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Abstract In this paper, a new numerical scheme for a class of coupled forward-
backward stochastic differential equations (FBSDESs) is proposed by using branching
particle systems in a random environment. First, by the four step scheme, we intro-
duce a partial differential Eq. (PDE) used to represent the solution of the FBSDE
system. Then, infinite and finite particle systems are constructed to obtain the approx-
imate solution of the PDE. The location and weight of each particle are governed by
stochastic differential equations derived from the FBSDE system. Finally, a branch-
ing particle system is established to define the approximate solution of the FBSDE
system. The branching mechanism of each particle depends on the path of the parti-
cle itself during its short lifetime € = n~>%, where 7 is the number of initial particles
and o < % is a fixed parameter. The convergence of the scheme and its rate of
convergence are obtained.
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Introduction

Since the work of Pardoux and Peng (1990), forward-backward stochastic differential
equations (FBSDEs) have been extensively studied and have found important appli-
cations in many fields, including finance, risk measure, stochastic control and so on
(cf. Cvitani¢ and Ma (1996); El Karoui et al. (1997); Ma and Yong (1999); Xiong
and Zhou (2007), and Yong and Zhou (1999)). For instance, we consider a risk min-
imizing economic management problem. x(-) denotes an economic quantity, which
can be interpreted as cash-balance, wealth and an intrinsic value in different fields.
Suppose that x(-) is governed by

dxV (1) = (A()x () + B()v())dt + (C@)v(t) + D())dW (),
x¥(0) = xo,

where v(-) is the control strategy of a policymaker and A(-), B(:), C(-), D(:) are
bounded and deterministic. Let p(xV(1)) denote the risk of the economic quan-
tity x¥(1), where the risk measure is convex in the sense of Follmer and Schied
(1999). Recently, Rosazza Gianin (2006) established the relationship between the
risk measure p(-) and the g-expectation 8;,) (see Peng (2010)):

p(x"(1)) = E-x"(1)]
where the functional g : [0, 1] x R x R x R — xR satisfies g(¢, y,0) = 0 and is
the generator of the following BSDE:

{ —dy®(t) = g(t, yU(1), 2°(1))dt — zV(1)dW (1),
Y1) = —x¥(1).

Thus, the objective of the policymaker is equivalent to minimizing

1 1
J(()) =E"[y"(0) + 5/0 () — M(1))*dt]

subject to the FBSDE.

In previous work, Ma et al. (1994) studied the solvability of the adapted solu-
tion to the FBSDES, in particular, they designed a direct scheme, called the four step
scheme to solve the FBSDEs explicitly. However, in most cases, it is often diffi-
cult to get the solution in closed form so it is important to study numerical methods
for solving FBSDEs. Following the earlier works of Bally (1997) and Douglas et
al. (1996), various efforts have been made to find efficient numerical schemes for
FBSDEs. In the decoupled forward-backward case, these include the PDE method
in the Markovian case (e.g., Chevance (1997)), random walk approximations (e.g.,
Briand et al. (2001) and Ma et al. (2002)), Malliavin calculus and Monte-Carlo
method (e.g., Zhang (2004), Ma and Zhang (2005), and Bouchard and Touzi (2004))
and so on. However, in the case of coupled FBSDEs, to our knowledge, there are
very few works in the literature, such as Milstein and Tretyakov (2006), Delarue and
Menozzi (2006), Cvitani¢ and Zhang (2005), and Ma et al. (2008).
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In this paper, we are interested in investigating a new numerical scheme for a
class of coupled FBSDEs by a branching particle system approximation. There are
various studies about particle system representations for stochastic partial differ-
ential equations with application to filtering since the pioneering work of Crisan
and Lyons (1997) and Del Moral (1996). Here we list a few which are closely
related to the present work: Kurtz and Xiong (1999); Kurtz and Xiong (2001),
Crisan (2002), Xiong (2008), Liu and Xiong (2013), Crisan and Xiong (2014).

Particle system representations for FBSDEs are studied in Henry-Labordere
et al. (2014) when the forward part is independent of the backward one, namely, the
decoupled case. In this case, the approximation of the solution of a PDE and that
of the forward SDE can be constructed separately. However, for the coupled case,
the construction of the branching particle system must consider both the PDE and
the SDE in a delicate manner. This paper can be regarded as a first attempt in this
direction. One of the main advantages of this method is the circumventing of the
computation of conditional expectations via regression methods.

Let (Q,,F. {Fozi=r,P) be a filtered complete probability space, where
{Fi}o<t<Tr denotes the natural filtration generated by a standard Brownian motion
{Wilo<i<t, F = Fr and T > O is a fixed time horizon. We consider the following
FBSDE in the fixed duration [0, T']:

dXt)=b(X @), Y (@)dt+o (X (@)dW(),
—dY () =g(X@),Y(1t), Z(t)dt — Z(t)dW (1), (1.1)
X(0) =x, ¥Y(T) = f(X(T)),

where b : RY x R — R?, o : R — R ¢ : R? x Rk x RF*! — R and
f:RY - Rk,

In what follows, we make the following assumption:

(A1) The generator g has the following form: for z = (z1, - - - , 77),

I
g(x,y,2) =Clx,y)y+ Y Dj(x, )z,
j=1
and b(x, y),o(x), g(x,y,2), f(x), C(x,y) and D(x, y) are all bounded and Lip-
schitz continuous maps with bounded partial derivatives up to order 2. Furthermore,

the matrix oo™ is uniformly positive definite, and the function f is integrable. Here
o™ denote the transpose of the matrix o.

Remark 1.1 For the generators associated with g-expectation, the condition

g(y, 0) = 0 (we omit the variable t) together with an extra differentiability condition,
we have

12
gy, ) =Y D;(y,2)zj.
j=1

The case of D;(y, z) depending on z is more technically demanding in the con-
struction of the branching particle systems. We hope to return to this case in a future
work.
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Relying on the idea of the four step scheme, we know that the solution to the above
FBSDE has the relation Y (t) = u(t, X(t)), Z(t) = 0u (t, X (t)) o (X(¢)), where
u(t, x) is a solution to the PDE

{ D) — (e, x) + C (e, u (8, x) u (t, x) + le=1 Dj(x,u (t, x))dyu (1,x) 0j (x)
u(T, x) = f(x),

and
| d
L = 3 Z a,'jaxl.,xj + Zb,’&xi,
ij=1 i=1
with ¢;; = (O‘O’T)l.j, o = (o1, --- ,07) and b; being the ith coordinate of b.

ForO <t < T,assume v (¢t,x) = u (T —t, x). Note that

{ D = Lo, x) + C (x, v () v (1, x) + Y2y Dy, v (8, x)d, (£, x) 0 (x) (12)
v (0, x) = f(x).

Remark 1.2 According to Proposition 4.2 in Ma et al. (1994), the above nonlinear
parabolic partial differential equation has a unique solution.

