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Abstract The recently proposed numerical algorithm, deep BSDE method, has
shown remarkable performance in solving high-dimensional forward-backward
stochastic differential equations (FBSDEs) and parabolic partial differential equa-
tions (PDEs). This article lays a theoretical foundation for the deep BSDE method
in the general case of coupled FBSDEs. In particular, a posteriori error estimation of
the solution is provided and it is proved that the error converges to zero given the uni-
versal approximation capability of neural networks. Numerical results are presented
to demonstrate the accuracy of the analyzed algorithm in solving high-dimensional
coupled FBSDEs.
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1 Introduction

Forward-backward stochastic differential equations (FBSDEs) and partial differential
equations (PDEs) of parabolic type have found numerous applications in stochas-
tic control, finance, physics, etc., as a ubiquitous modeling tool. In most situations
encountered in practice the equations cannot be solved analytically but require cer-
tain numerical algorithms to provide approximate solutions. On the one hand, the
dominant choices of numerical algorithms for PDEs are mesh-based methods, such
as finite differences, finite elements, etc. On the other hand, FBSDEs can be tackled
directly through probabilistic means, with appropriate methods for the approximation
of conditional expectation. Since these two kinds of equations are intimately con-
nected through the nonlinear Feynman–Kac formula (Pardoux and Peng 1992), the
algorithms designed for one kind of equation can often be used to solve another one.

However, the aforementioned numerical algorithms become more and more diffi-
cult, if not impossible, when the dimension increases. They are doomed to run into
the so-called “curse of dimensionality” (Bellman 1957) when the dimension is high,
namely, the computational complexity grows exponentially as the dimension grows.
The classical mesh-based algorithms for PDEs require a mesh of size O(Nd). The
simulation of FBSDEs faces a similar difficulty in the general nonlinear cases, due
to the need to compute conditional expectation in high dimension. The conventional
methods, including the least squares regression (Bender and Steiner 2012), Malli-
avin approach (Bouchard et al. 2004), and kernel regression (Bouchard and Touzi
2004), are all of exponential complexity. There are a limited number of cases where
practical high-dimensional algorithms are available. For example, in the linear case,
Feynman–Kac formula and Monte Carlo simulation together provide an efficient
approach to solving PDEs and associated BSDEs numerically. In addition, methods
based on the branching diffusion process (Henry-Labordere 2012; Henry-Labordere
et al. 2019) and multilevel Picard iteration (Hutzenthaler et al. 2016, 2018; E et al.
2019) overcome the curse of dimensionality in their considered settings. We refer
(E et al. 2019) for the detailed discussion on the complexity of the algorithms men-
tioned above. Overall there is no numerical algorithm in literature so far proved to
overcome the curse of dimensionality for general quasilinear parabolic PDEs and the
corresponding FBSDEs.

A recently developed algorithm, called the deep BSDE method (Han et al. 2018; E
et al. 2017), has shown astonishing power in solving general high-dimensional FBS-
DEs and parabolic PDEs (Beck et al. 2017; Han and Hu 2019; Han et al. 2020). In
contrast to conventional methods, the deep BSDE method employs neural networks
to approximate unknown gradients and reformulates the original equation-solving
problem into a stochastic optimization problem. Thanks to the universal approxima-
tion capability and parsimonious parameterization of neural networks, in practice the
objective function can be effectively optimized in high-dimensional cases, and the
function values of interests are obtained quite accurately.

The deep BSDE method was initially proposed for decoupled FBSDEs. In this
paper, we extend the method to deal with coupled FBSDEs and a broader class
of quasilinear parabolic PDEs. Furthermore, we present an error analysis of the
proposed scheme, including decoupled FBSDEs as a special case. Our theoretical
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result consists of two theorems. Theorem 1 provides a posteriori error estimation of
the deep BSDE method. As long as the objective function is optimized to be close to
zero under fine time discretization, the approximate solution is close to the true solu-
tion. In other words, in practice, the accuracy of the numerical solution is effectively
indicated by the value of the objective function. Theorem 2 shows that such a situa-
tion is attainable, by relating the infimum of the objective function to the expression
ability of neural networks. As an implication of the universal approximation property
(in the L2 sense), there exist neural networks with suitable parameters such that the
obtained numerical solution is approximately accurate. To the best of our knowledge,
this is the first theoretical result of the deep BSDE method for solving FBSDEs and
parabolic PDEs. Although our numerical algorithm is based on neural networks, the
theoretical result provided here is equally applicable to the algorithms based on other
forms of function approximations.

The article is organized as follows. In Section 2, we precisely state our numerical
scheme for coupled FBSDEs and quasilinear parabolic PDEs and give the main theo-
retical results of the proposed numerical scheme. In Section 3, the basic assumptions
and some useful results from the literature are given for later use. The proofs of the
two main theorems are provided in Sections 4 and 5, respectively. Some numerical
experiments with the proposed scheme are presented in Section 6.

2 A numerical scheme for coupled FBSDEs and main results

Let T ∈ (0, +∞) be the terminal time,
(
�,F, {Ft }0≤t≤T ,P

)
be a filtered probability

space equipped with a d-dimensional standard Brownian motion {Wt }0≤t≤T starting
from 0. ξ is a square-integrable random variable independent of {Wt }0≤t≤T . We use
the same notation

(
�,F, {Ft }0≤t≤T ,P

)
to denote the filtered probability space gen-

erated by {Wt + ξ}0≤t≤T . The notation |x | denotes the Euclidean norm of a vector x

and ‖A‖ =
√
trace

(
ATA

)
denotes the Frobenius norm of a matrix A.

Consider the following coupled FBSDEs

⎧
⎪⎪⎨

⎪⎪⎩

Xt = ξ +
∫ t

0
b(s, Xs, Ys) ds +

∫ t

0
σ(s, Xs, Ys) dWs, (2.1)

Yt = g(XT ) +
∫ T

t
f (s, Xs, Ys, Zs) ds −

∫ T

t
(Zs)

T dWs, (2.2)

in which Xt takes values in Rm , Yt takes values in R, and Zt takes values in Rd . Here
we assume Yt to be one-dimensional to simplify the presentation. The result can be
extended without any difficulty to the case where Yt is multi-dimensional. We say
(Xt , Yt , Zt ) is a solution of the above FBSDEs, if all its components are Ft -adapted
and square-integrable, together satisfying Eqs. (2.1) and (2.2).

Solving coupled FBSDEs numerically is more difficult than solving decou-
pled FBSDEs. Except the Picard iteration method developed in Bender and Zhang
(2008), most methods exploit the relation to quasilinear parabolic PDEs via the
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four-time-step-scheme in Ma et al. (1994). This type of methods suffers from high
dimensionality due to spatial discretization of PDEs. In contrast, our strategy, start-
ing from simulating the coupled FBSDEs directly, is a new purely probabilistic
scheme. To state the numerical algorithm precisely, we consider a partition of the
time interval [0, T ], π : 0 = t0 < t1 < · · · < tN = T with h = T/N and
ti = ih. Let �Wi := Wti+1 − Wti for i = 0, 1, . . . , N − 1. Inspired by the nonlinear
Feynman–Kac formula that will be introduced below, we view Y0 as a function of
X0 and view Zt as a function of Xt and Yt . Equipped with this viewpoint, our goal
becomes finding appropriate functions μπ

0 : Rm → R and φπ
i : Rm × R → R

d for
i = 0, 1, . . . , N − 1 such that μπ

0 (ξ) and φπ
i

(
Xπ
ti , Y

π
ti

)
can serve as good surrogates

of Y0 and Zti , respectively. To this end, we consider the classical Euler scheme

⎧
⎪⎪⎨

⎪⎪⎩

Xπ
0 = ξ, Y π

0 = μπ
0 (ξ),

Xπ
ti+1

= Xπ
ti + b

(
ti , Xπ

ti , Y
π
ti

)
h + σ

(
ti , Xπ

ti , Y
π
ti

)
�Wi ,

Zπ
ti = φπ

i

(
Xπ
ti , Y

π
ti

)
,

Y π
ti+1

= Y π
ti − f

(
ti , Xπ

ti , Y
π
ti , Zπ

ti

)
h + (Zπ

ti

)T
�Wi .

(2.3)

Without loss of clarity, here we use the notation Xπ
0 as Xπ

t0 , X
π
T as Xπ

tN , etc.
Following the spirit of the deep BSDE method, we employ a stochastic optimizer

to solve the following stochastic optimization problem

inf
μπ
0 ∈N ′

0,φ
π
i ∈Ni

F
(
μπ
0 , φπ

0 , . . . , φπ
N−1

) := E |g (Xπ
T

)− Y π
T |2, (2.4)

where N ′
0 and Ni (0 ≤ i ≤ N − 1) are parametric function spaces generated by

neural networks. To see intuitively where the objective function (2.4) comes from,
we consider the following variational problem:

inf
Y0,{Zt }0≤t≤T

E |g(XT ) − YT |2,

s.t. Xt = ξ +
∫ t

0
b(s, Xs, Ys) ds +

∫ t

0
σ(s, Xs, Ys) dWs,

Yt = Y0 −
∫ t

0
f (s, Xs, Ys, Zs) ds +

∫ t

0
(Zs)

T dWs,

where Y0 is F0-measurable and square-integrable, and Zt is a Ft -adapted square-
integrable process. The solution of the FBSDEs (2.1) and (2.2) is a minimizer of the
above problem since the loss function attains zero when it is evaluated at the solution.
In addition, the wellposedness of the FBSDEs (under some regularity conditions)
ensures the existence and uniqueness of the minimizer. Therefore, we expect (2.4),
as a discretized counterpart of (2.5), defines a benign optimization problem and the
associated near-optimal solution provides us a good approximate solution of the orig-
inal FBSDEs. The reason we do not represent Zti as a function of Xti only is that the
process {Xπ

ti }0≤i≤N is not Markovian, while the process
{
Xπ
ti , Y

π
ti

}
0≤i≤N

is Marko-
vian, which facilitates our analysis considerably. If b and σ are both independent of
Y, then the FBSDEs (2.1) and (2.2) are decoupled, we can take φπ

i as a function of
Xπ
ti only, as the numerical scheme introduced in Han et al. (2018) and E et al. (2017).
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Our two main theorems regarding the deep BSDE method are the following,
mainly on the justification and property of the objective function (2.4) in the gen-
eral coupled case, regardless of the specific choice of parametric function spaces.
An important assumption for the two theorems is the so-called weak coupling or
monotonicity condition, which will be explained in detail in Section 3. The precise
statement of the theorems can be found in Theorem 1’ (Section 4) and Theorem 2’
(Section 5), respectively.

