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Abstract For the class of (partially specified) internal risk factor models we estab-
lish strongly simplified supermodular ordering results in comparison to the case of
general risk factor models. This allows us to derive meaningful and improved risk
bounds for the joint portfolio in risk factor models with dependence information
given by constrained specification sets for the copulas of the risk components and
the systemic risk factor. The proof of our main comparison result is not standard. It is
based on grid copula approximation of upper products of copulas and on the theory of
mass transfers. An application to real market data shows considerable improvement
over the standard method.

Keywords Risk bounds · Risk factor model · Supermodular order · Convex order ·
Convex risk measure · Upper product of bivariate copulas · Comonotonicity

1 Introduction

In order to reduce the standard upper risk bounds for a portfolio S =∑d
i=1 Xi based

on marginal information, a promising approach to include structural and dependence
information are partially specified risk factor models, see Bernard et al. (2017b). In
this approach, the risk vector X = (Xi )1≤i≤d is described by a factor model

J. Ansari (�)
Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten
Synagoge 1, KG II, 79098 Freiburg i. Br., Germany
e-mail: jonathan.ansari@finance.uni-freiburg.de

L. Rüschendorf
Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg,
Ernst-Zermelo-Straße 1, 79104 Freiburg, Germany
e-mail: ruschen@stochastik.uni-freiburg.de

http://crossmark.crossref.org/dialog/?doi=10.1186/s41546-020-00045-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jonathan.ansari@finance.uni-freiburg.de
mailto:ruschen@stochastik.uni-freiburg.de


Page 2 of 30 J. Ansari, L. Rüschendorf

Xi = fi (Z , εi ) , 1 ≤ i ≤ d , (1)

with functions fi , systemic risk factor Z , and individual risk factors εi . It is assumed
that the distributions Hi of (Xi , Z) , 1 ≤ i ≤ d , and thus also the marginal distri-
butions Fi of Xi and G of Z are known. The joint distribution of (εi )1≤i≤d and Z ,

however, is not specified in contrast to the usual independence assumptions in factor
models. It has been shown in Bernard et al. (2017b) that in the partially specified risk
factor model a sharp upper bound in convex order of the joint portfolio is given by
the conditionally comonotonic sum, i.e., it holds

S =
d∑

i=1

Xi ≤cx ScZ =
d∑

i=1

F−1
Xi |Z (U ) (2)

for some U ∼ U (0, 1) independent of Z . Furthermore, ScZ is an improvement over
the comonotonic sum, i.e,

ScZ ≤cx Sc =
d∑

i=1

F−1
i (U ) . (3)

For a law-invariant convex risk measure � : L1(�,A, P) → R that has the Fatou-
property it holds that � is consistent with respect to the convex order which yields
that

�(S) ≤ �
(
ScZ
) ≤ �(Sc) , (4)

assuming generally that Xi ∈ L1(P) are integrable and defined on a non-atomic
probability space (�,A, P) , see (Bäuerle and Müller (2006), Theorem 4.3).

We assume that Z is real-valued. Then, the improved upper risk bound depends
only on the marginals Fi , the distribution G of Z , and on the bivariate copulas
Ci = CXi ,Z specifying the dependence structure of (Xi , Z) . An interesting question
is how the worst case dependence structure and the corresponding risk bounds depend
on the specifications Ci , 1 ≤ i ≤ d . More generally, for some subclasses S i ⊂ C2
of the class of two-dimensional copulas C2 , the problem arises how to obtain (sharp)
risk bounds given the information that Ci ∈ S i , 1 ≤ i ≤ d . More precisely, for uni-
variate distribution functions Fi ,G , we aim to solve the constrained maximization
problem

max

{
d∑

i=1

Xi | Xi ∼ Fi , Z ∼ G , CXi ,Z ∈ S i

}

w.r.t. ≤cx (5)

for some suitable dependence specification sets S i . As an extension of (5), we also
determine solutions of the constrained maximization problem

max

{
d∑

i=1

Xi | Fi ∈ Fi , G ∈ F0 , CXi ,Z ∈ S i

}

w.r.t. ≤cx (6)

with dependence specification sets S i and marginal specification sets Fi ⊂ F1 ,

where F1 denotes the set of univariate distribution functions.
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A main aim of this paper is to solve the constrained supermodular maximization
problem

max
{
(X1, . . . , Xd) | Xi ∼ Fi , Z ∼ G , CXi ,Z ∈ S i

}
w.r.t. ≤sm (7)

for Fi ∈ Fi and G ∈ F0 . A solution of this stronger maximization problem allows
more general applications. In particular, it holds that

(ξi )i ≤sm (ζi )i =⇒
∑

i

ξi ≤cx

∑

i

ζi , (8)

and thus a solution of (7) also yields a solution of (5).
Note that solutions of the maximization problems do not necessarily exist because

both the convex ordering of the constrained sums and the supermodular ordering are
partial orders on the underlying classes of distributions that do not form a lattice,
see Müller and Scarsini (2006). In general, the existence of solutions also depends
on the marginal constraints Fi and G . In this paper, we determine solutions of the
maximization problems for large classes Fi ⊂ F1 of marginal constraints under
some specific dependence constraints S i .