The nonlinear parabolic partial differential Eq. (1.2) can be written as:

d d
Bv(att,x) =% 3 i)y v (1, 3) + Y by (x,v) By, 01, ) + C (x,v) v (2, )

i,j=1 i=1

1
+ ZDj(x, V) (1, x) 0 (X)

j=1
v (0, x) =f(x).
(1.3)
By rules of derivative, we have
av(t, x)
at
1 ¢ 1 ¢
=5 2 Oy (@ (O, 0) = 2 7 B @i (O, )
ij=1 i,j=1
1 d d 1 d d
= 0ayij ()00 (1, %) = 5 3 Y By (1) v (7, )
i=1j=1 j=li=1
d d
+ D0 (biGx, V)V (8, 0) = Y B bi (x, V) v (£, X)
i=1 i=1
d d
+ 3 0 (Bite v (00) = 3 8 i (1, 0) 0 (0,2 + € (6,0 (1, X)) v (1, )
i=1 i=1
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d

d
1 -
= 5 2 dny (@ @v@,0) = Yo ((Z dx;aij (x) — bi(x, v) — Dj (x, v))v <t,x))

QU

i,j=I i=1 j=1

+ (c (x, v(t, x))—Zax,b, (x,v) — Zax,D (x,v) + = Z A, xla,,(x)) v (t, x)

i=1 i=1 ljl
d

d
= Z i (aij(x)v(t, x)) Z Oy, ([5, (x,v)v(t, x)) +c(x,v(t,x)v(t,x)

l\)

where

E(x,v(t,x)=C (x, v(t, x))—Zax,b (x,v) — Zax,D (x,v) + = Z Oy x, i (X),

i=1 i=1 l/l

d
bi (x, v(t, X)) = Y 9, (x) — bi(x, v) — Dj (x,v),
j=1
and

I
Di (x,v) = ) Dj (x,v(t, x)) 07 (x) .
j=1
Comparing this equation with (1.1) in Kurtz and Xiong (1999) formally, we now
construct an infinite particle system {X;(¢) : i € N} with locations in R? and time
varying weights {A;(¢) : i € N} governed by the following equations: for 0 < ¢ <
T,i=1,2,---

dX;(t) = b(X; (1), v(t, Xi (1)))dt + o (X; (1))d B (1),
dA;(1) = Ai(DE (X;(1), v (1, X; (1)) dt (1.4)
V@) =limy oo x X Gy Aj(0)8x,0)

with i.i.d initial random sequence {(X;(0), A;(0)), i € N} taking values in R? x R,
where {B;(t), i € N} are independent standard Brownian motions and

(V(0), ) = /Rdw)f(x)dx, for any ¢ € C2(RY),

where Cl% (R?) denotes the collection of all bounded functions with bounded continu-
ous derivatives up to order 2. In Theorem 2.2, we will show that the density function
of V(t) determined by the above infinite particle system is v(#, x), which is exactly
the solution to PDE (1.2).

The rest of this paper is organized as follows. In “Particle system approximation”
Section, we construct infinite and finite particle systems to respectively get the
approximate solution of the PDE and prove the convergent results. “Branching part-
icle system approximation” Section is devoted to the formulation of a branching parti-
cle system to represent the approximate solution of the PDE. In “Numerical solution”
Section, we present the numerical solution of the FBSDE system and its error bound.
Finally, “Conclusion” Section concludes the paper.
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Particle system approximation

For two integrable functions vy, vy, we define their distance

p (1, v) = f 1 () — v2.00)dx.
Rd

Now we construct infinite particle systems governed by the following stochastic
differential equations: for any fixed § > 0,1t € (0,T],i =1,2,---

dX3(t) = b (X3(t), v’ (t, X3 (1)) dt + o (X2 (1))d B; (1),
dAS(t) = AX(1)¢ (X2 (1), vP (1, X2 (1)) dt 2.1
V(1. %) = limy o0 53 X5y AG(Dps(x — X5(1))

where p; is the heat kernel given by

() = @8y~ Sexp (L
ps(x) = Q2n exp TR

In this paper we regard K with or without subscript as a constant which assumes
different values at different places. By the boundedness of the coefficient assumed in
(A1), we can verify the following condition:

@

7 2 2, = 2 2
b )| + 1o + et )l < K2
We also make the following condition on the initial data:
an {(Ai(()), Xi(0)), (A‘j (0), X‘j (0))} is an i.i.d sequence and

2 2 § 2 ) 2
E[A/OF +E X 0P +E[450)| +E[x}0)| <.

Theorem 2.1 Assume that {A2(0), X¢ (0} is i.i.d and independent of { B;}. Under
(Al), for every ¢ € Ci(Rd), we have
(v2(2.). ¢) = E (A} () Ts9p (X} (1))

and

t t
(v, ), ¢) = (v (0, -),¢>)+/ (v° (s, -),Lva¢>>ds+/ (v°(s, ), Lp)ds, (2.2)
0 0
where
Ts¢(x) = /Rd ps(x — y)¢(y)dy,

d
1
Le(0) =5 3 aij(0)d ;6 (),
i,j=1
and
d ~
Lyp(x) =Y bi(x, v)dy ¢ (x) + E(x, v)$ (x),

i=1

while 15,- is the ith coordinator ofl; and a;j = (00%);j.
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Proof By the law of large numbers, we have
1 n
8 : 8 8 8 B
(), ¢) = lim — le A;OT3p (X} (1) = E (A7) Ts (X7 (1)) -
i=

Applying Itd’s formula to (2.1),

d (A Tse (X2(1)) = AXDE(X2(1), (2, X2 (1)) Toop (X2 (1)) dt
+ATOV T3 (X 0) o (X2 O) B (O+b(X] (1), v 1, X} (1))l

1 n
+5A ) ,-,2 B, Ts9 (X7 () aij (X2 (1)) dt

ALy Ty (X2(1)) dt + AP () LT s¢ (X2 (1)) dt
+AX OV Ts¢ (X2 (1)) o (X (1))dB; (1), (2.3)

where V* denotes the transpose of the gradient operator V.
By the boundedness of ¢, it is easy to show that there is a constant K such that

E sup A;-S (t)2 =supE sup A? (t)2 <K < o0. 2.4

0<t<T i 0<t<T
Hence, the martingale term on the right hand side of (2.3) can be estimated as
follows:
2

E sup
0<t<T

n t
%Z f ANV T5g (X](9)) 0 (X (5)d Bi(s)
i=1 70

n T
:—2 ZIE/ A2(5)* | V* T (X2 (5)) a(x;‘(s))\2 ds
i=1 70

4 2 22 8 12
< = || VTs¢ |5 K°TE sup Aj (1) — O0asn — oo.
n 0<t<T
Integrating and averaging both sides of (2.3), we see that (2.2) holds. O

Theorem 2.2 The solution to particle system (1.4) is unique and its density
function is the solution to partial differential equation (1.3).