Theorem 1 Under some assumptions, there exists a constant C, independent of h,
d, and m, such that for sufficiently small h,

sup
t∈[0,T ]

(
E |Xt − X̂π

t |2 + E |Yt − Ŷ π
t |2
)

+
∫ T

0
E |Zt − Ẑπ

t |2 dt ≤ C
[
h + E |g (Xπ

T

)− Y π
T |2
]
,

(2.5)
where X̂π

t = Xπ
ti , Ŷ

π
t = Y π

ti , Ẑ
π
t = Zπ

ti for t ∈ [ti , ti+1).

Theorem 2 Under some assumptions, there exists a constant C, independent of h,
d and m, such that for sufficiently small h,

inf
μπ
0 ∈N ′

0,φ
π
i ∈Ni

E |g (Xπ
T

)− Y π
T |2

≤ C

{

h + inf
μπ
0 ∈N ′

0,φ
π
i ∈Ni

[

E |Y0 − μπ
0 (ξ)|2

+
N−1∑

i=0

E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
− φπ

i

(
Xπ
ti , Y

π
ti

) |2h
]}

,

where Z̃ti = h−1E
[∫ ti+1

ti
Zt dt |Fti

]
. If b and σ are independent of Y, the term

E[Z̃ti |Xπ
ti , Y

π
ti ] can be replaced with E[Z̃ti |Xπ

ti ].

Briefly speaking, Theorem 1 states that the simulation error (left side of Eq. (2.5))
can be bounded through the value of the objective function (2.4). To the best of our
knowledge, this is the first result for the error estimation of the coupled FBSDEs,
concerning both time discretization error and terminal distance. Theorem 2 states that
the optimal value of the objective function can be small if the approximation capabil-
ity of the parametric function spaces (N ′

0 andNi above) is high. Neural networks are
a promising candidate for such a requirement, especially in high-dimensional prob-
lems. There are numerous results, dating back to the 90s (see, e.g., Cybenko (1989),
Funahashi (1989), Hornik et al. (1989), Barron (1993), Arora et al. (2018), Eldan
and Shamir (2016), Cohen et al. (2016), Mhaskar and Poggio (2016), Bölcskei et al.
(2017), and Liang and Srikant (2017)), in regard to the universal approximation and
complexity of neural networks. There are also some recent analysis (Grohs et al.
2018; Jentzen et al. 2018; Berner et al. 2018; Hutzenthaler et al. 2020) on approx-
imating the solutions of certain parabolic partial differential equations with neural
networks. However, the problem is still far from resolved. Theorem 2 implies that if
the involved conditional expectations can be approximated by neural networks whose
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numbers of parameters growing at most polynomially both in the dimension and the
reciprocal of the required accuracy, then the solutions of the considered FBSDEs can
be represented in practice without the curse of dimensionality. Under what condi-
tions this assumption is true is beyond the scope of this work and remains for further
investigation.

The above-mentioned scheme in (2.3) and (2.4) is for solving FBSDEs. The so-
called nonlinear Feynman–Kac formula, connecting FBSDEs with the quasilinear
parabolic PDEs, provides an approach to numerically solve quasilinear parabolic
PDEs (2.6) below through the same scheme. We recall a concrete version of the
nonlinear Feynman–Kac formula in Theorem 3 below and refer interested readers
to e.g., (Ma and Yong 2007) for more details. According to this formula, the term
E |Y0 − Y π

0 |2 can be interpreted as E |u(0, ξ) − μπ
0 (ξ)|2. Therefore, we can choose

the random variable ξ with a delta distribution, a uniform distribution in a bounded
region, or any other distribution we are interested in. After solving the optimization
problem, we obtain μπ

0 (ξ) as an approximation of u(0, ξ). See (Han et al. 2018; E
et al. 2017) for more details.

Theorem 3 Assume

1. m = d and b(t, x, y), σ(t, x, y), f (t, x, y, z) are smooth functions with
bounded first-order derivatives with respect to x, y, z.

2. There exist a positive continuous function ν and a constant μ, satisfying that

ν(|y|)I ≤ σσT(t, x, y) ≤ μI,

|b(t, x, 0)| + | f (t, x, 0, z)| ≤ μ.

3. There exists a constant α ∈ (0, 1) such that g is bounded in the Hölder space
C2,α(Rm).

Then the following quasilinear PDE has a unique classical solution u(t, x) that is
bounded with bounded ut , ∇xu, and ∇2

x u,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + 1

2
trace

(
σσT(t, x, u)∇2

x u
)

+ bT(t, x, u)∇xu + f
(
t, x, u, σT(t, x, u)∇xu

)
= 0,

u(T, x) = g(x).

(2.6)

The associated FBSDEs (2.1) and (2.2) have a unique solution (Xt , Yt , Zt ) with Yt =
u(t, Xt ), Zt = σT(t, Xt , u(t, Xt ))∇xu(t, Xt ), and Xt is the solution of the following
SDE

Xt = ξ +
∫ t

0
b(s, Xs, u(s, Xs)) ds +

∫ t

0
σ(s, Xs, u(s, Xs)) dWs .

Remark 1 The statement regarding FBSDEs (2.1) and (2.2) in Theorem 3 is devel-
oped through a PDE-based argument, which requires m = d, uniform ellipticity of
σ , and high-order smoothness of b, σ, f , and g. An analogous result through prob-
abilistic argument is given below in Theorem 4 (point 4). In that case, we only need
the Lipschitz condition for all of the involved functions, in addition to some weak



Probability, Uncertainty and Quantitative Risk             (2020) 5:5 Page 7 of 33

coupling or monotonicity conditions demonstrated in Assumption 3. Note that the
Lipschitz condition alone does not guarantee the existence of a solution to the cou-
pled FBSDEs, even in the situation when b, f, σ are linear (see Bender and Zhang
(2008) and Ma and Yong (2007) for a concrete counterexample).

Remark 2 Theorem 3 also implies that the assumption that the drift function b
only depends on x, y is general. If b depends on z as well, one can move the asso-
ciated term in (2.6) into the nonlinearity f and apply the nonlinear Feynman–Kac
formula back to obtain an equivalent system of coupled FBSDEs, in which the new
drift function is independent of z.

3 Preliminaries

In this section, we introduce our assumptions and two useful results in Bender and
Zhang (2008). We use the notation �x = x1 − x2, �y = y1 − y2, �z = z1 − z2.

Assumption 1 1. There exist (possibly negative) constants kb, k f such that

[b(t, x1, y) − b(t, x2, y)]
T �x ≤ kb|�x |2,

[ f (t, x, y1, z) − f (t, x, y2, z)]�y ≤ k f |�y|2.
2. b, σ , f, g are uniformly Lipschitz continuous with respect to (x,y,z). In particular,

there are non-negative constants K, by, σx , σy , fx , fz , and gx such that

|b(t, x1, y1) − b(t, x2, y2)|2 ≤ K |�x |2 + by |�y|2,
‖σ(t, x1, y1) − σ(t, x2, y2)‖2 ≤ σx |�x |2 + σy |�y|2,

| f (t, x1, y1, z1) − f (t, x2, y2, z2)|2 ≤ fx |�x |2 + K |�y|2 + fz |�z|2,
|g(x1) − g(x2)|2 ≤ gx |�x |2.

3. b(t, 0, 0), f (t, 0, 0, 0), and σ(t, 0, 0) are bounded. In particular, there are
constants b0, σ0, f0, and g0 such that

|b(t, x, y)|2 ≤ b0 + K |x |2 + by |y|2,
‖σ(t, x, y)‖2 ≤ σ0 + σx |x |2 + σy |y|2,

| f (t, x, y, z)|2 ≤ f0 + fx |x |2 + K |y|2 + fz |z|2,
|g(x)|2 ≤ g0 + gx |x |2.

We note here by et al. are all constants, not partial derivatives. For convenience,
we use L to denote the set of all the constants mentioned above and assume K is the
upper bound of L .

Assumption 2 b, σ, f are uniformly Hölder- 12 continuous with respect to t. We
assume the same constant K to be the upper bound of the square of the Hölder
constants as well.
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Assumption 3 One of the following five cases holds:

1. Small time duration, that is, T is small.
2. Weak coupling of Y into the forward SDE (2.1), that is, by and σy are small. In

particular, if by = σy = 0, then the forward equation does not depend on the
backward one and, thus, Eqs. (2.1) and (2.2) are decoupled.

3. Weak coupling of X into the backward SDE (2.2), that is, fx and gx are small. In
particular, if fx = gx = 0, then the backward equation does not depend on the
forward one and, thus, Eqs. (2.1) and (2.2) are also decoupled. In fact, in this
case, Z = 0 and (2.2) reduces to an ODE.

4. f is strongly decreasing in y, that is, k f is very negative.
5. b is strongly decreasing in x, that is, kb is very negative.

The assumptions stated above are usually called weak coupling and monotonicity
conditions in literature (Bender and Zhang 2008; Antonelli 1993; Pardoux and Tang
1999). To make it more precise, we define

L0 = [by + σy][gx + fx T ]T e[by+σy ][gx+ fx T ]T+[2kb+2k f +2+σx+ fz ]T ,

L1 = [gx + fx T ][e[by+σy ][gx+ fx T ]T+[2kb+2k f +2+σx+ fz ]T+1 ∨ 1],

0(x) = ex − 1

x
, (x > 0),


1(x, y) = sup
0<θ<1

θeθx
0(y),

c = inf
λ1>0

{[
e[2kb+1+σx+[by+σy ]L1]T ∨ 1

] (
1 + λ−1

1

)
[by + σy]T

× [gx
1([2k f + 1 + fz]T, [2kb + 1 + σx + (1 + λ1)[by + σy]L1]T )

+ fx T
0([2k f + 1 + fz]T )

× 
0(2kb + 1 + σx + (1 + λ1)[by + σy]L1
]
T )
}

.

Then, a specific quantitative form of the above five conditions can be summarized
as:

L0 < e−1 and c < 1. (3.1)

In other words, if any of the five conditions of the weak coupling and monotonicity
conditions holds to certain extent, the two inequalities in (3.1) hold. Below, we refer
to (3.1) as Assumption 3 and the five general qualitative conditions described above
as the weak coupling and monotonicity conditions.

