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Abstract In this paper, we provide a valuation formula for different classes of actuar-
ial and financial contracts which depend on a general loss process by using Malliavin
calculus. Similar to the celebrated Black–Scholes formula, we aim to express the
expected cash flow in terms of a building block. The former is related to the loss
process which is a cumulated sum indexed by a doubly stochastic Poisson process
of claims allowed to be dependent on the intensity and the jump times of the count-
ing process. For example, in the context of stop-loss contracts, the building block is
given by the distribution function of the terminal cumulated loss taken at the Value
at Risk when computing the expected shortfall risk measure.

Keywords Cox processes · Pricing formulae · Insurance derivatives ·
Malliavin calculus

C. Hillairet
ENSAE Universite Paris Saclay, CREST, 5 avenue Henry Le Chatelier, 91120 Palaiseau, France

Y. Jiao
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1 Introduction

Risk analysis in the context of insurance or reinsurance is often based on the study
of properties of a so-called cumulative loss process L := (Lt )t∈[0,T ] over a period of
time [0, T ] where T > 0 denotes the maturity of a contract. Usually, L takes the form

Lt :=
Nt∑

i=1

Xi , t ∈ [0, T ],

where N := (Nt )t∈[0,T ] is a counting process, and the random variables (Xi )i∈N∗
represent the amount of the claims. A typical contract in reinsurance is the stop-
loss contract that offers protection against an increase in either (or both) severity
and frequency of a company’s loss experience. More precisely, stop-loss contracts
provide to its buyer (another insurance company) the protection against losses which
are larger than a given level K and its payoff function is given by a “call” function. In
some cases, there is also an upper limit given by some real numberM, which specifies
the maximal reimbursement amount. Thus, the payoff of such a contract is given by

�(LT ) =
⎧
⎨

⎩

0, if LT < K ;
LT − K , if K ≤ LT < M;
M−K , if LT ≥ M.

(1)

Broadly, the risk carried out by the claims is neither hedgeable nor related to a
financial market, hence the premium of the stop-loss contract is equal to E[�(LT )]
which immediately re-writes as

E[�(LT )] = E
[
LT 1{LT ∈[K ,M]}

]−KP [LT ∈ [K , M]]+(M−K )P [LT ≥ M] . (2)

There are a large number of papers describing how to approximate the compound
distribution function of the cumulated loss LT and to compute the stop-loss pre-
mium. The aggregate claims distribution function can in some cases be calculated
recursively, using, for example, the Panjer recursion formula, see Panjer (1981) and
Gerber (1982). Various approximations of stop-loss reinsurance premiums are
described in the literature, some of them assuming a specific dependence structure.

Similarly to the celebrated Black–Scholes formula, we aim to express the first term
of the right side of (2) in terms of a building block which represents the distribution
function of the terminal loss LT . This feature is hidden in the Black–Scholes model
since the terminal value of the stock has an explicit log-normal distribution. More
specifically, we aim in computing E

[
LT 1{LT ∈[K ,M]}

]
by using the building block

x �→ P [LT ∈ [K − x, M − x]]. Note that, on the credit derivative market, the payoff
function (1) can also be related to Collateralized Debt Obligations (CDOs) where
there are several tranches, and so several K and M levels, which are expressed in
proportion of the underlying which is the loss of a given asset portfolio.

Stop-loss contracts are the paradigm of reinsurance contracts, but we aim in deal-
ing with more general payoffs whose valuation involves the computation of the
quantity

E

[
L̂T h (LT )

]
, (3)
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where h : R+ → R+ is a Borelian map and where L̂ is of the form L̂T :=∑NT
i=1 X̂i ,

involving claims X̂i which are related to the Xi of the original loss LT . To be more
precise, L̂T will be the effective loss covered by the reinsurance company, whereas
LT is the loss quantity that activates the contract. Typical examples will be given in
Section 2.1. Once again, this is similar to the valuation of CDO tranches where the
recovery rate is often supposed to be a random variable of beta distribution with mean
40%, whereas the realized rate, often revealed only after the formal bankruptcy, does
not necessarily match this value.

In this paper, we provide an exact formula for (3) in terms of the building block
x �→ E [h(LT + x)] (or of a related quantity for the more general situation (3), see
(11) for a precise statement). This goal will be achieved by using Malliavin calcu-
lus available for jump processes. Before turning to the exposition of the model, we
emphasize that this methodology goes beyond the analysis of pricing and finds appli-
cation in the computation of the expected shortfall of contingent claims in the realm
of risk measures for instance. Indeed, the expected shortfall is a useful risk measure,
that takes into account the size of the expected loss above the value at risk. Formally
it is defined as

ESα(−LT ) = E [−LT |−LT > V@Rα(−LT )] , α ∈ (0, 1).

As it is well known, the expected shortfall coincides with Average Value at Risk
(AV@R), that is

ESα(−LT ) = AV@R(−LT ) := 1

1 − α

∫ 1

α

V@Rs(−LT )ds,

if and only if P[−LT ≤ q+
−LT

(t)] = t , t ∈ (0, 1), where q+
−LT

(t) denotes the quan-
tile of level t of −LT (see Section 2.2.2 for a precise definition). However, already in
the trivial example where the size claims Xi are constant and equal to 1, this property
fails as LT = NT is a Poisson random variable which exhibits a discontinuous distri-
bution function. However, our approach gives an alternative explicit computation of
E
[
LT 1{LT <β}

]
and thus of ESα(−LT ) as

ESα(−LT ) = −E
[
LT 1{LT <β}

]

P(LT < β)
, β := −V@Rα(−LT ).