Proof Firstly, we know for any fixedi = 1,2, - - -, the SDE
dX;(t) = b(X; (1), v(t, X;(1)))dt + o (X;(1))dB; (1)

has a unique solution because of the Lipschitz condition on the coefficients. Since
we know the partial differential Eq. (1.3) has a unique solution, then

dAi(t) = Aj(1)c (X; (1), v (1, X;(2)))dt
is solvable. The i.i.d property of {(A;(0), X;(0))} and independence of {B;},i =
1,2, --- ensures that V (¢) is well-defined.
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Following similar steps as in Theorem 2.1, for any ¢ € Cbz(Rd) with compact
support, it is easy to get
t

t
(V). ¢) = (V(O),¢)+/O (V(S),Lv<s)¢)ds+/0 (V(s), Lp)ds.  (2.5)

Since (2.5) is a parabolic PDE satisfying the uniform elliptic condition, by stan-
dard PDE theory, it is well-known that V (¢) is absolutely continuous with respect to
the Lebesgue measure. We denote the density function by v(, x). Then,

f d(x)v(t, x)dx = (V(0), ¢) /ds/ Zax ¢(x)b,(x v(s, x))v(s, x)dx
—|—/ dsf ¢ (x,v(s, x))p(x)v(s, x)dx
0 R4
t 1 d
+/0 ds /Rd Eijz::l Oy @ (V)aij (X)v(s, x)dx
‘ d
=/ ¢(x)v(0,x)dx—/ ds/ 3 oy, [B,»(x,u(s,x))u(s,x)]¢(x)dx
R4 0 RY ST
t
+/ ds/ ¢ (x,v(s, x))p(x)v(s, x)dx
0 R4

t 1 d
+/0 ds /Rd Eijz::l Oy [aij (O)v(s, x)] P (X)dx.

Therefore

v(t, x) = v(0, x)—i—/ ¢ (x,v(s, x))v(s, x)ds—i—/ Z i x; a,](x)v(s x)]

i,j=1

/ Zaxl b (x, v(s, X)v(s, x)]

In differentlal form, we have

du(t, x)
= = ¢ (x,v(t, ) v(t, x) + = ”ZI By, [aij ()]
d
=Y ay [Bix v 0y 0
i=1
i.e. v(t, x) is the solution to Eq. (1.3). O]

Remark 2.1 For any ¢ € Cl% (RY), it is obvious that
(v(®), ¢) =E (Ai()¢ (Xi (1)),

wherei =1,2,---
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Next we introduce a finite particle system to get the approximation solution: for
fixed§ > 0,1 € (0, T],

dX[°(6) = bX[0 (1), v™0 (1, X[ (0))dt + o (X[ (1) d Bi (1),
dAT (1) = AP (1)é (X;l’a(t), w8 (s, x;’~5(r))) dt (2.6)
vt x) = 4 I AT () ps(x — X0 (1)),

where i = 1,2, ---n. The initial values are given as X?"S(O) = X;(0), A?‘S(O) =

A; (0).
Similar to (2.4), we can prove that

supE sup A?"S (1)? < K < o0. 2.7
i 0=<t=<T
Let
. I ¢ 8 12 8 N2 —1/2
To.s :1nf=t: ;;(Ai 0)* + A (1) ) > 8712l
i=
It follows from (2.4) and (2.7), we have

P(tas < T) < 2K~/3. (2.8)
For simplicity, take notation
M (1) = log A7 (1)

and
M3 (1) = log A2 (1).
Then /
M (1) = / ¢ (X000, (s, X0 (s) ) ds
0
and

t
M (1) = / & (X2 (s), v (s, X2(5))) ds.
0

Proposition 2.1 Under conditions (I) and (II), we have

Ks 1
E sup M () — M) (1)]> < =%

thATn,S
and

Ks. 1
E sup |X]°() = X)) < ===

t<T Atys

Proof For simplicity of notation, we assume that 7, s > 7. Let

1 n
50 = D A Ops(x = XG(1)
j=1

and
n

1
~n,8 _ ) )
) = —— ,_21 ,;i AS(1)ps(x — X5(0)).
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Then

Esup |M"°(r) — M} (r)[?

r<t

13
0

Note that

( X (), v s, X"'S(s))> & (X3(5), v° (s, X?(s)))‘zds

E[e (X120, 0", X1 5)) = € (X0, 0, xf(s)))‘2

IA

2R ‘E (X;’*‘S(s), V19 (s, X;"B(s))) — (X2 (s), 0™ (s, Xf(s)))‘z

F2E [& (X2 (), v (s, X2 (5))) — & (X2 (s), v (s, X2 o))

IA

X" (s) — X?(s)‘z
FOE [& (X2 (), v (s, X2 (5))) — & (X2 (s), 7™ (s, X2 (9)) |
+6E ‘5 (X3(s), "0 (s, X2 (5))) — (X? (), 5% (s. X;?(s))) ‘2

+6E ‘5 (xf(s), 776 X0 60) = & (X6, 0, xf(s)))‘2

IA

X3 - xbw|

2
o [k | - Z A" (5) — A‘S(s)‘ y 76 X?"S(s)—Xf-(s)‘
ns* j=1 250

2
K 1 1 G
+6E (55 (n — lAi (s) + pyo— ,2:1 Aj(s)))

+6E ‘5 (Xf(s), 53 (s, X2 (s))) — & (X2 (). 0P, X?(s)))‘z

< 2K%E |X](s) —xf(s)‘2
K4
12; ZE‘MM(S) M‘S(S)‘ 5d+1 ZE n(S X‘S(s)‘ 6
+6E ’5 (xf(s), 76, X2)) =& (X2, 07, X?(s)))‘ , 2.9)

where the last inequality follows from Cauchy-Schwarz inequality and the fact that
fort,s > T,

1 n
- ZAB-(S)Z < s 12,
n J -

j=1
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On the other hand,

E sup

r<t

X0 - x|

! 2
5121@/ e SO ONE
0

t
+3E / B .0 s X0 () — BxE(0). 0 s X[ ds
0 (2.10)

t
<6(3¢ +2)JE/ {KZ X" (s) — X?(s)‘z
0

2K N[ ns s 2 2K N ons PNE
+WZ\MJ- () = M) +W—HZ)X, ()= X3 +

[ (x20. 526, x20) — B (K} ). s, X2 )| Jas.
Let
gn(t) = Esup ‘Ml."’s(r) — les(r)‘2
r<t
and
fu(t) = Esup ‘X?"S(r) — X?(r)(z.
r<t

‘b(X (), 9% (s, Xs(s))) b (X0 (5), 0% (s, Xs(s»)(
2
KE|——

IA

Z AG(s)ps(X](5) — X3 () — lim —ZA%s)m(xs(s) X%(s))

J Lj#i

2
n

> (A0 ) = X56) — EAY)ps (X)) = X3(5))

j=1j#i

= KE

n—

K n
T m-1? 3 E(AJ)ps(XE () — X§()) — EAS(5) ps (X2 (s) — X3 (5)))’
J=1j#i
K
= B (A - X6))
_K
8d(n —1)

IA

EAS(s)2. .11

Similarly,

B¢ (X!, 57 (5. X! ))) = ¢ (X}), 07, Xf*(s)))(2 < %EA‘}(S)Z.
Then,

! n n 1
gn(t)ffo {Kq <fn( )+ —— & (s) + %) + sz}ds (2.12)

) Springer Open
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and (s) | fu(s)
gns n($
+5d+1

t
fo= [ 1k (fn< )+
Adding (2.12) and (2.13), fort < T, we have

) + Ky }ds (2.13)

1 ! K
gn(®) + fu(t) < Ks (1 + W)/O (gn(s) + fu(s))ds + ﬁ

By Gronwall’s inequality, we have

K K5(1+ )t _ &

gn(t) + fu(t) < 5d n

Then, we have
2
Esup M (1) — M;S(t)‘ < 28T

t<T
and

n,s S 2
E sup | X (t)—xi(t)) < Ber
t<T

Lemma 2.1 For 0 <t < T, we have

K
Ep (v(1), "4 (1)) < % + K7 /6.