In Ansari and Rüschendorf (2016), some results on the supermodular maximiza-
tion problem are given for normal and Kotz-type distributional models for the risk
vector X . Some general supermodular ordering results for conditionally comono-
tonic random vectors are established in Ansari and Rüschendorf (2018). Therein, as a
useful tool, the upper product

∨d
i=1 D

i of bivariate copulas Di ∈ C2 is introduced by

d∨

i=1

Di (u) := D1 ∨ · · · ∨ Dd(u) :=
∫ 1

0
min

1≤i≤d
{∂2D

i (ui , t)} dt

for u = (u1, . . . , ud) ∈ [0, 1]d , where ∂2 denotes the partial derivative operator
w.r.t. the second variable. (Note that we superscribe copulas with upper indices in this
paper which should not be confused with exponents.) If the risk factor distribution G
is continuous, then

∨d
i=1 C

i is the copula of the conditionally comonotonic risk vec-

tor
(
F−1
Xi |Z (U )

)

1≤i≤d
with specifications CXi ,Z = Ci , see Ansari and Rüschendorf

(2018), Proposition 2.4. Thus, ordering the dependencies of conditionally comono-
tonic random vectors is based on ordering the corresponding upper products. In
particular, a strong dependence ordering condition on the copulas Ai , Bi ∈ C2 (based
on the sign sequence ordering) allows us to infer inequalities of the form

A1 ∨ · · · ∨ Ad ∨ B1 ≤sm A1 ∨ · · · ∨ Ad ∨ B2 ,

see (Ansari and Rüschendorf 2018), Theorem 3.10. In this paper, we characterize
upper product inequalities of the type

M2 ∨ D2 ∨ · · · ∨ Dd ≤sm M2 ∨ E ∨ · · · ∨ E︸ ︷︷ ︸
(d−1)-times

(9)

for copulas D2, . . . Dd , E ∈ C2 , where M2 denotes the upper Fréchet copula in the
bivariate case. These inequalities are based on simple lower orthant ordering condi-
tions on the sets S i such that solutions of the maximization problems (5) – (7) exist
and can be determined.
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The problem to find risk bounds for the Value-at-Risk (VaR) or other risk measures
of a portfolio under the assumption of partial knowledge of the marginals and the
dependence structure is a central problem in risk management. Bounds for the VaR
(or the closely related distributional bounds), resp., for the Tail-Value-at-Risk (TVaR)
based on some moment information have been studied extensively in the insurance
literature by authors such as Kaas and Goovaerts (1986), Denuit et al. (1999), de
Schepper and Heijnen (2010), Hürlimann (2002); Hürlimann (2008), Goovaerts et
al. (2011), Bernard et al. (2017a); Bernard et al. (2018), Tian (2008), and Cornilly
et al. (2018). Hürlimann (2002) derived analytical bounds for VaR and TVaR under
knowledge of the mean, variance, skewness, and kurtosis.

The more recent literature has focused on the problem of finding risk bounds under
the assumption that all marginal distributions are known but the dependence struc-
ture of the portfolio is either unknown or only partially known. Risk bounds with
pure marginal information were intensively studied but were often found to be too
wide in order to be useful in practice (see Embrechts and Puccetti (2006); Embrechts
et al. (2013); Embrechts et al. (2014)). Related aggregation-robustness and model
uncertainty for risk measures are also investigated in Embrechts et al. (2015). Sev-
eral approaches to add some dependence information to marginal information have
been discussed in ample literature (see Puccetti and Rüschendorf (2012a); Puccetti
and Rüschendorf (2012b); Puccetti and Rüschendorf (2013); Bernard and Vanduf-
fel (2015), Bernard et al. (2017a); Bernard et al. (2017b), Bignozzi et al. (2015);
Rüschendorf and Witting (2017); Puccetti et al. (2017) ). For some surveys on these
developments, see Rueschendorf (2017a, 2017b).

Apparently, a relevant dependence information and structural information leading
to a considerable reduction of the risk bounds is given by the partially specified risk
factor model as introduced in Bernard et al. (2017b). In this paper, we show that for
a large relevant class of partially specified risk factor models–the internal risk factor
models–more simple sufficient conditions for the supermodular ordering of the upper
products–and thus for the conditionally comonotonic risk vectors–can be obtained
by simple lower orthant ordering conditions on the dependence specifications. These
simplified conditions allow easy applications to ordering results for risk bounds with
subset specification sets S i described above. We give an illuminating application
to real market data which clearly shows the potential usefulness of the comparison
results. For some further details, we refer to the dissertation of Ansari (2019).

2 Internal risk factor models

A simplified supermodular ordering result for conditionally comonotonic random
vectors can be obtained in the case that the risk factor Z is itself a component of these
risk vectors. As a slight generalization, we define the notion of an internal risk factor
model.