We conclude this section with some comments about the modeling of the claims
Xi and X̂i . In the classic Cramer–Lundberg model, the claims are independent and
identically distributed (i.i.d.) and, in addition, independent of the counting process
N which is an inhomogeneous Poisson process. In this work, we consider a doubly
stochastic Poisson process N and we allow dependency between the size of the
claims, their arrivals, and the intensity of N. In particular, we do not assume a
Markovian setting. The impact of certain dependence structures on the stop-loss pre-
mium is studied in the reinsurance literature, such as in Albers (1999), Denuit et al.
(2001), or De Lourdes Centeno (2005), but those works usually assume depen-
dency between the successive claim sizes and the arrival intervals. Nevertheless, in
the ruin theory literature, some contributions already propose explicit dependencies
among inter-arrival times and the claim sizes, such as Albrecher and Boxma (2004),
Boudreault et al. (2006), and related works. A general framework of dependencies
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is proposed by Albrecher et al. (2011) in which the dependence arises via mixing
through a so-called frailty parameter. Recently, Albrecher et al. (The single server
queue with mixing dependencies, submitted) extend duality results that relate sur-
vival and ruin probabilities in the insurance risk model to waiting time distributions
in the ”corresponding” queueing model. The risk processes have a counterpart in the
workload models of queueing theory, and a similar mixing dependencies structure is
considered in a queueing context. In a similar way, in the credit risk modeling we can
also suppose that the recovery rate depends on the underlying default intensity such
as in Bakshi et al. (2006).

This paper proposes a general framework of dependencies: we do not assume a
Markovian setting, nor specify explicit dependencies among inter-arrival times and
the claim sizes. Besides, our framework extends the mixing approach of Albrecher et
al. (2011) and (Albrecher et al.: The single server queue with mixing dependencies,
submitted) by allowing a non-exchangeable family of random variables for the claims
amounts. In particular, the distribution of the claim arriving at time τi may depend on
the random cumulative intensity along the time interval [0, τi ]: this situation cannot
be handled by the mixing method over a frailty parameter of i.i.d. sequences, and
new computation techniques are needed. The one we propose here relies onMalliavin
computation in order to provide a decomposition formula into a building block.

In contrast with Malliavin calculus in a Gaussian framework, one may consider
different types of Malliavin derivatives operators with associated integration by parts
formulae (see Privault (2009) for a description of several Malliavin derivatives on
the Poisson space) on the Poisson space. For instance, one can design a differen-
tial calculus with respect to the jump times of the counting process. However, for
our analysis we choose to consider an alternative Malliavin calculus involving the
so-called difference operator (as presented in Picard (1996a,b) which allows us to
perform explicit computations in our setting. For instance, the Malliavin derivative
of key quantities for our approach, such as the terminal loss, reduces to comparing
the original terminal loss with a perturbation of it consisting of an adjunction of a
jump at a deterministic time. The computation of this derivative is explicit as seen in
Lemma 3.5. In addition, this algebra is very natural in the context of insurance risk
management as the Malliavin derivative translates in a probabilistic language the fact
that one needs to analyse the impact of a new sinister on the overall terminal loss in
order to get a better understanding of the risk structure of the loss process. Before
going further, we would like to stress that the aforementioned structural account of
the loss process provided by the Malliavin derivative calls for a precise description
of the probability space on which the Cox process is defined. Surprisingly, it appears
that very few explicit and complete descriptions are presented in the literature. As
a consequence, we propose in Section 3.1 a construction of the Cox process which
makes the use of the Malliavin derivative transparent. As far as we know, albeit quite
natural, this explicit construction of the Cox process using a time change is new.

We proceed as follows. In Section 2 we describe our model for the loss process
and present the insurance contracts for which we will propose a pricing formula. The
latter will be stated and proved as Theorem 3.6 in Section 3. Particular cases of this
result for several types of contracts in insurance are also given in this section. Finally,
explicit examples are presented in Section 4.
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2 Model setup

In this section, we describe the loss process and the associated reinsurance contracts
we will study. Throughout this paper, T will denote a positive finite real number
which represents the final horizon time.

2.1 The loss process

We begin by introducing the loss process L := (Lt )t∈[0,T ] where the size of claims
and their arrival times are correlated. Let (Nt )t∈[0,T ] be a Cox process (also called
a doubly stochastic Poisson process) with random intensity (λt )t∈[0,T ], whose jump
times, denoted by (τi )i∈N∗ , model the arrival times of the claims. We suppose that
the claim size Xi depends on both the cumulated intensity defined by �t := ∫ t0 λsds
and the claim arrival time τi . Moreover, it will also depend on some random variable
εi where we suppose that (εi )i∈N∗ is a sequence of positive i.i.d. random variables
independent of the Cox process N. More precisely, the loss is given by

Lt :=
Nt∑

i=1

Xi e
−κ(t−τi ), with Xi := f (τi , �τi , εi ), t ∈ [0, T ], (4)

where κ is the discounting factor and f : R
3+ → R+ is a bounded deterministic

function. We provide several examples below.

Example 2.1

1. In classic ruin theory, the claim size is often supposed to be independent of the
arrival and the intensity process. In this case, we have f (t, 
, x) = x.

2. In the second example, we suppose that the dependence of f on the exogenous
factor ε is linear and the linear coefficient is a function of the cumulated intensity
� rescaled by time, i.e., �t

t , which stands for some mean level of the intensity.
For instance, let

f (t, 
, x) =
√




t
x .