The above three assumptions are basic assumptions in Bender and Zhang (2008),
which we need in order to use the results from (Bender and Zhang 2008), as stated
in Theorems 4 and 5 below. Theorem 4 gives the connections between coupled FBS-
DEs and quasilinear parabolic PDEs under weaker conditions. Theorem 5 provides
the convergence of the implicit scheme for coupled FBSDEs. Our work primarily
uses the same set of assumptions except that we assume some further quantitative
restrictions related to the weak coupling and monotonicity conditions, which will be
transparent through the extra constants we define in proofs. Our aim is to provide
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explicit conditions on which our results hold and more clearly present the relation-
ship between these constants and the error estimates. As will be seen in the proof,
roughly speaking, the weaker the coupling (resp., the stronger the monotonicity, the
smaller the time horizon) is, the easier the condition is satisfied, and the smaller the
constant C related with error estimates are.

Theorem 4 Under Assumptions 1, 2, and 3, there exists a function u:R×R
m → R

that satisfies the following statements.

1. |u(t, x1) − u(t, x2)|2 ≤ L1|x1 − x2|2.
2. |u(s, x) − u(t, x)|2 ≤ C

(
1 + |x |2) |s − t | with some constant C depending on

L and T.
3. u is a viscosity solution of the PDE (2.6).
4. The FBSDEs (2.1) and (2.2) have a unique solution (Xt , Yt , Zt ) and Yt =

u(t, Xt ). Thus, (Xt , Yt , Zt ) satisfies decoupled FBSDEs

⎧
⎪⎪⎨

⎪⎪⎩

Xt = ξ +
∫ t

0
b(s, Xs, u(s, Xs)) ds +

∫ t

0
σ(s, Xs, u(s, Xs)) dWs,

Yt = g(XT ) +
∫ T

t
f (s, Xs, Ys, Zs) ds −

∫ T

t
(Zs)

T dWs .

Furthermore, the solution of the FBSDEs satisfies the path regularity with some
constant C depending on L and T

sup
t∈[0,T ]

(
E |Xt − X̃t |2 + E |Yt − Ỹt |2

)
+
∫ T

0
E |Zt − Z̃t |2 dt ≤ C

(
1 + E |ξ |2

)
h,

(3.2)

in which X̃t = Xti , Ỹt = Yti , Z̃t = h−1E
[∫ ti+1

ti
Zt dt |Fti

]
for t ∈ [ti , ti+1). If Zt is

càdlàg, we can replace h−1E
[∫ ti+1

ti
Zt dt |Fti

]
with Zti .

Remark 3 Several conditions can guarantee Zt admits a càdlàg version, such as
m = d and σσT ≥ δ I with some δ > 0, see e.g., (Zhang 2004).

Theorem 5 Under Assumptions 1, 2, and 3, for sufficiently small h, the following
discrete-time equation (0 ≤ i ≤ N − 1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
π

0 = ξ,

X
π

ti+1
= X

π

ti + b
(
ti , X

π

ti , Y
π

ti

)
h + σ

(
ti , X

π

ti , Y
π

ti

)
�Wi ,

Y
π

T = g
(
X

π

T

)
,

Z
π

ti = 1

h
E
[
Y

π

ti+1
�Wi |Fti

]
,

Y
π

ti = E
[
Y

π

ti+1
+ f

(
ti , X

π

ti , Y
π

ti , Z
π

ti

)
h|Fti

]
,

(3.3)
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has a solution
(
X

π

ti , Y
π

ti , Z
π

ti

)
such that X

π

ti ∈ L2(�,Fti ,P) and

sup
t∈[0,T ]

(
E |Xt − X

π

t |2 + E |Yt − Y
π

t |2
)

+
∫ T

0
E |Zt − Z

π

t |2 dt ≤ C
(
1 + E |ξ |2

)
h,

(3.4)
where X

π

t = X
π

ti , Y
π

t = Y
π

ti , Z
π

t = Z
π

ti for t ∈ [ti , ti+1), and C is a constant
depending on L and T.

Remark 4 In Bender and Zhang (2008), the above result (existence and con-
vergence) is proved for the explicit scheme, which is formulated as replacing

f
(
ti , X

π

ti , Y
π

ti , Z
π

ti

)
with f

(
ti , X

π

ti , Y
π

ti+1
, Z

π

ti

)
in the last equation of (3.3). The

same techniques can be used to prove the implicit scheme, as we state in Theorem 5.

Finally, to make sure the system in (2.3) is well-defined, we restrict our parametric
function spaces N ′

0 and Ni as in Assumption 4 below. Note that neural networks
with common activation functions, including ReLU and sigmoid function, satisfy
this assumption. Under Assumption 1 and 4, one can easily prove by induction that{
Xπ
ti

}
0≤i≤N

,
{
Y π
ti

}
0≤i≤N

and
{
Zπ
ti

}
0≤i≤N−1

defined in (2.3) are all measurable and
square-integrable random variables.

Assumption 4 N ′
0 and Ni (0 ≤ i ≤ N − 1) are subsets of measurable functions

from R
m to R and R

m × R to R
d with linear growth, namely, μπ

0 and
{
φπ
i

}
0≤i≤N−1

in (2.3) satisfy |μπ
0 (x)|2 ≤ A′

0 + B ′
0|x |2 and |φπ

i (x, y)|2 ≤ Ai + Bi |x |2 +Ci |y|2 for
0 ≤ i ≤ N − 1.

4 A posteriori estimation of the simulation error

We prove Theorem 1 in this section. Comparing the statements of Theorems 1 and 5,

we wish to bound the differences between
(
Xπ
ti , Y

π
ti , Zπ

ti

)
and

(
X

π

ti , Y
π

ti , Z
π

ti

)
with

the objective function E |g (Xπ
T

) − Y π
T |2. Recalling the definition of the system of

Eq. (2.3), we have

{
Xπ
ti+1

= Xπ
ti + b

(
ti , X

π
ti , Y

π
ti

)
h + σ

(
ti , X

π
ti , Y

π
ti

)
�Wi , (4.1)

Y π
ti+1

= Y π
ti − f

(
ti , X

π
ti , Y

π
ti , Zπ

ti

)
h + (Zπ

ti

)T
�Wi . (4.2)

Taking the expectation E[·|Fti ] on both sides of (4.2), we obtain
Y π
ti = E

[
Y π
ti+1

+ f
(
ti , X

π
ti , Y

π
ti , Zπ

ti

)
h|Fti

]
.

Right multiplying (�Wi )
T on both sides of (4.2) and taking the expectation E[·|Fti ]

again, we obtain

Zπ
ti = 1

h

[
Y π
ti+1

�Wi |Fti

]
.
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The above observation motivates us to consider the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xπ
0 = ξ,

Xπ
ti+1

= Xπ
ti + b

(
ti , X

π
ti , Y

π
ti

)
h + σ

(
ti , X

π
ti , Y

π
ti

)
�Wi ,

Zπ
ti = 1

h
E
[
Y π
ti+1

�Wi |Fti

]
,

Y π
ti = E

[
Y π
ti+1

+ f
(
ti , X

π
ti , Y

π
ti , Zπ

ti

)
h|Fti

]
.

(4.3)

Note that (4.3) is defined just like the FBSDEs (2.1) and (2.2), where the X compo-
nent is defined forwardly and the Y, Z components are defined backwardly. However,
since we do not specify the terminal condition of Y π

T , the system of Eq. (4.3) has
infinitely many solutions. The following lemma gives an estimate of the difference
between two such solutions.

Lemma 1 For j = 1, 2, suppose

({
Xπ, j
ti

}

0≤i≤N
,
{
Y π, j
ti

}

0≤i≤N
,
{
Zπ, j
ti

}

0≤i≤N−1

)

are two solutions of (4.3), with Xπ, j
ti , Y π, j

ti ∈ L2(�,Fti ,P), 0 ≤ i ≤ N. For any
λ1 > 0, λ2 ≥ fz , and sufficiently small h, denote

A1 := 2kb + λ1 + σx + Kh,

A2 :=
(
λ−1
1 + h

)
by + σy,

A3 := − ln[1 − (2k f + λ2)h]
h

,

A4 := fx
[1 − (2k f + λ2)h]λ2 .

(4.4)

Let δXi = Xπ,1
ti − Xπ,2

ti , δYi = Y π,1
ti − Y π,2

ti , then we have, for 0 ≤ n ≤ N,

E |δXn|2 ≤ A2

n−1∑

i=0

eA1(n−i−1)h E |δYi |2h,

E |δYn|2 ≤ eA3(N−n)h E |δYN |2 + A4

N−1∑

i=n

eA3(i−n)h E |δXi |2h.

To prove Lemma 1, we need the following lemma to handle the Z component.

Lemma 2 Let 0 ≤ s1 < s2, given Q ∈ L2(�,Fs2 ,P), by the martingale
representation theorem, there exists an Ft -adapted process {Hs}s1≤s≤s2 such that∫ s2
s1

E |Hs |2 ds < ∞ and Q = E[Q|Fs1] + ∫ s2s1 Hs dWs. Then we have E[Q(Ws2 −
Ws1)|Fs1 ] = E[∫ s2s1 Hs ds|Fs1].
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Proof Consider the auxiliary stochastic process Qs = (E[Q|Fs1] + ∫ s
s1
Ht

dWt )(Ws − Ws1) for s ∈ [s1, s2]. By Itô’s formula,

dQs = (Ws − Ws1)Hs dWs +
(
E[Q|Fs1] +

∫ s

s1
Ht dWt

)
dWs + Hs ds.

Noting that Qs1 = 0, we have

E[Q(Ws2 − Ws1)|Fs1 ] = E[Qs2 |Fs1] = E

[∫ s2

s1
Hs ds|Fs1

]
.

Proof of Lemma 1 Let

δZi = Zπ,1
ti − Zπ,2

ti ,

δbi = b
(
ti , X

π,1
ti , Y π,1

ti

)
− b

(
ti , X

π,2
ti , Y π,2

ti

)
,

δσi = σ
(
ti , X

π,1
ti , Y π,1

ti

)
− σ

(
ti , X

π,2
ti , Y π,2

ti

)
,

δ fi = f
(
ti , X

π,1
ti , Y π,1

ti , Zπ,1
ti

)
− f

(
ti , X

π,2
ti , Y π,2

ti , Zπ,2
ti

)
.

