset. This leads to employing the difference between the upper valuation for
the residual less the lower valuation as a measure of the economic cost of holding
the residual. Percentage reductions in economic costs of residuals then provide an
assessment of model quality.

Once parameter dependence on prices has been synthesized using support vec-
tor machine regressions, path spaces may be simulated to form multi asset return
outcomes at an investment horizon. These are then used to form optimal portfolios
that maximize a conservative or lower valuation maximizing portfolio value. Such
an objective is an application of conic portfolio theory as set out in Madan (2016).
Results are presented for monthly rebalanced portfolios over a period of nine years.
The implementation of monthly rebalancing over nine years on a hundred randomly
selected sets of ten equity underliers shows considerable improvements in vari-
ous portfolio performance measures using lower price maximizing zero covariation
portfolios over Markowitz portfolio selections with volatility targets.
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