In this example, if εi follows an exponential distribution with parameter 1,
then Xi = f (τi , �τi , εi ) follows an exponential distribution with parameter√

τi
�τi

conditionally to the vector (τi , �τi ).

2.1.1 Generalized loss process

We can also consider a more general case where the realized claim sizes (Xi )i∈N∗
are not exactly the ones that are computed to activate the reinsurance contract. More
precisely, assume that in addition to the factors (εi )i∈N∗ , there exists a family of i.i.d.
positive random variables (ϑi )i∈N∗ which may depend on the random variables εi ’s.
Let g : R4+ → R+ be a deterministic bounded function. We can define a modified
cumulative loss process as
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L̂ t :=
Nt∑

i=1

g(τi , �τi , εi , ϑi )e
−κ(t−τi ), t ∈ [0, T ]. (5)

More precisely, although the insurance contract is triggered by the loss process L,
the compensation amount can depend on some other exogenous factors (ϑi )i∈N∗ .
This would mean, for instance, that the amounts ϑi ’s are much lower than the εi ’s. A
typical example is given by the housing insurance market on east coast of the United
States of America. Indeed, this region is seasonally exposed to hurricanes of different
magnitudes. Most of the damage impacts the houses of the insured who may as well
buy contracts on other belongings, such as cars, which are much less valuable. After a
hurricane episode, the reinsurance stop-loss contract will be activated on the basis of
the total damages LT on the houses (which are represented by the claims εi ), whereas
the effective damages L̂T will also include all other insured belongings (which would
be modeled by the ϑi ). In the special case where the function g does not depend on
the fourth variable, the general loss L̂ t reduces to the standard loss defined in (4). We
give below some examples of the joint distribution (εi , ϑi ).

Example 2.2

1. The first natural case is that εi and ϑi are independent random variables.
For example, each of them can follow an exponential distribution (or Erlang
distribution) with different positive parameters θ1 and θ2.

2. We can introduce dependence between εi and ϑi by using the mixing method in
Albrecher et al. (2011). Let εi and ϑi follow Pareto marginal distributions and
a dependence structure according to a Clayton copula, respectively (according
to Example 2.3 in Albrecher et al. (2011), this can be achieved by mixing the
two Pareto marginal distributions where the mixing parameter follows a Gamma
distribution).

3. Case of explicit dependence : let εi follow a Pareto distribution and ϑi follow a
Weibull distribution with form or scaling parameter depending of εi .

2.2 Reinsurance contracts and related quantities

2.2.1 Generalized stop-loss contrats

In the introduction, we considered the stop-loss contract whose payoff is given by
�(LT ) where � has been defined in (1) and corresponds to a call spread, that is, the
difference of two call functions. Our approach allows us to go beyond the case of the
stop-loss contract. Now, consider a contract where the reinsurance company pays

�̃(LT , L̂T ) =
⎧
⎨

⎩

0, if LT ≤ K
L̂T − K , if K ≤ LT ≤ M
M − K , if LT ≥ M

, (6)

with L̂T defined in (5) if the a priori loss LT exceeds some amount K or belongs to
some interval [K , M]. Then, the price of such a contract is :

E

[
L̂T 1{LT >K }

]
− KP [LT ∈ [K , M]] + (M − K )P [LT ≥ M] . (7)
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2.2.2 Expected shortfall

The expected shortfall is a useful risk measure which takes into account the size of
the expected loss above the value at risk. We recall the expected shortfall with level
α as

ESα(−LT ) = E [−LT |−LT > V@Rα(−LT )] , α ∈ (0, 1),

where the definition of V@R is

V@Rα(X) = −q+
X (α) = q−

−X (1 − α)

with
q+
X (t) = inf{x |P[X ≤ x] > t} = sup{x |P[X < x] ≤ t}

q−
X (t) = sup{x |P[X < x] < t} = inf{x |P[X ≤ x] ≥ t}.

It is well known that ESα(X) is equal to AV@R(X) := 1
1−α

∫ 1
α
V@Rs(X)ds

if and only if P[X ≤ q+
X (t)] = t , t ∈ (0, 1), which, in particular, is satisfied if

the distribution function of X is continuous (see, e.g., [Hans and Schied (2011)
Relation (4.38)]). However, the latter property already fails in the case where the size
claims Xi are constant. Thus, one cannot rely on the above relation and must directly
compute the conditional expectation ESα(−LT ).

We will provide an alternative expression for the expected shortfall. We denote by
β := −V@Rα(−LT ), then

ESα(−LT ) = −E
[
LT 1{LT <β}

]

P[LT < β] ,

where
β = q+

−LT
(α) = inf{x |P[LT > −x] > α.}

Once again the key term to compute turns out to be the expectation
E
[
LT 1{LT <β}

]
.

2.3 General payoffs

More generally, we are interested in computing quantities of the form

E

[
L̂T h (LT )

]
,

where h : R+ → R+ is a Borelian map with E[h(LT )] < ∞. Since, in our model,
the counting process is given by a Cox process with stochastic intensity, the building
block becomes the following mapping by using the conditional expectation

x �→ E
[
h(LT + x)|(λt )t∈[0,T ]

]
.

Note that the examples of Section 2.2.1 (respectively, of Section 2.2.2) are con-
tained in this setting by choosing h := 1[K ,M] for some −∞ ≤ K < M ≤ +∞
(respectively, h := 1[−∞,β] and L̂T = LT ).