Then we have

δXi+1 = δXi + δbih + δσi�Wi , (4.5)

δZi = 1

h
E[δYi+1�Wi |Fti ], (4.6)

δYi = E[δYi+1 + δ fi h|Fti ]. (4.7)

By the martingale representation theorem, there exists an Ft -adapted square-
integrable process {δZt }ti≤t≤ti+1 such that

δYi+1 = E[δYi+1|Fti ] +
∫ ti+1

ti
(δZt )

T dWt ,

or, equivalently,

δYi+1 = δYi − δ fi h +
∫ ti+1

ti
(δZt )

T dWt . (4.8)

From Eqs. (4.5) and (4.8), noting that δXi , δYi , δbi , δσi , and δ fi are all Fti -

measurable, and E[�Wi |Fti ] = 0, E
[∫ ti+1

ti
(δZt )

T dWt |Fti

]
= 0, we have

E |δXi+1|2 = E |δXi + δbi h|2 + E
[
(�Wi )

T(δσi )
Tδσi�Wi

]

= E |δXi + δbi h|2 + hE‖δσi‖2,
(4.9)

E |δYi+1|2 = E |δYi − δ fi h|2 +
∫ ti+1

ti
E |δZt |2 dt. (4.10)



Probability, Uncertainty and Quantitative Risk             (2020) 5:5 Page 13 of 33

From Eq. (4.9), by Assumptions 1 and 2 and the root-mean square and geometric
mean inequality (RMS-GM inequality), for any λ1 > 0, we have

E |δXi+1|2
= E |δXi |2 + E |δbi |2h2 + hE‖δσi‖2

+ 2hE

[(
b
(
ti , X

π,1
ti , Y π,1

ti

)
− b

(
ti , X

π,2
ti , Y π,1

ti

))T
δXi

]

+ 2hE

[(
b
(
ti , X

π,2
ti , Y π,1

ti

)
− b

(
ti , X

π,2
ti , Y π,2

ti

))T
δXi

]

≤ E |δXi |2 +
(
K E |δXi |2 + by E |δYi |2

)
h2 + 2kbhE |δXi |2

+
(
λ1E |δXi |2 + λ−1

1 by E |δYi |2
)
h +

(
σx E |δXi |2 + σy E |δYi |2

)
h

= [1 + (2kb + λ1 + σx + Kh)h]E |δXi |2 +
[(

λ−1
1 + h

)
by + σy

]
E |δYi |2h.

Recall A1 = 2kb + λ1 + σx + Kh, A2 = (λ−1
1 + h)by + σy , E |δX0|2 = 0. By

induction we can obtain that, for 0 ≤ n ≤ N ,

E |δXn|2 ≤ A2

n−1∑

i=0

eA1(n−i−1)h E |δYi |2h.

Similarly, from Eq. (4.10), for any λ2 > 0, we have

E |δYi+1|2

≥ E |δYi |2 +
∫ ti+1

ti
E |δZt |2 dt

− 2hE

[(
f
(
ti , X

1,π
i , Y 1,π

i , Z1,π
i

)
− f

(
ti , X

1,π
i , Y 2,π

i , Z1,π
i

))T
δYi

]

− 2hE

[(
f
(
ti , X

1,π
i , Y 2,π

i , Z1,π
i

)
− f

(
ti , X

2,π
i , Y 2,π

i , Z2,π
i

))T
δYi

]

≥ E |δYi |2 +
∫ ti+1

ti
E |δZt |2 dt − 2k f hE |δYi |2

−
[
λ2E |δYi |2 + λ−1

2

(
fx E |δXi |2 + fz E |δZi |2

)]
h.

(4.11)
To deal with the integral term in (4.11), we apply Lemma 2 to (4.6) and (4.8) and get

δZi = 1

h
E

[∫ ti+1

ti
δZt dt |Fti

]
,
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which implies, by the Cauchy inequality,

E |δZi |2h =
d∑

k=1

E |(δZi )k |2h =
d∑

k=1

1

h
E

∣∣
∣
∣E
[∫ ti+1

ti
(δZt )k dt |Fti

]∣∣
∣
∣

2

≤
d∑

k=1

1

h
E

∣
∣∣
∣

∫ ti+1

ti
(δZt )k dt

∣
∣∣
∣

2

≤
d∑

k=1

∫ ti+1

ti
E |(δZt )k |2 dt

=
∫ ti+1

ti
E |δZt |2 dt,

where (·)k denotes the k-th component of the vector. Plugging it into (4.11) gives us

E |δYi+1|2 ≥ [1 − (2k f + λ2)h]E |δYi |2 +
(
1 − fzλ

−1
2

)
E |δZi |2h − fxλ

−1
2 E |δXi |2h. (4.12)

Then for any λ2 ≥ fz and sufficiently small h satisfying (2k f +λ2)h < 1, we have

E |δYi |2 ≤ [1 − (2k f + λ2)h]−1
[
E |δYi+1|2 + fxλ

−1
2 E |δXi |2h

]
.

Recall A3 = −h−1 ln[1 − (2k f + λ2)h], A4 = fxλ
−1
2 [1 − (2k f + λ2)h]−1. By

induction we obtain that, for 0 ≤ n ≤ N ,

E |δYn|2 ≤ eA3(N−n)h E |δYN |2 + A4

N−1∑

i=n

eA3(i−n)h E |δXi |2h.

Now we are ready to prove Theorem 1, whose precise statement is given below.
Note that its conditions are satisfied if any of the five cases in the weak coupling and
monotonicity conditions holds.

Theorem 1′ Suppose Assumptions 1, 2, 3, and 4 hold true and there exist λ1 >

0, λ2 ≥ fz such that A0 < 1, where

A1 := 2kb + λ1 + σx ,

A2 := byλ
−1
1 + σy,

A3 := 2k f + λ2,

A4 := fxλ
−1
2 ,

A0 := A2
1 − e−(A1+A3)T

A1 + A3

{

gxe
(A1+A3)T + A4

e(A1+A3)T − 1

A1 + A3

}

.

(4.13)

Then there exists a constant C > 0, depending on E |ξ |2, L , T, λ1, and λ2, such
that for sufficiently small h,

sup
t∈[0,T ]

(
E |Xt − X̂π

t |2 + E |Yt − Ŷ π
t |2
)

+
∫ T

0
E |Zt − Ẑπ

t |2 dt ≤ C
[
h + E |g (Xπ

T

)− Y π
T |2
]
,

(4.14)
where X̂π

t = Xπ
ti , Ŷ

π
t = Y π

ti , Ẑ
π
t = Zπ

ti for t ∈ [ti , ti+1).
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Remark 5 The above theorem also implies the coercivity of the objective func-
tion (2.4) used in the deep BSDE method. Formally speaking, the coercivity means
that if

∑N−1
i=0 E |Zπ

ti |2 + E |Y π
0 |2 → +∞, we have E |g (Xπ

T

)− Y π
T |2 → +∞, which

is a direct result from Theorem 1’.

Remark 6 If any of the weak coupling and monotonicity conditions introduced
in Assumption 3 holds to a sufficient extent, there must exist λ1, λ2 satisfying the
conditions in Theorem 1’. We discuss the 5 cases in what follows.

1. Suppose all other constants and λ1 > 0, λ2 ≥ fz are fixed, if T > 0 is suffi-
ciently small, then the second factor of A0 could be sufficiently close to 0 such
that A0 < 1.

2. Suppose all other constants and λ1 > 0, λ2 ≥ fz are fixed, if by ≥ 0 and σy ≥ 0
are sufficiently small, then A2 ≥ 0 could be sufficiently small such that A0 < 1.

3. Suppose all other constants and λ1 > 0, λ2 ≥ fz are fixed, if fx ≥ 0 and gx ≥ 0
are sufficiently small, then A4 and thus the last factor in A0 could be sufficiently
close to 0 such that A0 < 1.

4. Suppose all constants except k f and λ2 > 0 are fixed. Let A1
′ := A1 + A3 =

2kb + 2k f + σx + λ1 + λ2 and rewrite A0 as

A0 = A2

⎧
⎪⎨

⎪⎩
gx

eA1
′
T − 1

A1
′ + A4

eA1
′
T + e−A1

′
T − 2

(
A1

′)2

⎫
⎪⎬

⎪⎭
.

It is straightforward to check that there exists a negative constant C1 such that

when A1
′ ≤ C1,

(
eA1

′
T − 1

)
/A1

′
< 1/

(
2A2gx

)
. By the definition of A1

′
, if

k f is sufficiently negative, there exists λ2 ≥ fx such that A1
′ = C1 and λ2 is

sufficiently large to ensure

A2 A4
eC1T + e−C1T − 2

C2
1

= fx A2
(
eC1T + e−C1T − 2

)

λ2C2
1

<
1

2
.

Combining these two estimates gives A0 < 1.
5. Noting that kb and k f play the same role in A1

′
, we use the same argument as

above to show that when kb is sufficiently negative, there exists λ2 ≥ fx such
that A0 < 1.

Proof From the proof of this theorem and throughout the remainder of the paper,
we use C to generally denote a constant that only depends on E |ξ |2, L , and T, whose
value may change from line to line when there is no need to distinguish. We also
use C(·) to generally denote a constant depending on E |ξ |2, L , T and the constants
represented by ·.

We use the same notations as Lemma 1. Let Xπ,1
ti = Xπ

ti , Y
π,1
ti = Y π

ti , Zπ,1
ti =

Zπ
ti (defined in system (2.3)) and Xπ,2

ti = X
π

ti , Y
π,2
ti = Y

π

ti , Z
π,2
ti = Z

π

ti (defined

in system (3.3)). It can be easily checked that both

({
Xπ, j
ti

}

0≤i≤N
,
{
Y π, j
ti

}

0≤i≤N
,
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{
Zπ, j
ti

}

0≤i≤N−1

)
, j = 1, 2 satisfy the system of Eq. (4.3). Our proof strategy is to

use Lemma 1 to bound the difference between two solutions through the objective
function E |g (Xπ

T

) − Y π
T |2. This allows us to apply Theorem 5 to derive the desired

estimates.
To begin with, note that for any λ3 > 0, the RMS-GM inequality yields

E |δYN |2 = E |g
(
X

π

T

)
−Y π

T |2 ≤
(
1 + λ−1

3

)
E |g (Xπ

T

)−Y π
T |2+gx (1+λ3)E |δXN |2.

Let
P = max

0≤n≤N
e−A1nh E |δXn|2, S = max

0≤n≤N
eA3nh E |δYn|2.