Proof
ACORI0)

dx

1 n 1 n
LA PG = X @) = =~ 3 T A0 pa(x = X30)
j=1 Jj=1

IA

/Rd %Xn:(]A_r;’a(t) — A8 0| ps (x= X2 0)) + 45 0| ps (x= X7 0) = ps (x = X50))| ) dx
j=1

< %i /R ) (A;f’a(t) v Ai(r)) {’M;l’a(t) - M_‘;(t)‘ Ps (x X" 5(;))
j=1

+[ps (x = X272 @) = ps (x = X30) |} ax

% Z (A’;."S(z) v A (t)) {‘M;”a(t) - Mj(z)‘
j=1

J'l’ ; ( (t)\/A‘j.(t))ZJii‘M}”‘s(z)—Mf(z)‘z
j=1

J=1

1o 1 & K2
J”, (A (t)VA‘S(l))J 257

=1 ]_

IA

n,8
X" (t)—X;?(t)‘}

IA

X" () - X° (t)’ (2.14)

By the boundedness of ¢, we have
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- 2
E sup p ("), 5"r) <K ( ) (&) + fut) = 2L @.15)
r<tAtps n
Then,
Ep (v"° (@), 9"° (1) = Ep (v° ), 3"° (1)) Ly <, + Ep (v (1), "2 (1)) L1z,
Ks 1
< + K7+/8,
\/_
where the last inequality follows from (2.8), (2.15) and the fact that p < 2. O]

Lemma 2.2 For0 <t < T, we have Ep( (1), v (t)) K

Sl

Proof
p (700, 0))

=E /]Rd _,ZlA (I)PS(X—X‘S(I))— hm —ZAS(I)p(S(X—XS(t)) dx
2\ 2

1 n

- > A% (0 ps(x = X5(0)) — ]E(Ai(t)pg(x — X?(r))) dx

J=1

A
T
8

&

1

E(A1()ps(x = X}0) ~ E (4} 0pstx ~ x?(r))))2) dx

:|,_.

1

J (E ((Ais(t))2 pix — xf(t))))f dx

<fRdf a2 pA(x ‘Y)ezlx'g(a,y)dadyy —
AM fRd /Rd a’pi(x — y)elg(a, y)dadydx>é (/1;@ e_2|xdx>i
/Rd/ ? 2'y'g(a,y)dady>é

A‘S(t) 2 lbs (z)\)

Il IA IA
Sl- Sl-T
\ S—

IA IA

A

Sl §|5 Slx Sl

where g is the joint probability density of (A‘f ®,X ‘]3 ®)). O

Combining Lemmas 2.1 and 2.2, we get the approximation of v to v® as § &
being fixed and n — oo. The next lemma estimates the distance between v® and We
adapt the argument of Crisan and Xiong (Crisan and Xiong 2014) to the current setup.
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Lemma 2.3 There exists a constant C3(T), such that

sup v’ (t, x) < C3(T)
xeRd

Proof By the convolution form of (2.2), we have
t
Vit x) = / Py, )v°(0, y)dy +/ / Vo (s, y)Lys pr—s (v, x)dyds
R4 0 R
= / pi(y, ) (0, y)dy (2.16)
R4

t
[ 6 0 DT+ 80,0 0,3 ) dvs,

where p;(y, x) is the transition density of the reflecting diffusion with generator L.
By Theorem 6.4.5 in Friedman (1975), there are constants K1, K> such that

~(@+1)/2) ¥ — P
[Vypi—s(v, 0] < Ki(t = 5) exp(—Ko——— ) =

mql—s(x - Y)

Plugging it to (2.16), it follows from the boundedness of v3(0, 1), I;, ¢, we get

¢ 1
5 5 (xr — ‘
v (t,x) < Cy +/0 fRd v°(s, y)C2 (qu_g(x y) +pz_3(y,x)) dyds.

Define a; = sup v (¢, x). Then

xeRd
! 1
a<C+C + Dagds.
t = L1 2/(; (m ) s
By an extended Gronwall’s inequality, we get
a; < C3(T).
O
Lemma 2.4 There exists a constant C4(T), such that
sup [Vl (z, x)| < Ca(T)
xeRd
Proof Note that
20t . St ). 9:
dfiv’ ), f) 4’8 f) .17
dt dt
= — (26, ), L@ ) = (072, ), Lo (3 )
d
= (0,0°(t, ), Lf + Ly f) +Z<a v, ), L f ) (va(t,-),l:vsf>,
j=1
where

d
i 1
Llf= —3 > diajion f.
k=1
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and

QU

d
1 = ~
=-3 > " 0najkdif + Y 0ibj (. v) + 8;EC, v).
Py =l

Recalling that p;(y, x) is the transition density of the reflecting diffusion with
generator L, the convolution form of (2.17) is as follows:

t
3l (1, x) = / pe(y, x)9;v°(0, y)dy +/ / 3iv’ (s, V)L s pi—s (v, x)dyds
R4 S
d : ‘
+Z[) /];d 3jv5(S, y)L{pt—s(y,X)dyds
=1

t
+ / / V(5 Y)Eys prs (v, ¥)dlyds. (2.18)
0 JRA

By Theorem 6.4.5 in Friedman (1975), there are constants K1, K, such that

Ix — y|?

P > = qu—s(x - ).

[Vypis(y. x)| < Ki(t — )" @D/ D exp <—K
Therefore,

IV (1, )| < Cs(T)+/ / IV’ (s, ¥)ICe y)dyds

// v (s, y)C7

Define b, = sup [|Vve(z, x)|. Then

xeRd
! 1
b, < Cg(T C 1) byds.
t_8()+6/(;<m+)ss

By an extended Gronwall’s inequality, we get

1
\/—ql S(-x

QI s(x — y)dyds.

sup |Vl (z, x)| < Ca(T).
xeR4
As a consequence of Lemmas 2.3 and 2.4, we have the following lemma.
Lemma 2.5 There exists a constant K, such that Ep (v‘s (1), v(t)) < Kr V.
Proof We define 7° = v® — v. Then
d _ _
E <U6(t,.x), f> = (vs(ts -x)a Lf) + (Us(tv ')a Lv5f> - (U(tvx)v LUf) (219)
= (0°(t, ), Lf) + (0°(t,x), Lo f) + (V°(t, ), Lys f — Lo f).
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Therefore,

d
e (0°(s, %), Tr—s f) = (0° (5, %), Lo Tr—s f) + (v°(5, %), Lys Tr—s f — Lo T—s f),

t
([0, ). f) = (Ts — D) v(0.2), T, f) = /0 (05 x). Lo Ty f)ds
t
+f (v‘s(s, x), LysTi—sf — LUT,_Sf)ds
0