Our approach calls for a short stochastic analysis review that we present in the
next section.
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3 The pricing formulae using Malliavin calculus

In this section, we establish our main pricing formulae by using Malliavin calculus.
To this end, we first make precise the Poisson space associated with the loss process.
Then, we provide basic tools for Malliavin calculus.

3.1 Construction of the Poisson space

3.1.1 The counting process and intensity process

We recall that the loss process involves the Cox process (Nt )t∈[0,T ] with its inten-
sity and jump times, and the family of random variables (εi )i∈N∗ . We begin by
introducing a general counting process which will be useful for the construction of
(Nt )t∈[0,T ] on a suitable space. Let 
1 be the set of (finite or infinite) strictly increas-
ing sequences in ]0, +∞[ . We define a continuous-time stochastic process C on the
set 
1 as

∀ (t, ω1) ∈ [0, +∞[×
1, Ct (ω1) := card([0, t] ∩ ω1).

Let FC = (
F
C
t

)
be the filtration generated by the process C, namely, FC

t :=
σ(Cs, s ≤ t). It is known that there exists a unique probability measure P1 on(

1,F

C∞
)
under which the process C is a Poisson process of intensity 1, that is, for

every (s, t) ∈ [0, +∞)2, with s < t , the random variable Ct − Cs is independent of
FC
s and Poisson distributed with parameter t − s.
We then consider a probability space (
2,A,P2) on which is defined :

(i) A positive stochastic process (λt )t∈[0,T ] such that
∫ T

0
λsds < +∞, P2 - a.s.,

(ii) A collection of i.i.d. R2+-valued bounded random variables (εi , ϑi )i∈N∗ and

a R
2+-random variable (ε, ϑ) independent from (εi , ϑi )i∈N∗ , with (ε, ϑ)

L=
(ε1, ϑ1) (where

L= stands for the equality of probability distributions). We set
μ the law of the pair (ε, ϑ).

Assumption 3.1 We assume that λ is independent of (εi , ϑi )i∈N∗ , and of (ε, ϑ).

F
λ = (

F
λ
t

)
t∈[0,T ] be the right-continuous complete filtration generated by the

stochastic process λ. Moreover, we set

�t :=
∫ t

0
λsds, t ∈ [0, T ]. (8)

Let Fε,ϑ be the σ -algebra generated by (εi )i∈N∗ and (ϑi )i∈N∗ . Note that only
(εi )i∈N∗ and (ϑi )i∈N∗ will be involved in the loss process and ε and ϑ are just inde-
pendent copies which play an auxiliary role. We denote by μ the probability law of
the pair (εi , ϑi ).
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Assumption 3.2 Throughout this paper, we assume that : �T < +∞, P2 − a.s..

3.1.2 The doubly stochastic Poisson process

We now consider the product space (
 := 
1 × 
2,F := FC∞ ⊗A,P := P1 ⊗ P2).
By abuse of notation, any random variable Y on 
1 can be considered as a random
variable on 
 which sends ω = (ω1, ω2) to Y (ω1). Similarly, any random variable
Z on 
2 can be considered as a random variable on 
 which sends ω = (ω1, ω2) to
Z(ω2).

We define a counting process N := (Nt )t∈[0,T ] on 
 by using a time change as

[Nt (ω1, ω2) := C�t (ω2)(ω1) = C∫ t
0 λs (ω2)ds

(ω1), t ∈ [0, T ], (ω1, ω2) ∈ 
.

Note that for any t, Nt is an FC∞ ⊗ F
λ
T -measurable random variable. Moreover,

for any fixed ω2 in 
2, Nt (·, ω2) is an inhomogeneous Poisson process on 
1 with

intensity t �→ λt (ω2) with respect to the filtration
(
FC

�t (ω2)

)

t∈[0,T ] which reads as
1

E

[
eiu(Nt−Ns )

∣∣∣Fλ
s

]
= E

[
exp

(
(eiu − 1)

∫ t

s
λr dr

)∣∣∣∣F
λ
s

]
, 0 ≤ s < t ≤ T,

where E denotes the expectation with respect to the measure P. For a process
(ut )t∈[0,T ] such that :
⎧
⎪⎪⎨

⎪⎪⎩

ut is F − measurable , t ∈ [0, T ],
for a.e. ω2 ∈ 
2, (ut (·, ω2))t∈[0,T ] is

(
FC

�t (ω2)

)

t∈[0,T ] − predictable ,

E

[∫ T
0 |ut |dt

]
< +∞,

(9)

we denote by
(∫ T

0 usdNs

)
(ω1, ω2) the Lebesgue–Stieltjes integral of u(ω1, ω2)

against the measure N (ω1, ω2).
For any i ∈ N, we let τi be the i-th jump time of the process N, namely,

∀ ω = (ω1, ω2) ∈ 
, τi (ω) := inf{t > 0, Nt = C�t (ω2)(ω1) ≥ i},
with the convention τ0 = 0.

3.2 The Malliavin integration by parts formula

We can now state the Malliavin integration by parts formula on the product space.
For any t ∈ [0, T ], and ω1 ∈ 
1 which is of finite length or has a limit greater than
t, we define ω1 ∪ {t} in 
1 as the increasing sequence whose underlying set is the
union of ω1 and t. The effect of this operator is to add a jump at time t to the Poisson
process N. Finally, for ω := (ω1, ω2) ∈ 
, and t ∈ [0, T ], we set

ω ∪ {t} := (ω1 ∪ {t}, ω2),

1By a slight abuse of notation, E
[·∣∣Fλ

T

] := E
[·∣∣FC

0 ⊗ Fλ
T

]
and E

[·∣∣Fλ
T ∨ Fε,ϑ

] :=
E
[·∣∣FC

0 ⊗ (Fλ
T ∨ Fε,ϑ

)]
.
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provided that ω1 ∪ {t} is well defined. The following lemma is a direct extension of
the one presented, for example, in [Picard (1996a), Corollaire 5] or (1996b) (see also
Privault (2009)).