Lemma 1 tells us

e−A1nh E |δXn|2 ≤ A2

n−1∑

i=0

e−A1(i+1)h E |δYi |2h ≤ A2S
n−1∑

i=0

e−A1(i+1)h−A3ihh,

and

eA3nh E |δYn |2

≤eA3T E |δYN |2 + A4

N−1∑

i=n

eA3ih E |δXi |2h

≤eA3T
[(

1 + λ−1
3

)
E |g (Xπ

T

)− Y π
T |2 + gx (1 + λ3)E |δXN |2

]
+ A4

N−1∑

i=n

eA3ih E |δXi |2h

≤eA3T
(
1 + λ−1

3

)
E |g (Xπ

T

)− Y π
T |2 +

[

gx (1 + λ3)e
(A1+A3)T + A4

N−1∑

i=n

e(A1+A3)ihh

]

P.

Therefore by definition of P and S, we have

P ≤ A2he
−A1h e

−(A1+A3)T − 1

e−(A1+A3)h − 1
S,

S ≤ eA3T
(
1 + λ−1

3

)
E |g (Xπ

T

)− Y π
T |2 +

[

gx (1 + λ3)e
(A1+A3)T + A4h

e(A1+A3)T − 1

e(A1+A3)h − 1

]

P.

Consider the function

A(h) = A2he
−A1h e

−(A1+A3)T − 1

e−(A1+A3)h − 1

[

gx (1 + λ3)e
(A1+A3)T + A4h

e(A1+A3)T − 1

e(A1+A3)h − 1

]

.

When A(h) < 1, we have

P ≤ [1 − A(h)]−1eA3T
(
1 + λ−1

3

)
A2he

−A1h e
−(A1+A3)T − 1

e−(A1+A3)h − 1
E |g (Xπ

T

)− Y π
T |2,

S ≤ [1 − A(h)]−1eA3T
(
1 + λ−1

3

)
E |g (Xπ

T

)− Y π
T |2.

Let
P = max

0≤n≤N
e−A1nh E |δXn|2, S = max

0≤n≤N
eA3nh E |δYn|2. (4.15)

Recall
lim
h→0

Ai = Ai , i = 1, 2, 3, 4,
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and note that

lim
h→0

A(h) = A2
1 − e−(A1+A3

)
T

A1 + A3

[

gx (1 + λ3)e
(A1+A3)T + A4

e(A1+A3)T − 1

A1 + A3

]

.

When A0 < 1, comparing limh→0 A(h) and A0, we know that, for any ε > 0, there
exists λ3 > 0 and sufficiently small h such that

P ≤ (1 + ε)
[
1 − A0

]−1
A2e

A3T
(
1 + λ−1

3

) 1 − e−(A1+A3)T

A1 + A3
E |g (Xπ

T

)− Y π
T |2,
(4.16)

S ≤ (1 + ε)
[
1 − A0

]−1
eA3T

(
1 + λ−1

3

)
E |g (Xπ

T

)− Y π
T |2. (4.17)

By fixing ε = 1 and choosing suitable λ3, we obtain our error estimates of E |δXn|2
and E |δYn|2 as

max
0≤n≤N

E |δXn|2 ≤ eA1T∨0P ≤ C(λ1, λ2)E |g (Xπ
T

)− Y π
T |2, (4.18)

max
0≤n≤N

E |δYn|2 ≤ e(−A3T )∨0S ≤ C(λ1, λ2)E |g (Xπ
T

)− Y π
T |2. (4.19)

To estimate E |δZn|2, we consider estimate (4.12), in which λ2 can take any value
no smaller than fz . If fz �= 0, we choose λ2 = 2 fz and obtain

1

2
E |δZi |2h ≤ fx

2 fz
E |δXi |2h + E |δYi+1|2 − [1 − (2k f + 2 fz)h]E |δYi |2.

Summing from 0 to N − 1 gives us

N−1∑

i=0

E |δZi |2h ≤ fx T

fz
max

0≤n≤N
E |δXn|2 + [4(k f + fz)T ∨ 0 + 2] max

0≤n≤N
E |δYn|2

≤ C(λ1, λ2)E |g (Xπ
T

)− Y π
T |2.

(4.20)
The case fz = 0 can be dealt with similarly by choosing λ2 = 1 and the same type of
estimate can be derived. Finally, combining estimates (4.18), (4.19) and (4.20) with
Theorem 5, we prove the statement in Theorem 1’.

5 An upper bound for the minimized objective function

We prove Theorem 2 in this section. We first state three useful lemmas. Theorem 2’,
as a detailed statement of Theorem 2, and Theorem 6, as an variation of Theorem 2’
under stronger conditions, are then provided, followed by their proofs. The proofs of
three lemmas are given at the end of the section.

The main process we analyze is (2.3). Lemma 3 gives an estimate of the final
distance E |g (Xπ

T

) − Y π
T |2 provided by (2.3) in terms of the deviation between the

approximated variables Y π
0 , Zπ

ti and the true solutions.
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Lemma 3 Suppose Assumptions 1, 2, and 3 hold true. Let Xπ
T , Y π

0 , Y π
T ,

{Zπ
ti }0≤i≤N−1 be defined as in system (2.3) and Z̃ti = h−1E

[∫ ti+1
ti

Zt dt |Fti

]
. Given

λ4 > 0, there exists a constant C > 0 depending on E |ξ |2, L , T, and λ4, such that
for sufficiently small h,

E |g (Xπ
T

)− Y π
T |2 ≤ (1 + λ4)Hmin

N−1∑

i=0

E |δ Z̃ti |2h + C
[
h + E |Y0 − Y π

0 |2
]
,

where δ Z̃ti = Z̃ti − Zπ
ti , H(x) = (1 + √

gx )2e(2K+2Kx−1+x)T
(
1 + fz x−1

)
, and

Hmin = minx∈R+ H(x).

Lemma 3 is close to Theorem 2, except that Z̃ti is not a function of Xπ
ti and Y π

ti
defined in (2.3). To bridge this gap, we need the following two lemmas. First, similar
to the proof of Theorem 1’, an estimate of the distance between the process defined
in (2.3) and the process defined in (3.3) is also needed here. Lemma 4 is a general
result to serve this purpose, providing an estimate of the difference between two
backward processes driven by different forward processes.

Lemma 4 Let Xπ, j
ti ∈ L2(�,Fti ,P) for 0 ≤ i ≤ N, j = 1, 2. Suppose{

Y π, j
ti

}

0≤i≤N
and

{
Zπ, j
ti

}

0≤i≤N−1
satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y π, j
T = g

(
Xπ, j
T

)
,

Zπ, j
ti = 1

h
E
[
Y π, j
ti+1

�Wi |Fti

]
,

Y π, j
ti = E

[
Y π, j
ti+1

+ f
(
ti , X

π, j
ti , Y π, j

ti , Zπ, j
ti

)
h|Fti

]
,

(5.1)

for 0 ≤ i ≤ N − 1, j = 1, 2. Let δXi = Xπ,1
ti − Xπ,2

ti , δZi = Zπ,1
ti − Zπ,2

ti , then for
any λ7 > fz , and sufficiently small h, we have

N−1∑

i=0

E |δZi |2h≤ λ7(e−A5T ∨ 1)

λ7 − fz

{

gxe
A5T−A5h E |δXN |2 + fx

λ7

N−1∑

i=0

eA5ih E |δXi |2h
}

,

where A5 := −h−1 ln[1 − (2k f + λ7)h].

Lemma 5 shows that, similar to the nonlinear Feynman–Kac formula, the discrete
stochastic process defined in (2.3) can also be linked to some deterministic functions.

Lemma 5 Let
{
Xπ
ti

}
0≤i≤N

,
{
Y π
ti

}
0≤i≤N

be defined in (2.3). When h < 1/
√
K,

there exist deterministic functions Uπ
i : Rm × R → R, V π

i : Rm × R → R
d for

0 ≤ i ≤ N such that Y π,′
ti = Uπ

i

(
Xπ
ti , Y

π
ti

)
, Zπ,′

ti = V π
i

(
Xπ
ti , Y

π
ti

)
satisfy
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y π,′
tN = g

(
Xπ
tN

)
,

Zπ,′
ti = 1

h
E
[
Y π,′
ti+1

�Wi |Fti

]
,

Y π,′
ti = E

[
Y π,′
ti+1

+ f
(
ti , X

π
ti , Y

π,′
ti , Zπ,′

ti

)
h|Fti

]
,

(5.2)

for 0 ≤ i ≤ N − 1. If b and σ are independent of y, then there exist deterministic

functions Uπ
i : Rm → R, V π

i : Rm → R
d for 0 ≤ i ≤ N such that Y π,′

ti = Uπ
i

(
Xπ
ti

)
,

Zπ,′
ti = V π

i

(
Xπ
ti

)
satisfy (5.2).

Now we are ready to prove Theorem 2, with a precise statement given below. Like
Theorem 1’, the conditions below are satisfied if any of the five cases of the weak
coupling and monotonicity conditions holds to certain extent.

Theorem 2′ Suppose Assumptions 1, 2, 3, and 4 hold true. Given any λ1, λ3 > 0,
λ2 ≥ fz , and λ7 > fz , let Ai , (i = 1, 2, 3, 4) be defined in (4.4) and

A5 := λ7 + 2k f ,

A0
′ := A2

1 − e−(A1+A3)T

A1 + A3

{

gx (1 + λ3)e
(A1+A3)T + A4

e(A1+A3)T − 1

A1 + A3

}

,

B0 := HminA2e
A3T 1 − e−(A1+A3)T

A1 + A3

[
1 − A0

′]−1 (
1 + λ−1

3

)

×
λ7

(
e−A5T ∨ 1

)

λ7 − fz

{

gxe
(A1+A5)T + fx

λ7

e(A1+A5)T − 1

A1 + A5

}

.

(5.3)

If there exist λ1, λ2, λ3, λ7 satisfying A0
′
< 1 and B0 < 1, then there exists a con-

stant C depending on E |ξ |2, L , T, λ1, λ2, λ3, and λ7, such that for sufficiently small
h,

E |g (Xπ
T

)− Y π
T |2 ≤ C

{

h + E |Y0 − Y π
0 |2 +

N−1∑

i=0

E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
− Zπ

ti |2h
}

,

(5.4)

where Z̃ti = h−1E
[∫ ti+1

ti
Zt dt |Fti

]
. If Zt is cádlag, we can replace Z̃ti with Zti . If

b and σ are independent of y, we can replace E
[
Z̃ti |Xπ

ti , Y
π
ti

]
with E

[
Z̃ti |Xπ

ti

]
.