By the convolution form of the above equation, we get

vt y) = T (Ts — 1) v(0, y) (2.20)

t
[P0 (T =B w0 e, 065,00 prosr = ) dxds
0 JRd
—|—f / Ve (s, x) [V*p,,s(x —-y) (l; (x, V3 (s, x)) —b(x, v(s, x)))
0 JRd
+ (E (x, va(s, x)) — ¢ (x, v(s, x))) Pr—s(x — y)] dxds.
Set ¢, (y) = |9°(¢, y)|, then
a(y) = / [pr+s(x — y) — pr(x — y)|v(0, x)dx
+KT/ / Cs(x)< =41 s(x = y) + pr— s(x—y)>dxds
KTx/g/ q:(x — y)v(0, x)dx
K7 / f e () ( g1y (=) pis 6 y)) dxds. (2.21)

Set ¢; = [pa ¢:(y)dy, then

irkr [ (-2
Krvé+ K +1)cd
Bk [ )

IA

¢ <
A s/

§KT~/3+KT/0 (m+1)(KT\/3+KT/O< S_r+1>crdr>ds

< KrvV/§ + Ky fo tc,dr, (2.22)

here we used, in the first inequality, the integrability condition on v(0, -) = f.
Applying Gronwall’s inequality, we get

¢ < KT\/E

Then, we have

Ep (v*(1), v(1)) < K7+/6.
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Remark 2.2 Set ¢° = sup ¢, (y), similarly, we have
yeRd

C?O < KT\/S.

Theorem 2.3 The distance of v°(t) to v(t) is bounded by % + K7+/8.

Proof Combining the conclusions from Lemmas 2.1, 2.2 and 2.5, we get

K
Ep (v (1), v (1)) < % + Kr+/6.

Branching particle system approximation

Note that K7 of Theorem 2.3 above is of exponential growth as 7 increases, and
hence, the error of the approximation grows exponentially fast. To avoid this draw-
back of the numerical scheme, we introduce a branching particle system to modify
the weights of the particles at the time-discretization steps.

Firstly, we rewrite our infinite particle systems governed by the following stochas-
tic differential equations: for any fixed § > 0, € (0, T],i =1,2,---

dX%(t) = B5(X3(t), V3 ()dt + o (XS (1))d B; (1),
dAS(t) = AS()® (X2 (1), V(1)) dt 3.1
VOr) = Timy—oo 3 iy A D8y,

where

55(x,V)=5<x,f ps(x—y)de>,
Rd

Es(x,V)=15<x,/ pa(x—y)de),
]Rd
and

(V2(0), ) =/ & (x) f(x)dx, for any ¢ € CF(RY).
R4
For V; € M(R?), i = 1, 2, the Wasserstein metric is given by

p1 (Vi, V2) = sup{| (V1, ¢) — (V2, ¢} | : ¢ € C},
where
C={p:90eB,Vp € By, Lp € By}
and
Bi=1{¢: |¢(x) —¢()| < Ix — |, [p(x)] < 1,Vx, y € R?}.
Now, we are ready to construct the branching particle system. For fixed § > 0, ¢ =

n~2* 0 < a < I, there are n particles initially, each with weight 1 at locations
X;“S’E(O), i =1,2,---,n which are i.i.d random variables in R?. Assume the time

interval is [0, T] and N* = [%] which is the largest integer not greater than %
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Define €(t) = je for je <t < (j + 1)e. In the time interval [je, (j + 1)¢€), j < N¥,
there are m;’ particles alive and their locations and weights are determined as follows:
fori =1,2,--- ,m;f,
X1 (1) = XIO€ (je) + B (X;“"E (e V”"“(je)) (t—je
+o (X" (je) (B; (1) — B; (je))
PP (eut) = exple (X (o), Ve (o)) r = jo)),

where the initial values are defined as: X" (0) = x, A">€(0,0) = 1, m!l = n.

At the end of the interval, the ith particle branches into & ]‘ 4 offsprings such that

the conditional expectation and the conditional variance given the information prior
to the branching satisfy

B (&) 1F sne) = AP Ge, G+ D e)
and
Var (%‘]i'+1|]:(j+1)ef> = V,’:+1,
where y} 4 is arbitrary and
AP (e, (G + Do) = expld® (X1 (o), Vi< (o)) e).

o . . l
To minimize y §IRE take

[A—
i1 =

where {x} = x — [x] is the fraction of x. In this case, we have

Vi = (A1 Ge G+ Do) (1-1A1 (e, (G + D ell).
Now we define the unnormalized approximate filter as following:

(V2 (0), ¢) = fRd f ) (x)dx
Vnﬁe(t)_ Zl | X"‘Se(t)’ 1fje<t<(J+1)€

AP (e, (j+ 1 e)
AP (e, G+ Do)

with probability 1 — {A”“S‘E (e, (G +1) e)} ,

+1  with probability { AT (e, (]+1)e)}

A preliminary identity
Following similar steps as in Theorem 2.1, for every ¢ € Cg (]Rd), we have
t t
V0. ) = (v 0.0+ [ (V2o Luso)ds + [ V2. Lg)as

where [:Vé(s) is defined as

d
Lysp(x) = DB (x, V2(5)dy, ¢ (x) + & (x, V2 ()9 (x).

i=1
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Now we imitate section 6.5 of Xiong (2008) to define a backward PDE for s €
[0, ¢] such that

W = —Lipy — Lys ¥
7s s Ly Vs 32
{1//:=¢>. G2

AVe(n).¥)
T’ =0.

Note that 1y depends on ¢. Simple calculations show that
Recall that g* denote the transpose of a vector or matrix. Let

t t
08 = exp (\/—1/ grdB(s) + l/ Igslzds)
& 0 2Jo

and

t t
éf(r) =exp (x/—_I/ grdB(s) + %/ Igslzds> .

Theorem 3.1 For je <t < (j + )¢, j < N*, forany ¥,,r € [je, t] satisfying
Eq. (3.2), we have

Y XD A Geot) =Yg (X]0 o))

t
= / VAU (XI2€ (1)o (X2 () AT (e, 1) dB(r)
J

€

! . ~ n,8.€ ;. n.8.€ /+ = n,8,e (33)
+/j6 v (xi 5, (r)) AT (e r) [c‘S (Xi b€ ey, v (]6)) & (xl. 5 (r),vﬁ(r))]dr

! ~ n,8,e n,s,e 7 n,8,e
+L ATBE e, r) VH g (X1 () [b5 (X,- b€y, Yo (r)) B (Xl. ) (r),Va(r))]dr.

Proof For simplicity of notation, we only consider the case when j = 0 and denote
A%€(0, 1) and X7*€ (1) by A(r) and X (1).

By the independent increments of B(¢) and note that 95 is a martingale, we know
forr € [0, ¢t] and x € R”",

05 ()

05 (r)

E (v 08 OIF ) = ¥ OE (B ()IF) = v (0)E ( |fr) =¥, ()

and

E (1) A ()07 OIF) = A0 OE (007 (IF, )

= A0S (MY (x). G4
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By Itd’s formula, we have
A (X)) = (=L (X)) = Lys oy b (X)) dr
VY (X () [0 (X)) dBG) + B (X (), V() dr |

d
+% Z Oy x; Yr (X (r))aij (X (r))dr

i,j=1
= =& (X)), Vo) Y (X (r))dr
FVEY (X () [55 (X, V() — B (X(r), VB(r))] dr
+V Y (X (r))o (X (r)) dB(r).
Then
d [ XAn0E®]
= — & (X(), VE(") Yo (X (M)dr + VY (X (1)) [155 (X(r), V() — B° (X (r), V‘S(r))] dr
+ VY (X (M)o (X () A6 (rd B(r)
+ Y (X)) AE)E (X(0), V(0) 08 (r)dr + V=19 (X (1)) A0 (r)g}d B(r)
+ V=1V Y (X () 0 (X (r) AE, (r)grdr
=V Y, (X (1))a (X () A(r)6 (r)dB(r)
+ V1Y (X (M) A6 (r) g} d B(r)
+ VIV Y (X () (X (r)A)O (r)g)dr
+ Y (XA [ (X(0), V() — & (X(r), VP ()] 02 (r)dr
+ A VY (X (1) [15’S (X(r), V(r) =B (X (), Va(r))] O (r)dr.