Lemma 3.3 Let u : 
 × [0, T ] → R be a stochastic process which enjoys (9),
and F : 
 → R be a bounded F-measurable random variable. Then the stochastic
process (ω, t) �→ F(ω ∪ {t}) is well-defined P ⊗ dt-a.e. and

E

[
F
∫ T

0
usdNs

∣∣∣∣F
λ
T ∨ Fε,ϑ

]
= E

[∫ T

0
ut F(· ∪ {t})λt dt

∣∣∣∣F
λ
T ∨ Fε,ϑ

]
. (10)

Remark 3.4 As mentioned, the proof of this result can be found in (Picard
1996a,b); (Privault 2009) and so we do not reproduce it here. However, to give a bit
of intuition, let us just mention that this formula extends the classical integration by
parts formula for a Poisson distribution N with parameter λ > 0 on N, namely, that

∀g : N → N, E[Ng(N )] = λE[g(N + 1)].

3.3 The main result

In this section, we present our main result concerning the computation of the quantity

E

[
L̂T h (LT )

]
,

where h : R+ → R+ is a Borelian map with E[h(LT )] < ∞ and where LT and L̂T ,
respectively, are defined in (4) and (5). We set

ϕh
λ(x) := E

[
h(LT + x)|Fλ

T

]
, x ∈ R+. (11)

It might be surprising at first glance to consider the conditional expectation given
λ in the building block. In fact, as the intensity λ of N is random, it can be compared
to a Black–Scholes model with independent stochastic volatility. In that context,
the Black–Scholes formula would be written in terms of the conditional law of the
terminal value of the stock given the volatility (which would simply be a lognor-
mal distribution with variance given by the volatility). Recall that for the insurance
contract presented in Section 2.2.1, h := 1[K ,M] and thus ϕh

λ coincides with the
conditional distribution function of LT .

Before turning to the statement and the proof of the main result, note that

L̂T =
∫ T

0
ẐsdNs, (12)

with

Ẑs :=
+∞∑

i=1

g(s, �s, εi , ϑi )e
−κ(T−s)1(τi−1,τi ](s), s ∈ [0, T ]. (13)

Moreover, on the set {�s N = 0}, one has
Ẑs = g(s, �s, ε1+Ns , ϑ1+Ns )e

−κ(T−s). (14)
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As � is a continuous process, Ẑ satisfies Relation (9), provided that

E

[∫ T
0 |Ẑt |dt

]
< +∞.

We start our analysis with the following lemma.

Lemma 3.5 Under Assumptions 3.1 and 3.2, for any t ∈ [0, T ], it holds that
(
g(t, �t , ε1+Nt , ϑ1+Nt )e

−κ(T−t), LT (· ∪ {t}), λt
) L=

(
g(t, �t , ε, ϑ)e−κ(T−t), LT + f (t, �t , ε)e

−κ(T−t), λt

)
.

Proof We set

Lt :=
Nt∑

i=1

f (τi , �τi , εi )e
−κ(T−τi ),

L+
t :=

Nt∑

i=1

f (τi , �τi , εi+1)e
−κ(T−τi ), t ∈ [0, T ].

We first make precise the value of LT (ω ∪ {t}) for a fixed element t ∈ (0, T ) and
for ω := (ω1, ω2) in 
 such that t �∈ ω1 and ω1 ∪ {t} are well defined (the set of
such ω has probability 1). By definition, we have that

LT (ω ∪ {t}) =
NT (ω∪{t})∑

i=1

f (τi (ω ∪ {t}), �τi (ω∪{t})(ω2), εi (ω2))e
−κ(T−τi (ω∪{t}))

Note that one has

∀ i ∈ N, τi (ω ∪ {t}) =
⎧
⎨

⎩

τi (ω), if i ≤ Nt (ω),

t, if i = Nt (ω) + 1
τi−1(ω), if i > Nt (ω) + 1.

Therefore, we can write LT (ω ∪ {t}) as the sum of three terms as follows

LT (ω ∪ {t}) =
Nt (ω)∑

i=1

f (τi (ω1), �τi (ω)(ω2), εi (ω2))e
−κ(T−τi (ω1))

+ f (t, �t (ω2), ε1+Nt (ω)(ω2))e
−κ(T−t)

+
NT (ω)+1∑

i=Nt (ω)+2

f (τi−1(ω1), �τi−1(ω)(ω2), εi (ω2))e
−κ(T−τi−1(ω1)).

(15)
By definition, the first term in the sum is just Lt (ω). Moreover, by a change of

index, we can write the third term as

NT (ω)∑

i=Nt (ω)+1

f (τi (ω), �τi (ω)(ω2), εi+1(ω2))e
−κ(T−τi (ω)) = L+

T (ω) − L+
t (ω). (16)
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Therefore, by (15), the following equality holds almost surely

f (t, �t , ε1+Nt )e
−κ(T−t) = (LT (· ∪ {t}) − Lt ) − (L+

T − L+
t ). (17)

Moreover, from the decomposition formula (15), we also observe that ε1+Nt is
independent of Lt + L+

T − L+
t given F

C∞ ⊗ F
λ
T . In addition, by Assumption 3.1,

the conditional law of ε1+Nt given F
C∞ ⊗ F

λ
T identifies with the law of ε since Fε is

independent of Fλ
T .