Remark 7 If we take the infimum within the domains of Y π
0 and Zπ

ti on both sides,
we recover the original statement in Theorem 2.

Remark 8 If any of the weak coupling and monotonicity conditions introduced
in Assumption 3 holds to a sufficient extent, there must exist λ1, λ2, λ3, λ7 satisfying
the conditions in Theorem 2’. The arguments are very similar to those provided in
Remark 6. Hence, we omit the details here for the sake of brevity.
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Proof Using Lemma 3 with λ4 > 0, we obtain

E |g(Xπ
T ) − Y π

T |2 ≤ (1 + λ4)Hmin

N−1∑

i=0

E |δ Z̃ti |2h + C(λ4)
[
h + E |Y0 − Y π

0 |2
]
.

(5.5)
Splitting the term δ Z̃ti = Z̃ti − Zπ

ti and applying the generalized mean inequality, we

have (recall Z
π

ti is defined in Theorem 5)

E |δ Z̃ti |2

≤ (1 + λ4)E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2

+ (1 + λ−1
4 )
{
E |
(
Z̃ti − Z

π

ti

)
− E

[(
Z̃ti − Z

π

ti

)
|Xπ

ti , Y
π
ti

]

+ (E[Z̃ti |Xπ
ti , Y

π
ti ] − Zπ

ti )|2
}

≤ (1 + λ4)E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2

+ 3
(
1 + λ−1

4

) {
E |Z̃ti − Z

π

ti |2 + E |E
[(

Z̃ti − Z
π

ti

)
|Xπ

ti , Y
π
ti

]
|2

+ E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
− Zπ

ti |2
}

≤ (1 + λ4)E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2

+ 3
(
1 + λ−1

4

) {
2E |Z̃ti − Z

π

ti |2 + E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
− Zπ

ti |2
}

.

(5.6)

From Eqs. (3.2) and (3.4), we know that

N−1∑

i=0

E |Z̃ti − Z
π

ti |2h ≤ 2
N−1∑

i=0

∫ ti+1

ti
[E |Zt − Z̃ti |2 + E |Zt − Z

π

ti |2dt

= 2
∫ T

0
[E |Zt − Z̃ti |2 + E |Zt − Z

π

ti |2dt

≤ C
(
1 + E |ξ |2

)
h.

(5.7)

Plugging estimates (5.6) and (5.7) into (5.5) gives us

E |g(Xπ
T ) − Y π

T |2

≤ (1 + λ4)
2Hmin

N−1∑

i=0

E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2h

+ C(λ4)

{

h + E |Y0 − Y π
0 |2 +

N−1∑

i=0

E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
− Zπ

ti |2h
}

.

(5.8)

It remains to estimate the term
∑N−1

i=0 E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2h, to which we

intend to apply Lemma 4. Let Xπ,1
ti = Xπ

ti and Xπ,2
ti = X

π

ti . The associated Zπ,1
ti

and Zπ,2
ti are then defined according to Eq. 5.1. Note that Zπ,2

ti = Z
π

ti but Zπ,1
ti is
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not necessarily equal to Zπ
ti , due to the possible violation of the terminal condition.

From Lemma 5, we know Zπ,1
ti can be represented as V π

i

(
Xπ
ti , Y

π
ti

)
with V π

i being a
deterministic function. By the property of conditional expectation, we have

E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2 ≤ E |Zπ

ti − Vi
(
Xπ
ti , Y

π
ti

) |2,
for any Vi . Therefore we have the estimate

N−1∑

i=0

E |Zπ

ti − E
[
Z

π

ti |Xπ
ti , Y

π
ti

]
|2h ≤

N−1∑

i=0

E |δZi |2h

≤ λ7(e−A5T ∨ 1)

λ7 − fz

{

gxe
A5T−A5h E |δXN |2 + fx

λ7

N−1∑

i=0

eA5ih E |δXi |2h
}

.

(5.9)

Recall that δXi = Xπ
ti − X

π

ti , δZi = Zπ,1
ti − Z

π

ti . Similar to the derivation of
estimate (4.16) (using a given λ3 > 0 without final specification) in the proof of
Theorem 1’, when A0

′
< 1, we have

P ≤ (1 + λ4)A2e
A3T 1 − e−(A1+A3)T

A1 + A3
[1 − A0

′]−1
(
1 + λ−1

3

)
E |Y π

T − g(Xπ
T )|2,
(5.10)

in which P = max0≤n≤N e−A1nh E |δXi |2. Plugging (5.10) into (5.9), and then
into (5.8), we get

N−1∑

i=0

E |δZi |2h ≤ λ7
(
e−A5T ∨ 1

)
P

λ7 − fz

{

gxe
(A1+A5)T−A5h + fx

λ7

N−1∑

i=0

e(A1+A5)ihh

}

,

and

E |g (Xπ
T

)− Y π
T |2

≤ (1 + λ4)
3B(h)E |g (Xπ

T

)− Y π
T |2

+ C(λ4)

{

h + E |Y0 − Y π
0 |2 +

N−1∑

i=0

E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
− Zπ

ti |2h
}

,

(5.11)

for sufficiently small h. Here B(h) is defined as

B(h) = HminA2e
A3T 1 − e−(A1+A3)T

A1 + A3

[
1 − A0

′]−1 (
1 + λ−1

3

)

× λ7
(
e−A5T ∨ 1

)

λ7 − fz

{

gxe
(A1+A5)T−A5h + fx

λ7

N−1∑

i=0

e(A1+A5)ihh

}

.

The forms of inequalities (5.4) and (5.11) are already very close. When
limh→0 B(h) = B0 < 1, there exists λ4 > 0 such that for sufficiently small h, we
have 1 − (1 + λ4)

3B(h) > 1
2 (1 − B0). Rearranging the term E |g (Xπ

T

) − Y π
T |2 in

inequality (5.11) yields our final estimate.
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We shall briefly discuss how the universal approximation theorem can be applied
based on Theorem 2’. For instance, Theorem 2.1 in Arora et al. (2018) states
that every continuous and piecewise linear function with m-dimensional input can
be represented by a deep neural network with rectified linear units and at most
1 + log2(m + 1)� depth. Now we view Y0 as a target function with input ξ and

E
[
Z̃ti |Xπ

ti , Y
π
ti

]
as another target function with input

(
Xπ
ti , Y

π
ti

)
. Since E |Y0|2 <

+∞ and E |E
[
Z̃ti |Xπ

ti , Y
π
ti

]
|2 ≤ E |Z̃ti |2 < +∞, we know that both target functions

can be approximated in the L2 sense by continuous and piecewise linear functions
with arbitrary accuracy. Then the aforementioned statement implies that the two tar-
get functions can be approximated by two neural networks with rectified linear units
and at most 1 + log2(m + 1)� depth, although the width might go to infinity as the
approximation error decreases to 0. Therefore, according to Theorem 2’, there exist
good neural networks such that the value of the objective function is small.

Note that there still exist some concerns about the result in Theorem 2’. First, the
function E

[
Z̃ti |Xπ

ti , Y
π
ti

]
changes when Zπ

t j changes for j < i . Second, the function

may depend on Y π
ti . Even if the FBSDEs are decoupled so that the above two concerns

do not exist, we know nothing a priori about the property of E
[
Z̃ti |Xπ

ti , Y
π
ti

]
. In the

next theorem, we replace E
[
Z̃ti |Xπ

ti , Y
π
ti

]
with σT

(
ti , Xπ

ti , u
(
ti , Xπ

ti

))∇xu
(
ti , Xπ

ti

)
,

which can resolve these problems. However, meanwhile we require more regularity
for the coefficients of the FBSDEs.

Theorem 6 Suppose Assumptions 1, 2, 3 and 4 and the assumptions in Theorem 3
hold true. Let u be the solution of corresponding quasilinear PDEs (2.6) and L be the
squared Lipschitz constant of σT(t, x, u(t, x))∇xu(t, x) with respect to x. With the
same notations of Theorem 2’, when A0

′
< 1 and

B0
′ := HminL A2e

A3T

(
eA1T − 1

) (
1 − e−(A1+A3)T

)

A1(A1 + A3)

[
1 − A0

′]−1 (
1 + λ−1

3

)
< 1,

there exists a constant C > 0 depending on E |ξ |2, T, L , L, λ1, λ2, and λ3, such that
for sufficiently small h,

E |g(Xπ
T ) − Y π

T |2 ≤ C

{

h + E |Y0 − Y π
0 |2 +

N−1∑

i=0

E | fi
(
Xπ
ti

)− Zπ
ti |2h

}

, (5.12)

where fi (x) = σT(ti , x, u(ti , x))∇xu(ti , x).

Proof By Theorem 3, we have Zti = fi (Xti ), in which Xt is the solution of

Xt = ξ +
∫ t

0
b(s, Xs, u(s, Xs)) ds +

∫ t

0
σ(s, Xs, u(s, Xs)) dWs .
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Using Lemma 3 again with λ4 > 0 gives us

E |g (Xπ
T

)− Y π
T |2 ≤ (1 + λ4)Hmin

N−1∑

i=0

E |δ Z̃ti |2h + C(λ4)
[
h + E |Y0 − Y π

0 |2
]
.

Given the continuity of σT(t, x, u(t, x))∇xu(t, x), we know Zt admits a continuous
version. Hence the term Z̃ti in δ Z̃ti = Z̃ti − Zπ

ti can be replaced with Zti , i.e.,

E |g (Xπ
T

)−Y π
T |2≤ (1 + λ4)Hmin

N−1∑

i=0

E |Zti − Zπ
ti |2h + C(λ4)

[
h + E |Y0 − Y π

0 |2
]
.

(5.13)
Similar to the arguments in inequalities (5.6) and (5.7), we have

E |Zti − Zπ
ti |2

≤
(
1 + λ−1

4

)
E | fi

(
Xπ
ti

)− Zπ
ti |2 + (1 + λ4)E |Zti − fi (X

π
ti )|2

≤
(
1 + λ−1

4

)
E | fi

(
Xπ
ti

)− Zπ
ti |2 + (1 + λ4)LE |Xti − Xπ

ti |2

≤
(
1 + λ−1

4

)
E | fi

(
Xπ
ti

)− Zπ
ti |2

+ (1 + λ4)L
[
(1 + λ4)E |Xπ

ti − X
π

ti |2 +
(
1 + λ−1

4

)
E |Xti − X

π

ti |2
]

≤ (1 + λ4)
2LE |Xπ

ti − X
π

ti |2 + C(L , λ4)
{
E | fi

(
Xπ
ti

)− Zπ
ti |2 + h

}
,

where the last equality uses the convergence result (3.4). Plugging it into (5.13), we
have

E |g(Xπ
T ) − Y π

T |2 ≤ (1 + λ4)
3HminL

N−1∑

i=0

E |Xπ
ti − X

π

ti |2h

+ C(L , λ4)

{

h + E |Y0 − Y π
0 |2 +

N−1∑

i=0

E | fi
(
Xπ
ti

)− Zπ
ti |2h

}

(5.14)
for sufficiently small h.