By taking » = 0 and » = ¢ in (3.4), respectively, we have
E [ (XD AMOE O1F | ($o(X 0)6F (1)1 F0 )= (X ) ADBE (1)) =ro(X (0)).

Getting expectation on both sides,
E [ (X1)A®) = Yo X ) 6F (1) ]
= E[1i(X()AWBL (1) — Yo (X (0)]

t
= IE/ «/—lv*w,(X(r))a(X(r))A(r)Gf(r)gjdr
0
t
+E / Yr (X (M)A(r) [& (X(0), V0) — & (X(r), VP ()] 67 (r)dr
0

t
4B [ A0 U0 [ 001, Ve = B (X0, Vi) |6 rar
0
= P+ P+ P3.
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By Itd’s formula, we know

t
fo VY, (X (n)o (X () A(dB(r)62 (1)

t

t
= / \/—1V*wr(X(r))a(X(r))A(r)@f(r)g;kdr +f --dB(r),
0 0
fo Yr (X)AW@ [ (X ©0), V) — & (X (), VP ()] drof @)

t t
= f Yr (X (M)AQE) [ (X(0), V(0)) = & (X (), V()] 62 (rdr + / --dB(r),
0 0
and

t
/O AWV Y (XD [ X0, V) =B (X0), Vi) |dref )

t t
- f APV Y (X () [135 (X(r). V() — B (X(r), va(r>)]ef(r)dr+/ .. dB(r).
0 0

Then

t
P = E/O VAU (X (r)o (X(r), v (r, X (r)) A(dB(r)62 (1),

t
Py=F fo Yr (X (M)A(r) [& (X(0), V(0)) = E(X(r), v (r, X(r)] dro ) (1)
and
t
P; = IE/ APV Y (X (r)) [155 (X(r), V(r) = b (X (1), V‘S(r))] drof(1).
0

By Lemma 6.20 in Xiong (2008), the following equation holds:

Vi (X (1) A1) — Yo(X(0))
t
:/0 VY (X (r)o (X () A(r)d B(r)

t
+ /0 Yr (X () A@) [ (X(0), V(0)) — & (X (r), VP ()] dr
t
+ [ A0V o) [ ¢, ven - (xo. vie)]ar
0
Similarly, we know Eq. (3.3) holds. O
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Convergence of V'%¢(¢) to V4(¢) at any point ¢ € [0, T]

Proposition 3.1 For j = 1,2, --- , N*, there exists a constant K, such that

]Em’]1 < Kn.

Proof By the definition of m;?, we have

n
Jj—1

Em" =BE | > & Fje | =E| D AP = De. jo) | <Em"_,eXe.
=1 =1

n
m’;_ m

By induction, we have ]Em’]’ < Em?_zeﬂ“ <...< Em(’;eﬂ“ < nekT, O

Proposition 3.2 For j = 1,2, -+, N*, there exists a constant K, such that

Proof
" 2
2 e
I=1
mi_| l ’ .
=E Z(Ej) +2E ) (515/)
=1 1<y <h<m_,
" 1\2 I gl
— EE (&) 1Fje | +2EE| > (&]'eR) 17
i=1 1511<12§m;¥71
m;LI
=B Y (vl + 41 — Ve, jo?)

+2E ) (AZ’M((]'—1)6,j6)A72’6’€((j—l)e,je))

1<l <l2§m’;_|

m"

-1
<E i (1 +ezke> +oF Z o2Ke

=1 1511<12§rn7_|

2
n n 2Ke
< Em];l +E(mj71) e e,
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Leta; =K ( ) , by induction

aj < Kn—i—ezKeaj,] < Kn—i—eZKGKn—G—e“Keaj,z

< Kn (1 4 e2Ke 4 otKe Ly ez<j—1>1<e> 4 Q2iKey?

l_eZKej )
2jKe 2
< - -
< Kn | J2ke +e n
e —1
2KT 2
< Kn—— +e n
e2Ke_1
=<

K (n1+2a v nz) '

Lemma 3.1 For any t € [0, T], there exists a constant K, such that
Ep? (VP<(t), V5 (e(1))) < K (n—Z“ v n_l) .
Proof By the definition of measures, we have

lt/e] lt/el

o1 (V40 VI @) = sup| L D0 6 (X1 ) - by ¢ (X7 )

peC | T
K lt/el s s
< = Xn, € _ yh.o.€ ‘
< — X0 =X e
=1
Therefore
[t/E] s, N
Ep? (V"€ (1), V"< (e(t)) < = me X[ (1) — XJ e(em)\

[t/E]

= Z mwe]( RAOEP S (e(t))‘zlf[t/g]e_>

Ke
< (nz an+2a>
=7

=K (n_20‘ \/n_l).

Lemma 3.2 For anyt € [0, T], there exists a constant K, such that

Epi (V2 (1), VP (e(1))) < Krn™*.
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Proof Since
p1 (V2(0), Vo (e(1))) = sup [(V2(6). ) — (V° (e(@)) . 8)|
€
t

t
/ (V‘S(s),l:va(s)q§>ds+/ (Ve(s), Lg)ds
e(t) e(t)

= sup
¢peC

therefore
Epf (V2(1), VP (e(t)) < K7 (€)* = Krn™**.
O

In the following part, we first estimate the distance between V8.€(r) and VO(r) at
the subinterval endpoints, i.e. the case that t = Ne where N is a nonnegative integer
less or equal to N*. Then we discuss the convergence of V8€(r) to VO(r) at any
point ¢ € [0, T].

Let ¥5, 0 <5 < Ne be the solution to the PDE (3.2) with ¢ replaced by Ne. Note
that (V”"S*E(Ne), ¢N€> - (V”"S'G(O), lﬂo) can be written as a telescopic sum

N
Yo (vrieGie), vrie) = (VG = e, Yi-ne)) -
j=1

As Yne = ¢, we get
(VIOE(Ne), ¢) = (V™2€(0), vo)

N
= > (V< Ge) pje) = E (V") Yje) I Fje—))

j=1

E (V"2 €(je), Yje) [ Fje—) — (V4G — De), Y(i—-1ye))

=1L+ 1.