We now compute the characteristic functions of the two random vectors of interest.
Let χ be the characteristic function of the random vector

(
g(t, �t , ε1+Nt , ϑ1+Nt )e

−κ(T−t), LT (· ∪ {t}), λt
)

.

Let (u1, u2, u3) ∈ R
3. One has

χ(u1, u2, u3) := E

[
e
iu1g

(
t,�t ,ε1+Nt ,ϑ1+Nt

)
e−κ(T−t)+iu2LT (·∪{t})+iu3λt

]

= E

[
eiu3λt e

iu1g
(
t,�t ,ε1+Nt ,ϑ1+Nt

)
e−κ(T−t)+iu2

(
Lt+e−κ(T−t)( f

(
t,�t ,ε1+Nt

)
+L+

T −L+
t

)]

= E

[
eiu3λt e

iu2

(
Lt+L+

T −L+
t

)

e
iu2e

−κ(T−t) f
(
t,�t ,ε1+Nt

)

e
iu1e

−κ(T−t)g
(
t,�t ,ε1+Nt ,ϑ1+Nt

)]
.

Since ε1+Nt and ϑ1+Nt are independent of Lt + L+
T − L+

t given F
C∞ ⊗ F

λ
T , we

obtain that

χ(u1, u2, u3) =E

[
eiu3λt eiu2e

−κ(T−t) f (t,�t ,ε)eiu1e
−κ(T−t)g(t,�t ,ε,ϑ)

E

[
eiμ2

(
Lt+L+

T −L+
t
) ∣∣∣FC∞ ⊗ F

λ
T

]]
,

where we also use the fact that the probability law of (ε1+Nt , ϑ1+Nt ) given F
C∞ ⊗F

λ
T

coincides with μ (which, we recall, is the probability law of (ε, ϑ)). Moreover, from
(16), we observe that Lt +L+

T −L+
t has the same law as LT conditioned on FC∞⊗F

λ
T .

Therefore, we obtain

χ(u1, u2, u3) = E

[
eiu3λt eiu2e

−κ(T−t) f (t,�t ,ε)eiu1e
−κ(T−t)g(t,�t ,ε,ϑ)eiu2LT

]

= E

[
eiu2e

−κ(T−t) f (t,�t ,ε)eiu1
(
e−κ(T−t)g(t,�t ,ε,ϑ)+LT

)
eiu3λt

]
,

which shows that χ coincides with the characteristic function of the vector

(
g(t, �t , ε, ϑ)e−κ(T−t), LT + f (t, �t , ε)e

−κ(T−t), λt

)
.

The lemma is thus proved.

We now turn to the statement and the proof of the main result of this paper.
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Theorem 3.6 Recall that (εi , ϑi )i∈N∗ and (ε, ϑ) are i.i.d. with common law μ.
Under Assumptions 3.1 and 3.2, it holds that

E

[
L̂T h (LT )

]

=
∫ T

0
e−κ(T−t)

E

[
g(t, �t , ε, ϑ) λt ϕ

h
λ

(
f (t, �t , ε)e

−κ(T−t)
)]

dt

=
∫

R
2+

∫ T

0
e−κ(T−t)

E

[
g(t, �t , x, y) λt ϕ

h
λ

(
f (t, �t , x)e

−κ(T−t)
)]

μ(dx, dy) dt,

(18)
where L̂T is defined in (5) and the mapping ϕh

λ(x) := E
[
h(LT + x)|Fλ

T

]
is defined

in (11).

Proof Assumptions 3.1 and 3.2 are in force. Using relation (12) and the integration
by parts formula on the Poisson space (10), it holds that

E

[
L̂T h (LT )

]
= E

[
E

[
L̂T h (LT )

∣∣∣Fε,ϑ ∨ Fλ
T

]]

= E

[
E

[
h (LT )

∫ T

0
ZtdNt

∣∣∣∣F
ε,ϑ ∨ Fλ

T

]]

= E

[∫ T

0
Zth (LT (· ∪ {t})) λt dt

]

By Relation (14) and the fact that the set {�t N �= 0} is negligeable, we obtain

E

[
L̂T h (LT )

]
= E

[∫ T

0
g(t, �t , ε1+Nt , ϑ1+Nt )e

−κ(T−t)h (LT (· ∪ {t})) λt dt

]

=
∫ T

0
E

[
g(�t , ε1+Nt , ϑ1+Nt )e

−κ(T−t)h (LT (· ∪ {t})) λt

]
dt.

Finally, by Lemma 3.5, the above formula leads to

E
[
LT 1{LT ∈[K ,M]}

]=
∫ T

0
E

[
g(t, �t , ε, ϑ)e−κ(T−t)h

(
LT + f (t, �t , ε)e

−κ(T−t)
)
λt

]
dt.

Since ε is independent of Fλ
T ∨ F

ε, one has
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E

[
h
(
LT + f (�t , ε)e

−κ(T−t)
) ∣∣∣Fλ

T ∨ σ(ε)
]

= ϕh
λ

(
f (t, �t , ε)e

−κ(T−t)
)

.