We employ the estimate (5.10) again to rewrite inequality (5.14) as

E |g (Xπ
T

)− Y π
T |2 ≤ (1 + λ4)

4 B̃(h)E |g (Xπ
T

)− Y π
T |2

+ C(L , λ4)

{

h + E |Y0 − Y π
0 |2 +

N−1∑

i=0

E | fi
(
Xπ
ti

)− Zπ
ti |2h

}

,

(5.15)
where

B̃(h) = HminL A2e
A3T 1 − e−(A1+A3)T

A1 + A3

[
1 − A0

′]−1 (
1 + λ−1

3

) N−1∑

i=0

ei A1hh.
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Arguing in the same way as that in the proof of Theorem 2’, when B̃(h) is strictly
bounded above by 1 for sufficiently small h, we can choose λ4 small enough and
rearrange the terms in inequality (5.15) to obtain the result in inequality (5.12).

Remark 9 The Lipschitz constant used in Theorem 6 may be further estimated a
priori. Denote the Lipschitz constant of function f with respect to x as Lx ( f ), and the
bound of function f as M( f ). Loosely speaking, we have

Lx (σ
T(t, x, u(t, x))∇xu(t, x)) ≤ M(σ )Lx (∇xu)+M(∇xu)[Lx (σ )+ Ly(σ )Lx (u)].

Here Lx (u) = M(∇xu(t, x)) can be estimated from the first point of Theorem 4 and
L(∇xu(t, x)) = M(∇xxu) can be estimated through the Schauder estimate (see, e.g.,
(Ma and Yong 2007, Chapter 4, Lemma 2.1)). Note that the resulting estimate may
depend on the dimension d.

5.1 Proof of Lemmas

Proof of Lemma 3 We construct continuous processes Xπ
t , Y π

t as follows. For t ∈
[ti , ti+1), let

Xπ
t = Xπ

ti + b
(
ti , X

π
ti , Y

π
ti

)
(t − ti ) + σ

(
ti , X

π
ti , Y

π
ti

)
(Wt − Wti ),

Y π
t = Y π

ti − f
(
ti , X

π
ti , Y

π
ti , Zπ

ti

)
(t − ti ) + (Zπ

ti

)T
(Wt − Wti ).

From system (2.3), we see this definition also works at ti+1. We are interested in
again the estimates of the following terms

δXt = Xt − Xπ
t , δYt = Yt − Y π

t , δZt = Zt − Zπ
ti , t ∈ [ti , ti+1).

For t ∈ [ti , ti+1), let

δbt = b(t, Xt , Yt ) − b
(
ti , X

π
ti , Y

π
ti

)
,

δσt = σ(t, Xt , Yt ) − σ
(
ti , X

π
ti , Y

π
ti

)
,

δ ft = f (t, Xt , Yt , Zt ) − f
(
ti , X

π
ti , Y

π
ti , Zπ

ti

)
.

By definition,

d(δXt ) = δbt dt + δσt dWt ,

d(δYt ) = −δ ft dt + (δZt )
T dWt .

Then by Itô’s formula, we have

d|δXt |2 = [2(δbt )T δXt + ‖δσt‖2]dt + 2(δXt )
Tδσt dWt ,

d|δYt |2 = [−2(δ ft )
TδYt + |δZt |2] dt + 2δYt (δZt )

T dWt .

Thus,

E |δXt |2 = E |δXti |2 +
∫ t

ti
E
[
2(δbs)

TδXs + ‖δσs‖2
]
ds,

E |δYt |2 = E |δYti |2 +
∫ t

ti
E
[
−2(δ fs)

TδYs + |δZs |2
]
ds.
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For any λ5, λ6 > 0, using Assumptions 1 and 2 and the RMS-GM inequality, we
have

E |δXt |2

≤ E |δXti |2 +
∫ t

ti
[λ5E |δXs |2 + λ−1

5 E |δbs |2 + E‖δσs‖2] ds

≤ E |δXti |2 + λ5

∫ t

ti
E |δXs |2 ds +

∫ t

ti
K
(
λ−1
5 + 1

)
|s − ti | ds

+
∫ t

ti

[
(Kλ−1

5 + σx )E |Xs − Xπ
ti |2 +

(
byλ

−1
5 + σy

)
E |Ys − Y π

ti |2
]
ds.

(5.16)

By the RMS-GM inequality, we also have

E |Xs − Xπ
ti |2 ≤ (1 + ε1)E |δXti |2 +

(
1 + ε−1

1

)
E |Xs − Xti |2, (5.17)

E |Ys − Y π
ti |2 ≤ (1 + ε2)E |δYti |2 +

(
1 + ε−1

2

)
E |Ys − Yti |2, (5.18)

in which we choose ε1 = λ6

(
Kλ−1

5 + σx

)−1
and ε2 = λ6

(
byλ

−1
5 + σy

)−1
. The

path regularity in Theorem 4 tells us

sup
s∈[ti ,ti+1]

(
E |Xs − Xti |2 + E |Ys − Yti |2

)
≤ Ch. (5.19)

Plugging inequalities (5.17), (5.18), (5.19) into (5.16) with simplification, we obtain

E |δXt |2 ≤ [1 +
(
Kλ−1

5 + σx + λ6

)
h]E |δXti |2 + λ5

∫ t

ti
E |δXs |2 ds

+
(
byλ

−1
5 + σy + λ6

)
E |δYti |2h + C(λ5, λ6)h

2.

(5.20)

Then, by Grönwall inequality, we have

E |δXti+1 |2

≤ eλ5h
{[

1 +
(
Kλ−1

5 + σx + λ6

)
h
]
E |δXti |2

+
(
byλ

−1
5 + σy + λ6

)
E |δYti |2h + C(λ5, λ6)h

2
}

≤ eA6h E |δXti |2 + eλ5h
(
byλ

−1
5 + σy + λ6

)
E |δYti |2h + C(λ5, λ6)h

2

≤ eA6h E |δXti |2 + A7E |δYti |2h + C(λ5, λ6)h
2,

(5.21)

where A6 := Kλ−1
5 + σx + λ5 + λ6, A7 := byλ

−1
5 + σy + 2λ6, and h is sufficiently

small.
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Similarly, with the same type of estimates in (5.16) and (5.20), for any λ5, λ6 > 0,
we have

E |δYt |2

≤ E |δYti |2 +
∫ t

ti

[
λ5E |δYs |2 + λ−1

5 E |δ fs |2 + E |δZs |2
]
ds

≤ E |δYti |2 + λ5

∫ t

ti
E |δYs |2 ds +

∫ t

ti
Kλ−1

5 |s − ti | ds

+
∫ t

ti
λ−1
5

[
fx E |Xs − Xπ

ti |2 + K E |Ys − Y π
ti |2
]
ds+

(
1 + fzλ

−1
5

) ∫ t

ti
E |δZs |2 ds

≤
[
1 +

(
Kλ−1

5 + λ6

)
h
]
E |δYti |2 + λ5

∫ t

ti
E |δYs |2 ds +

(
fxλ

−1
5 + λ6

)
E |δXπ

ti |2h

+
(
1 + fzλ

−1
5

) ∫ t

ti
E |δZs |2 ds + C(λ5, λ6)h

2.

Arguing in the same way of (5.21), by Grönwall inequality, for sufficiently small h,
we have

E |δYti+1 |2

≤ eA8h E |δYti |2 + A9E |δXti |2h + (1 + fzλ
−1
5 + λ6)

∫ t

ti
E |δZs |2 ds+ C(λ5, λ6)h

2,

with A8 := Kλ−1
5 + λ5 + λ6, A9 := fxλ

−1
5 + 2λ6. Choosing ε3 =

(
1 + fzλ

−1
5 + λ6

)−1
λ6 and using

∫ ti+1

ti
E |δZt |2 dt ≤ (1 + ε3)E |δ Z̃ti |2h +

(
1 + ε−1

3

)
Ei
z,

where δ Z̃ti = Z̃ti − Zπ
ti and Ei

z = ∫ ti+1
ti

E |Zt − Z̃ti |2 dt , we furthermore obtain

E |δYti+1 |2 ≤ eA8h E |δYti |2 + A9E |δXti |2h + A10E |δ Z̃ti |2h +C(λ5, λ6)
(
h2 + Ei

z

)
,

(5.22)
with A10 := 1 + fzλ

−1
5 + 2λ6.

Define
Mi = max

{
E |δXi |2, E |δYi |2

}
, 0 ≤ i ≤ N .

Combining inequalities (5.21) and (5.22) together yields

Mi+1

≤
(
emax{A6,A8}h + max{A7, A9}h

)
Mi + A10E |δ Z̃ti |2h + C(λ5, λ6)

(
h2 + Ei

z

)

≤ e(max{A6,A8}+max{A7,A9})hMi + A10E |δ Z̃ti |2h + C(λ5, λ6)
(
h2 + Ei

z

)
.

Letting A11 := max{A6, A8} + max{A7, A9}, we have
Mi+1 ≤ eA11hMi + A10E |δ Z̃ti |2h + C(λ5, λ6)

(
h2 + Ei

z

)
. (5.23)
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We start from M0 = E |Y0 − Y π
0 |2 and apply inequality (5.23) repeatedly to obtain

MN ≤ A10e
A11T

N−1∑

i=0

E |δ Z̃ti |2h + C(λ5, λ6)
[
h + E |Y0 − Y π

0 |2
]
, (5.24)

in which for the last term we use the fact
∑N−1

i=0 Ei
z ≤ Ch from inequality (3.2). Note

that
A10 = 1 + fzλ

−1
5 + 2λ6,

A11 ≤ 2K + 2Kλ−1
5 + λ5 + 3λ6.

Given any λ4 > 0, we can choose λ6 small enough such that
(
1 + fzλ

−1
5 + 2λ6

)
eA11T ≤ (1 + λ4)

(
1 + fzλ

−1
5

)
e

(
2K+2Kλ−1

5 +λ5

)
T
.