+
M=

Since

el e
E((V"'S’E(jé)ﬂ//jsﬂfjs):E(nzl/fje (x> Go)| ,E)

= (1 » e (X1 Go) |f,e) iZM 1 GO) AT = De. e,

n =1
then
N 1 m;l n,8,e ;. lm'y;_l nae née
I = Z n Vje (Xl ’ (JE)) - Z Ve ( (JG)) ((j — D, je)
j=1 I=1 =1

:i% ~ Vi <"‘“(Je))(§ — AP (( = De, 16))

=1

-
Il
—
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n
Jj—1

. e (4G AL (G- De, m——Zv«, ne (X7 ((j—l)e)))

S

Il
=
o~
S| =
3
\:

—_

= i% (vie (X175 o) AP (G = e, jo) = e (X7 (5 = D)) ).

=1

-
I
—_
—

Lemma 3.3 There exist a constant K such that E (I;)? < Kn—(1729),

Proof Note that
m’]tl
B Y wie (X124 o) (&) - 41 (= De, jo)
=1
m;'.fl
=E|E Y v (X[ Go) (& = 41" (G = De. jo)) 1Fje | =0,
=1

and for any j/ < j, we have

( Z Vie (X1 Go) (& — A1 ((j = e, je)

n

3 (e () (8 = (0= i) )
= E[E( Z Vie (X177 GO) (&) = A7 ((j = e jo))

<3y (i (7)) (&) = ar* (0= e, s E))) f"_}
=1
= v (0 (7)) (6 A (6 - e )
=1
- il Ve (Xln,a,e (j€)> (gj - A?’a’e ((j — De, je)) ‘}—je_j|
=1
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therefore,
N oM 2
s’ =2 (Y- Z Ve (X1 Go) (&) = A ((j = e, jo))
j=1" I=1
2
- iz 3 Z Vie (X[ Go)) (&) = A7 (G = De. jo))
- in Zw,e( X7 (o) (8 = A1 (G — e, jo))
p
N
< 2 2E ()
< Knj—_(l—Za)
O

Remark 3.1 To guarantee the convergence of V%€ (N¢) to V(N¢), we will only
consider 0 < o < % in the following paragraph.

Theorem 3.2 Foranyt € [0,T],8 > 0,e = n22 and 0 < o < 2, there exists a
constant Ks , such that ]E/ol2 (V”"s’é(t), V‘S(t)) < Kpn~ (1720 4 Kstn™ 20,

Proof From the Eq. (3.3), it is obvious that I can be separated into the sum of
three parts:

\.:

" (e (X0 G0)) 43 = D, jo) = g (X1 (GG = D)

1

~.
I
_
I
-

I
S

Wl

\..x

e (50 o (x1540) A7 = Deara i)
= [ frw (o) e (i)

1
n j—1De

U (XP240) AT = Ve ) [@ (X1 = D, VI (= De))

=& (X720, v

AP (G =De IV (K] O)B (X .V )5 (xp <.y )| ar
= D+ In + b3,

Il
M=

1

~.
+ I
——

where
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Z Z / o V*lﬁr nsf(r))a (Xl’l,é,e(r)> A?’B’G((j e r)dBi(r),

N
R s T
Jj=1 v 6
% [53 (X;l’é’é((j ~ De), ymo.€ (j — 1)6)) _ (X?’a’e(r), VS(r))] dr
and

N €
m=Y - 3 /(j AP = eV (X704

j—1De
< [B° (X<, Ve ) = B (X100, Vi) ) | dr

Naturally,

2

E(f)? —E(Z Z f LY w)e (X?ﬁ‘(r),)A;"‘*f((j—1>e,r)dem)
1 €

2

N
= HZEEC f(} lGV*%( ) o (X o ))A;”“((j—l)e,r)dB;(r))
== ]Z]IE Z/ 1>EV w, X;““( ))a2 (X;“‘“(r)) (A;"‘S'e((j - l)e,r))zdr

IA

K
n
n72 g ]Emj716
i

Kn~l.

IA

Now consider

& (X177 (G = Doy Ve (= D)) = & (X4, VA )|

< & (XP (G = Doy v (= Do) =& (X)), Vo (= Do) )|
+[& (X2 0, v (G - Do) = & (X @), v )|
+[& (72 o, vt ) = & (X0, V)|
= 01+ 02+ Os.

Then, we have
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2
E(Q1)? = EK?|X[> (( = De) = X[(r)|
= EK2[B (X[ ((j = De), V' ((j = &) ¢ = (j = De)

n,,€ .. ; 2
+ o (X1 (G = D)) (Bie) = Bi (= De))

< Ke=Kn™ %,

2
E[& (X)), v (G = De)) = & (X[ (), Ve )|
~ n,8,e n,8,€ _ n,8,€e
c (X[ r), Ad ps (X[ (r) y) V(j_l)edy>
= n,d,e n,s,€ _ n,8,e :
C\X;m ), | ps (X () —y) VIS
RY

ke[ [ (x50 =) Vit = [ (x5 0= 3) vesar
R4 R4

n

E (0»)*

E

2

A

2

mi_ j—1
% Z s (Xln,é,e ) _Xln/,ﬁ,é ((G— 1)€)> —% Z Ds (Xl"*‘;& (r)—X;’S’E(r)>

I'=1 =1

E (m'}l ) s (X} )= X3 ((G= D) = ps (X;"‘S‘(r)—X;"*%m)f)

I'=1

= KE

IA

Ke 5
s 1)

IA

K5n72ot ,

IA

and

& (X1 () Vi) - @ (X124 Vi )|

¢ (X?"S’é (), / s (X}“S’€ (r) — y) Vr""s’edy>
R4
_5 <X;1’8’€ (r) ) / DPs (X;l’(s’g (r) - Y) Vrady>
R4

2
<KE ‘/d Ps (X?"S‘ (r) — y) viSedy — /d ps (X?"S’e (r) — y) Vfdy‘
R R

<KsEpi (V""€0). V2 (1)) .

E(Q3)* =E

=E

2

Consequently

2
E[& (X[ (( = Do), v (( = D)) =& (X1, V)|
KE (0} + 03+ 03)
Ksn™ + Kspi (V>€(r), V2 ().

IA

IA
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E(In)? = ;ZNjNEHZ m_y /( ijel) v (xp5<0) (474G - ven)’
j=1 =1 J=he
[ (X< = Doy, vriei=e)) =& (x< ), V‘S(r))]zdr}
<

(j=De

N ’”3"71 :
K J€
=Y NE {Z m'_, / (Kon ™2 + Ko} (V™2<(r), V(1)) dr:|
j=1 =1

K 2 Ne
< —jE (m;Ll) nT Kaf Epf (V*€(r), VO(r)) dr
n 0

Ne
< Kgn*2“+1<5/ Epi (V2*€(r), V2 (r)) dr.
0

Similarly,

BB (X7 o), viie ) = B (X<, \/5(r))‘2 < KEp? (V'€ (r), V2 (1),

Ne
E (1) < Ky / Eo? (V< (r), V3(r)) dr.
0
Therefore,

E (1)

IA

EK (13 + 13+ 1)

IA

Ne
Kn™'+ Ksn™* + K; / Epi (V2€(r), V() dr
0

< Ksn™ 2 + K /0 . pf (V3€(r), VA (r)) dr.
With the result from Lemma 3.3, it is easy to get
E|(Vi5€(Ne), ) — (V< (0), vo)|
< Kn= 172 L Ksn=2 L K /ONe o (V™2<(r), V2 (r)) dr.
By our definition of V"%€(0), we have

E|(V™3€(Ne), ¢) — (VO (Ne), ¢)|
2E (V7€ (Ne), §) — (V"<(0). )| + 2E|(V"5<(0), o) — (V2 (0). vo)|”

IA

IA

Ne
Kn=172) 4 Kgn™2 4 K; / ot (V"2<(r), V2 (r)) dr,
0

Epf (V"2€(Ne), VA(Ne))

Ne
< Kn 072 4 K 4 K f P} (V') VA () dr.
0
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By triangle inequality, we have

PV (1), V) < (VP (1), V2 e (1) o1 (V0 € (1)), Vo (e (1) +o1(VO € (1) VA (0)).