Therefore,

E

[
L̂T h (LT )

]
=
∫ T

0
E

[
g(t, �t , ε, ε)e

−κ(T−t)λtϕ
h
λ

(
f (t, �t , ε)e

−κ(T−t),

f (t, �t , ε)e
−κ(T−t)

)]
dt

=
∫

R
2+

∫ T

0
e−κ(T−t)

E

[
g(t, �t , x, y) λt ϕ

h
λ

(
f (t, �t , x)e

−κ(T−t)
)]

dt μ(dx, dy),

as asserted by the theorem.

Remark 3.7

1. Note that from Equality (18), it is clear that our approach only requires the
knowledge of the conditional law of LT given λ (via the mapping ϕλ) and not the
one of the pair (LT , L̂T ). This seems to be particularly useful for the numerical
approximation of the aforementioned expectation.

2. The theorem above provides us the relation of the pricing formula with respect
to the intensity process (λt )t≥0 of the counting process.

Relation (18) allows us to give a lower (respectively, upper) bound on the price if
h is assumed to be convex (respectively, concave).

Corollary 3.8 Under the assumptions of Theorem 3.6, it holds that :

(i) If h is convex, then

E

[
L̂T h (LT )

]

≥
∫

R
2+

∫ T

0
e−κ(T−t)

E

[
g(t, �t , x, y) λt h

(
E
[
LT
∣∣Fλ

T

]+ f (t, �t , x)e
−κ(T−t)

)]

μ(dx, dy) dt;
(i) If h is concave, then

E

[
L̂T h (LT )

]

≤
∫

R
2+

∫ T

0
e−κ(T−t)

E

[
g(t, �t , x, y) λt h

(
E
[
LT
∣∣Fλ

T

]+ f (t, �t , x)e
−κ(T−t)

)]

μ(dx, dy) dt.

Proof We prove (i) as statement (ii) follows the same line. As h is assumed to be
convex, Jensen’s inequality implies that

ϕh
λ(x) ≥ h

(
E
[
LT
∣∣Fλ

T

]+ x
)
, x ∈ R+.

The result is then obtained by plugging this estimate in Relation (18).
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4 Applications and examples

In this section, we provide some examples of the application of our main result, in
particular, for the (generalized) stop-loss contract. Such explicit computations will
also be useful for the CDO tranches and expected shortfall risk measure.

4.1 Computation of the building block

We first focus on the building block ϕh
λ (defined in (11)) when h := 1{[K ,M]} :

ϕλ(x) := ϕh
λ(x) = P

[
LT ∈ [K − x, M − x]|Fλ

T

]
, x ∈ R+

which corresponds to the payoff of a stop-loss contract or a CDO tranche. Let Fε :=
σ(εi , i ∈ N

∗). For any i ∈ N
∗, we set Xi := f (τi , �τi , εi ) and x in R+, we have

P
[
LT ∈ [K − x, M − x]

∣∣Fλ
T ∨ Fε

]

= P

[ NT∑

i=1

Xie
κτi ∈

[
(K − x)eκT , (M − x)eκT

] ∣∣∣∣F
λ
T ∨ Fε

]

=
+∞∑

k=1

E

[
k∑

i=1

Xie
κτi ∈

[
(K − x)eκT , (M − x)eκT

] ∣∣∣∣NT = k,Fλ
T ∨ Fε

]

N[NT = k|Fλ
T ]

=
+∞∑

k=1

e− ∫ T0 λsds
∫

Sk

N

[
k∑

i=1

Xie
κti ∈

[
(K − x)eκT , (M − x)eκT

] ∣∣∣∣F
λ
T ∨ Fε

]

λt1dt1 · · · λtk dtk

=
+∞∑

k=1

e− ∫ T0 λsds
∫

Sk

∫

R
k+
1{∑k

i=1 xi e
κti ∈[(K−x)eκT ,(M−x)eκT ]

}

L|λ
X(1:k) (dx1, . . . , dxk)λt1dt1 · · · λtk dtk,

where Sk := {0 < t1 < · · · < tk ≤ T }, X(1:k) := (X1, . . . , Xk) and

L|λ
X(1:k) (dx1, . . . , dxk) := N

[
X(1:k) ∈ (dx1, . . . , dxk)

∣∣∣∣F
λ
T

]
.

It just remains to compute the joint distribution of the claims X(1:k) in different
situations. In particular, we provide an explicit example below.

Model on εi : We assume that (εi )i∈N∗ are i.i.d. random variables with Pareto
distributions P(αε, βε) with (αε, βε) ∈ (R∗+)2 whose density ψε is defined as

ψε(z) =
(

βε

α
βε
ε

zβε+1

)
1{z≥αε}dz.
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Choosing f (t, 
, x) :=
√



t x , the conditional distribution L

|λ
X(1:k) (dx1, . . . , dxk) in

Relation (4.1) becomes

L|λ
X(1:k) (dx1, . . . , dxk)

= N

[(√
�t1

t1
ε1, · · · ,

√
�tk

tk
εk

)
∈ (dx1, . . . , dxk)

∣∣∣∣F
λ
T

]

=
k∏

i=1

N

[√
�ti

ti
εi ∈ dxi

∣∣∣∣F
λ
T

]

=
k∏

i=1

⎛

⎜⎝βε

(√
ti

�ti
αε

)βε

zβε+1
i

⎞

⎟⎠ 1{
zi≥
√

ti
�ti

αε

}dzi .

The next step to compute the right side of Relation (18) is to specify the joint law
of (ε1, ϑ1).