This condition and inequality (5.24) together give us

MN ≤ (1 + λ4)
(
1 + fzλ

−1
5

)
e

(
2K+2Kλ−1

5 +λ5

)
T

N−1∑

i=0

E |δ Z̃ti |2h

+ C(λ4, λ5)
[
h + E |Y0 − Y π

0 |2
]
.

(5.25)

Finally, by decomposing the objective function, we have

E |g (Xπ
T

)− Y π
T |2

= E |g (Xπ
T

)− g(XT ) + YT − Y π
T |2

≤
(
1 + (

√
gx )

−1
)
E |g (Xπ

T

)− g(XT )|2 + (1 + √
gx )E |δYN |2

≤ (gx + √
gx )E |δXN |2 + (1 + √

gx )E |δYN |2
≤ (1 + √

gx )
2MN .

(5.26)

We complete our proof by combining inequalities (5.25), (5.26) and choosing λ5 =
argminx∈R+ H(x).

Proof of Lemma 4 We use the same notations as in the proof of Lemma 1. As
derived in (4.12), for any λ7 > fz ≥ 0, we have

E |δYi+1|2 ≥ [1− (2k f +λ7)h]E |δYi |2+
(
1 − fzλ

−1
7

)
E |δZi |2h− fxλ

−1
7 E |δXi |2h.

(5.27)

Multiplying both sides of (5.27) by eA5ih(e−A5T ∨ 1)/
(
1 − fzλ

−1
7

)
gives us

λ7
(
e−A5T ∨ 1

)

λ7 − fz

{
eA5ih E |δYi+1|2 − eA5(i−1)h E |δYi |2 + eA5ih

fx
λ7

E |δXi |2h
}

≥ eA5ih
(
e−A5T ∨ 1

)
E |δZi |2h

≥E |δZi |2h.

(5.28)
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Summing (5.28) up from i = 0 to N − 1, we obtain

N−1∑

i=0

E |δZi |2h ≤ λ7
(
e−A5T ∨ 1

)

λ7 − fz

{

eA5T−A5h E |δYN |2 + fx
λ7

N−1∑

i=0

eA5ih E |δXi |2h
}

.

(5.29)
Note that E |δYN |2 ≤ gx E |δXN |2 by Assumption 1. Plugging it into (5.29), we arrive
at the desired result.

Proof of Lemma 5 We prove by induction backwardly. Let Zπ,′
tN = 0 for conve-

nience. It is straightforward to see that the statement holds for i = N . Assume the

statement holds for i = k + 1. For i = k, we know Y π,′
tk+1

= Uk+1

(
Xπ
tk+1

, Y π
tk+1

)
.

Recalling the definition of
{
Xπ
ti

}
0≤i≤N

,
{
Y π
ti

}
0≤i≤N

in (2.3), we can rewrite Y π,′
tk+1

=
Uk
(
Xπ
tk , Y

π
tk , �Wk

)
, with Uk : R

m × R × R
d → R being a deterministic func-

tion. Note Zπ,′
tk = h−1E

[
Uk
(
Xπ
tk , Y

π
tk , �Wk

)
�Wk |Ftk

]
. Since �Wk is independent

of Ftk , there exists a deterministic function V π
k : R

m × R → R
d such that

Zπ,′
tk = V π

k

(
Xπ
tk , Y

π
tk

)
.

Next we consider Y π,′
tk . Let Hk = L2(�, σ(Xπ

tk , Y
π
tk ),P), where σ

(
Xπ
tk , Y

π
tk

)

denotes the σ -algebra generated by Xπ
tk , Y

π
tk . We know Hk is a Banach space and

another equivalent representation is

Hk =
{
Y = φ

(
Xπ
tk , Y

π
tk

) | φ is measurable and E |Y |2 < ∞
}

.

Consider the following map defined on Hk :

�k(Y ) = E
[
Y π,′
tk+1

+ f
(
tk, X

π
tk , Y, Zπ,′

tk

)
h|Ftk

]
.

By Assumption 3,�k(Y ) is square-integrable. Furthermore, following the same argu-
ment for Zπ,′

tk , �k(Y ) can also be represented as a deterministic function of Xπ
tk , Y

π
tk .

Hence, �k(Y ) ∈ Hk . Note that Assumption 1 implies E |�k(Y1) − �k(Y2)|2 ≤
Kh2E |Y1 −Y2|2. Therefore �k is a contraction map on Hk when h < 1/

√
K . By the

Banach fixed-point theorem, there exists a unique fixed-point Y ∗ = φ∗
k

(
Xπ
tk , Y

π
tk

) ∈
Hk satisfying Y ∗ = �k(Y ∗). We choose Uπ

k = φ∗
k to validate the statement for Y π,′

tk .
When b and σ are independent of y, all of the arguments above can be made

similarly with Uπ
i , V π

i also being independent of Y.

6 Numerical examples

6.1 General setting

In this section, we illustrate the proposed numerical scheme by solving two high-
dimensional coupled FBSDEs adapted from the literature. The common setting for
these two numerical examples is as follows. We assume d = m = 100, that



Probability, Uncertainty and Quantitative Risk             (2020) 5:5 Page 29 of 33

is, Xt , Zt ,Wt ∈ R
100. Assume ξ is deterministic and we are interested in the

approximation error of Y0, which is also a deterministic scalar.
We use N − 1 fully-connected feedforward neural networks to parameterize

φπ
i , i = 0, 1, . . . , N−1. Each of the neural networks has 2 hidden layers with dimen-

sion d + 10. The input has dimension d + 1 (Xi ∈ R
d , Yi ∈ R) and the output has

dimension d. In practice, one can of course choose Xi only as the input. We addition-
ally test this input for the two examples and find no difference in terms of the relative
error of Y0 (up to second decimal place). We use the rectifier function (ReLU) as
the activation function and adopt batch normalization (Ioffe and Szegedy 2015) right
after each matrix multiplication and before activation. We employ the Adam opti-
mizer (Kingma and Ba 2015) to optimize the parameters with batch-size being 64.
The loss function is computed based on 256 validation sample paths. We initialize
all the parameters using a uniform or normal distribution and run each experiment 5
times to report the average result.

6.2 Example 1

The first problem is adapted from (Milstein and Tretyakov 2006; Huijskens et al.
2016), in which the original spatial dimension of the problem is 1. We consider the
following coupled FBSDEs
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X j,t = x j,0 +
∫ t

0

X j,s

(
1 + X2

j,s

)

(2 + X j,s)3
ds

+
∫ t

0

1 + X2
j,s

2 + X2
j,s

√√
√√

1 + 2Y 2
s

1 + Y 2
s + exp

(
− 2|Xs |2

d(s+5)

) dWj,s, j = 1, . . . , d,

Yt = exp

(
− |XT |2
d(T + 5)

)

+
∫ T

t
a(s, Xs, Ys) +

d∑

j=1

b(s, X j,s, Ys)Z j,s ds −
∫ T

t
(Zs)

T dWs,

(6.1)

where X j,t , Z j,t ,Wj,t denote the j-th components of Xt , Yt ,Wt , and the coefficient
functions are given as

a(t, x, u)= 1

d(t + 5)
exp

(
− |x |2
d(t + 5)

)

×
d∑

j=1

⎧
⎪⎨

⎪⎩

4x2j

(
1 + x2j

)

(
2 + x2j

)3 +
(
1 + x2j

)2

(
2 + x2j

)2 −
2x2j

(
1 + x2j

)2

d(t + 5)
(
2 + x2j

)2 − x2j
t + 5

⎫
⎪⎬

⎪⎭
,

b(t, x j , u) = x j
(
2 + x2j

)2

√√√
√1 + u2 + exp

(
− |x |2

d(t+5)

)

1 + 2u2
.
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It can be verified by Itô’s formula that the Y part of the solution of (6.1) is given by

Yt = exp

(
− |Xt |2
d(t + 5)

)
.

Let ξ = (1, 1, . . . , 1) (100-dimensional), T = 5, N = 160. The initial guess
of Y0 is generated from a uniform distribution on the interval [2, 4] while the true
value of Y0 ≈ 0.81873. We train 25000 steps with an exponential decay learning rate
that decays every 100 steps, with the starting learning rate being 1e-2 and ending
learning rate being 1e-5. Figure 1 illustrates the mean of the loss function and relative
approximation error of Y0 against the number of iteration steps. All runs converged
and the average final relative error of Y0 is 0.39%.

6.3 Example 2

The second problem is adapted from (Bender and Zhang 2008), in which the spatial
dimension is originally tested up to 10. The coupled FBSDEs are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X j,t = x j,0 +
∫ t

0
σYs dWj,s, j = 1, . . . , d,

Yt = D
d∑

j=1

sin(X j,T )

+
∫ T

t
−rYs + 1

2
e−3r(T−s)σ 2

⎛

⎝D
d∑

j=1

sin(X j,s)

⎞

⎠

3

ds −
∫ T

t
(Zs)

T dWs,

(6.2)
where σ > 0, r, D are constants. One can easily check by Itô’s formula that the Y
part of the solution of (6.2) is

Yt = e−r(T−t)D
d∑

j=1

sin(X j,t ).

Fig. 1 Loss function (left) and relative approximation error of Y0 (right) against the number of iteration
steps in the case of Example 1 (100-dimensional). The proposed deep BSDE method achieves a relative
error of size 0.39%. The shaded area depicts the mean ± the standard deviation of the associated quantity
in 5 runs
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Fig. 2 Relative approximation error of Y0 against the time step size h in the case of Example 2 (100-
dimensional). The proposed deep BSDE method achieves a relative error of size 0.09% when N =
200 (h = 0.005)

Let ξ = (π/2, π/2, . . . , π/2) (100-dimensional), T = 1, r = 0.1, σ = 0.3, D =
0.1. The initial guess of Y0 is generated from a uniform distribution on the interval
[0, 1] while the true value of Y0 ≈ 9.04837. We train 5000 steps with an exponential
decay learning rate that decays every 100 steps, with the starting learning rate being
1e-2 and the ending learning rate being 1e-3. When h = 0.005 (N = 200), the
relative approximation error of Y0 is 0.09%. Furthermore, we test the influence of the
time partition by choosing different values of N. In all cases, the training converged,
and we plot in Fig. 2 the mean of relative error of Y0 against the number of time steps
N. It is clearly shown that the error decreases as N increases (h decreases).
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