With the results from Lemmas 3.1 and 3.2,
t
Ep? (V:5€(), VO(1)) < Kn=172) 4 Ken™2 4 K(;/ Ep} (V"3<€(r), VE(r)) dr
0

By Gronwall’s inequality, we have
Ep? (V5€(1), VO(1)) < Krn~172) 4 Kg rn= 2.
O

mh

We define v"%€(¢,x) = 1 Zl | Ps (x - X" 5 €(t)) i.e. the smooth density of

Vm3:€(1), as the numerical approximation of v(z, x) and %€ (¢, x) = V(T —
t,x) as the numerical approximation of u(¢, x). Then, we have the following
corollary:

Corollary 3.1 Foranyt € [0,T],0 < a < %, there exists a constant Ks, such
that

E | M”'B’G(Z‘,X) —u(t,x) |< K(S,T (nf% \V4 n*a) =+ KT\/g

Proof We set u® (t, x) = v* (T — ¢, x). Then
E | u™%(t, x) —u(t,x) |
=E | u"%€(t, x) — u(t, x) | +E | ub(t, x) — u(t, x) |
=E </R ps(x — y)( VieSedy — vi_ tdy)'+ | v(T —t,x) — (T —1,x) |>
<KsEp (V€T — 1), VI(T — 1)) + K18
<Ks 1 (n*% v n*“) + K73,

Numerical solution

In this section, we will give a numerical solution of the FBSDE (1.1) based on
the branching particle-system representations and derive some estimates about the
convergence rate.

We also denote by ii™%€(r, x) another numerical approximation of u(t, x)
obtained by the same numerical scheme with u%-€ (¢, x). Firstly, we apply the Euler
Scheme to approximate X (¢) of the FBSDE (1.1). Define the numerical solution
X3¢ (1) satisfying:

X = b (R e (e, XI5) ) dr + o (RIS ) aw,. @)
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Theorem 4.1 The convergence of X"8€(t) to X(t) is bounded by
Ks 1 (n—(l—Za) \% n_zo‘) + K74.

Proof By Eqgs. (1.1) and (4.1), we have
t
e _x, = / (b (Xgiff, e (e(s) X’;(jf)) — b (X, uls, XS))) ds
0
t
.S,
+ fo (e 12 — o (X)) dw,.
Applying the Burkholder-Davis-Gundy and Holder’s inequalities, we obtain

fe(t) = Esup | X1%€ — X, ?

s<t

< 2T/ B b (XI5 a5 (e(s), XI55°)) = b (X, uGs, X)) P ds

+8/0 E|o(X\5) = o(X,) | ds. 4.2)

It follows from Eq. (4.1) that

| /\

EIXnSe_Xn(Se|

1R < 2K% (1 — e +2K°E (| Wi — We )

Ke,

IA

and hence,

B b (XG5 a0 (66, X157)) = b (X uts, X)) P

<SE | b (XI5 a0 (e(o), X15°) ) = b (R o (e, X13) ) P
SE | b (K056, 0 (e(s), XIS)) = b (R0, ub (et), X1 ) P
+5E| b (5(;%5’6, u’ (e(s), Xgiff)) —b (Xf:”s’f, u (e(s), )?ngf)) 2
+SE | b (200 u (e, XI5)) = b (200 u 5, X)) P
+SE | b (R0 u (s, X)) = b Xy u (5, X))

<5Ke +SKE | i (e), XI35) = u® (e, X105°) 1P
+5KE | u (e(s) XE(S) ) (e(s), X'&?;) |2

+SKE | (e(s), XI2°) = (5. X) P +5Kf(5)

T—e(s)
KE |0 (T —e(s), X2¢ ) — v (T — e(s), X5 ) |2
+ | v €WS), Ar_cs) v €8s Ar_e(s) |

+ Ke? +Kf (s)+ Ke+ Kf.(s)

<Ke+KE | 7 (T = e(s), X575, ) =0 (T — ). K575, ) P
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2
v.6,€ ,0,€ )
=KE '/}Rd Ps (X;l"—e(s) - y) (V]’z—e(s)dy - VT—é(s)dy>‘

+ K/ |02 (T = €(s). x) — v (T — €(s), x) [ I35 (0)dx
]Rd
+Ke+Kf(s)
<K;Ep? (V" (T — €(s)), VX(T — €(s))) + K18 + Ke + Kf(s)
<Ks.7 (n—<1—2“> v n_2“> + K78+ Kf (5.

The other term in Eq. (4.2) can be estimated similarly. Therefore,

1

t
fe(®) SZT/ (ng(s) +Ks.1 (n—(l—Za) v n—Za) + KT5> ds + 8/ (Ke+ Kf(s))ds
0 0

t
<Ks.r (n*“*z‘” v n*2“) + K78+ KT/ fe(s)ds.
0
By Gronwall’s inequality, we have

Esup | X"€ — X, >< Ks.r (n*“*z"‘) v n*z"‘) +K7d
t<T

O

Then, by the result of the four step scheme, we define Y3 (1) = y"-3:€ (¢, X0€)
as the numerical solution of Y () in FBSDE (1.1). We have the following theorem:

Theorem 4.2 The convergence of Y™%€(t) to Y(t) is bounded by
Ks T (nf% \Y nia) + KT«/S.
Proof
E| Y% — Y, |=E | u"< (t, f(;‘-“‘) —ut, Xy) |
<E | um®€ (t, 5(;"5‘) —u (z, 5(;"5'5) | +E | u (z, )2{'*5‘) —u(t, Xy) |

=E/ | VST —t,x) — (T —t,x) | J;ff(x)dx +KE | f(;”‘s*e - X |
R4

SE/ (1T —t,x) = v*(T —1,x) |
R4

+ V(T = 1,x) = (T = 1,x) |) 32,5 (x)dx
+KE| X"~ X, |

_ 12«

<Ks.1 (n : Vn*“) +Kpv/8+ KE | X% — X, |
1-2a

<Ks.7 (n’T Vn*"‘) + Kr/5 + Ks 1 (n*% Vn*“) K8

1—2a
<KsT (nfT \/n’“> + K7+/8,

where J. ?’f;e (x) is the probability density of X"*:¢. O
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Conclusion

In this paper we investigated a new numerical scheme for a class of coupled forward-
backward stochastic differential equations. Combining the four step scheme and the
Euler Scheme, we defined a new numerical solution of the FBSDE system by branch-
ing particle systems in a random environment and proved related convergent results.
Prior to our work, there was no literature about particle system representations for
the numerical approximations of FBSDE systems.
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