Model on (εi , ϑi ) : We assume that (εi , ϑi )i∈N∗ are i.i.d. random vectors, with
marginal distributions following Pareto distributions P(αε, βε) and P(αϑ, βϑ) (for a
set of parameters αε, βε, αϑ, βϑ > 0). The dependence structure is modeled through
a Clayton copula with parameter θ > 0. We recall that the Clayton copula is

C(u, v) := (u−θ + v−θ − 1
)− 1

θ and the density c of the Clayton copula is given by

c(u, v) := (1 + θ)(uv)−1−θ
(
u−θ + v−θ − 1

)− 1
θ
−2

.

The joint distribution of (ε1, ϑ1) is then given by

μ(dx, dy) = c (Fε(x), Fϑ(y)) ψε(x)ψϑ(y)dxdy,

with Fε(z) =
(
1 − α

βε
ε

zβε

)
and Fϑ(z) =

(
1 − α

βϑ
ϑ

zβϑ

)
.

Joint law of (λt , �t ): The final step in the computation of Relation (18) is to make
precise the joint law of (λt , �t ). More precisely, we need to compute

E

[
g(t, �t , x, y) λt ϕλ

(
K − f (t, �t , x)e

−κ(T−t), M − f (t, �t , x)e
−κ(T−t)

)]
.

Assume the intensity process (λt )t∈[0,T ] is given by

λt = λ0 exp(2βWt )

where W is a Brownian motion, and β a constant (nonnull). Then, the cumulative
intensity is

�t = λ0

∫ t

0
exp(2βWs)ds.

By Borodin and Salminen [page 169], the joint law of (�t ,Wt ) is given by

P (�t ∈ dv,Wt ∈ dz) = λ0|β|
2v

exp

(
−λ0(1 + e2βz)

2β2v

)
iβ2t/2

(
λ0eβz

β2v

)
1{v>0}dvdz

where the function
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iy(z) = ze
π2
4y

π
√

πy

∫ ∞

0
exp

(
−zch(x) − x2

4y

)
sh(x) sin

(
πx

2y

)
dx .

The expectation term in the right-hand side of Eq. 18 is then

E

[
g(t, �t , x, y) λt ϕλ

(
K − f (t, �t , x)e

−κ(T−t), M − f (t, �t , x)e
−κ(T−t)

)]

=
∫

R2
g(t, v, x, y)ϕλ

(
K −

√
v

t
xe−κ(T−t), M −

√
v

t
xe−κ(T−t)

)
λ20|β|
2v

e2βz

exp

(
−λ0(1 + e2βz)

2β2v

)
iβ2t/2

(
λ0eβz

β2v

)
1{v>0}dvdz.

4.2 A Black–Scholes-type formula for generalized stop-loss contracts in the
Cramer–Lundberg

As an illustration, we conclude our analysis by specifying our result in the classic
Cramer–Lundberg model. More precisely, we assume that the Cox process is a homo-
geneous Poisson process with constant intensity λ0 > 0 and set h := 1[K ,M], with
K < M . The building block reduces to the distribution function

ϕλ0(x) := ϕh
λ0

(x) = N [LT ∈ [K − x, M − x]] , x ∈ R+. (19)

In that case, we omit the dependency on� for the mappings f and g (as�t = tλ0).

Corollary 4.1 Under the assumptions of Theorem 3.6, it holds that

E

[
L̂T 1LT ∈[K ,M]

]
=λ0

∫ T

0

∫

R
2+
e−κ(T−t)g(t, x, y) ϕλ0

(
f (t, x)e−κ(T−t)

)
μ(dx, dy)dt,

(recall that μ := L(ε,ϑ)).

If we assume, furthermore, that f (t, x) = g(t, x, y) = x and κ = 0, then the
loss process LT corresponds to the cumulated loss of the classic Cramer–Lundberg
model. In this context, much of the literature deals with the computation of the ruin
probability and related quantities, such as the discounted penalty function at ruin
(Gerber–Shiu function). Others papers are concerned with the pricing of stop-loss
contracts. The pricing relies on the computation of a term of the form

∫ M
K ydF(y)

with F being the cumulative distribution function of the loss process LT , and the
discussion in the literature mainly focuses on the derivation of the compound distri-
bution function F (usually calculated recursively, using the Panjer recursion formula
and numerical methods/approximations) cf. Panjer (1981) and Gerber (1982). Our
Malliavin approach provides another formula which reads as

E

[
L̂T 1LT ∈[K ,M]

]
= λ0T

∫

R+
x (F(M − x) − F(K − x))μ(dx). (20)
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Note that our result coincides with the one obtained in Gerber (1982). Indeed, in
a general setting, if one translates Formula (6) of Gerber (1982) (as μ is constrained
to have a finite support in N in Gerber (1982)), the distribution F satisfies

ydF(y) = λ0T
∫

R+
xdF(y − x)μ(dx),

from which one deduces that
∫ M

K
ydF(y) = λ0T

∫ M

K

∫

R+
xμ(dx)dF(y − x)

= λ0T
∫

R+
x
∫ M

K
dF(y − x)μ(dx)

= λ0T
∫

R+
x(F(K − x) − F(M − x))μ(dx),

which is exactly (20).

5 Conclusion

This paper provides an original and efficient formula for the pricing of stop loss con-
tracts. This formula is efficient since the computation is easy once the building block
is calculated. It allows one to handle general dependencies frameworks that have not
been studied in the literature, in particular, between the claims and the intensity pro-
cesses. Note that for the standard Cramer–Lundberg model, our formula coincides
with the evaluation formula of Gerber (1982). To obtain this formula, we rigorously
modeled the dependencies setting of a doubly stochastic Poisson process through a
time change, and used Malliavin calculus machinery.
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