Definition 1 (Internal risk factor model) A (partially specified) internal risk fac-
tor model with internal risk factor Z is a (partially specified) risk factor model
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(Xi )1≤i≤d , Xi = fi (Z , εi ) , such that for some j ∈ {1, . . . , d} and a non-decreasing
function g j holds X j = g j (Z) .

Without loss of generality, the distribution function of the internal risk factor can
be chosen continuous, i.e., Z ∼ G ∈ F1

c . Thus, the not necessarily uniquely deter-
mined copula of (X j , Z) can be chosen as the upper Fréchet copula M2 . This means
that X j and Z are comonotonic and Z can be considered as a component of the risk
vector X which explains the denomination of Z as an internal risk factor.

In partially specified risk factor models, the dependence structure of the worst
case conditionally comonotonic vector is represented by the upper product of the
dependence specifications if G ∈ F1

c , i.e.,

(
F−1
Xi |Z (U )

)

1≤i≤d
∼

d∨

i=1

Ci (F1, . . . , Fd) . (10)

Thus, assuming w.l.o.g. that j = 1 , our aim is to derive supermodular ordering
results for the upper product M2 ∨ D2 ∨ · · · ∨ Dd with respect to the dependence
specifications Di .

For a function f : Rd → R , let 	ε
i f (x) := f (x + εei ) − g(x) be the difference

operator, where ε > 0 and ei denotes the unit vector w.r.t. the canonical base in R
d .

Then, f is said to be supermodular, resp., directionally convex if 	εi
i 	ε j

j f ≥ 0 for
all 1 ≤ i < j ≤ d , resp., 1 ≤ i ≤ j ≤ d . For d-dimensional random vectors
ξ, ξ ′ , the supermodular ordering ξ ≤sm ξ ′ , resp., the directionally convex ordering
ξ ≤dcx ξ ′ is defined via E f (ξ) ≤ E f (ξ ′) for all supermodular, resp., direction-
ally convex functions f for which the expectations exist. The lower, resp., upper
orthant ordering ξ ≤lo ξ ′ , resp., ξ ≤uo ξ ′ is defined by the pointwise comparison of
the corresponding distribution, resp., survival functions, i.e., Fξ (x) ≤ Fξ ′(x) , resp.,
Fξ (x) ≤ Fξ ′(x) for all x ∈ R

d . Remember that the convex ordering ζ ≤cx ζ ′
for real-valued random variables ζ, ζ ′ is defined via Eϕ(ζ ) ≤ Eϕ(ζ ′) for all con-
vex functions ϕ for which the expectation exists. Note that these orderings depend
only on the distributions and, thus, are also defined for the corresponding distribution
functions. For an overview of stochastic orderings, see Müller and Stoyan (2002),
Shaked and Shantikumar (2007), and Rüschendorf (2013).

The following theorem is a main result of this paper. It characterizes the upper
product inequality (9) concerning partially specified internal risk factor models.

Theorem 1 (Supermodular ordering of upper products) Let D2 . . . , Dd , E ∈ C2 .

Then, the following statements are equivalent:

(i) Di ≤lo E for all 2 ≤ i ≤ d .

(ii) M2 ∨ D2 ∨ · · · ∨ Dd ≤lo M2 ∨ E ∨ · · · ∨ E︸ ︷︷ ︸
(d−1)-times

.

(iii) M2 ∨ D2 ∨ · · · ∨ Dd ≤sm M2 ∨ E ∨ · · · ∨ E︸ ︷︷ ︸
(d−1)-times

.
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The proof of the equivalence of (i) and (ii) is not difficult, whereas the equivalence
w.r.t. the supermodular ordering in (iii) which we derive in Section 3 requires some
effort. Its proof is based on the mass transfer theory for discrete approximations of
the upper products and, further, on a conditioning argument using extensions of the
standard orderings ≤lo , ≤uo , ≤sm as well as of the comonotonicity notion to the
frame of signed measures.

Proof Assume that Di ≤lo E . Then, for u = (u1, . . . , ud) ∈ [0, 1]d , we obtain
from the definition of the upper product that

M2 ∨ D2 ∨ · · · ∨ Dd(u) =
∫ u1

0
min

2≤i≤d

{
∂2D

i (ui , t)
}

dt

≤ min
2≤i≤d

{∫ u1

0
∂2D

i (ui , t) dt

}

= min
2≤i≤d

{
Di (ui , u1)

}

≤ min
2≤i≤d

{E(ui , u1)}

=
∫ u1

0
min

2≤i≤d
{∂2E(ui , t)} dt

= M2 ∨ E ∨ · · · ∨ E︸ ︷︷ ︸
(d−1)-times

(u) ,

(11)

using that ∂2M2(u1, t) = 1{u1≥t} almost surely.
The reverse direction follows from the closures of the upper product (see Ansari

and Rüschendorf (2018), Proposition 2.4.(iv)) and of the lower orthant ordering under
marginalization.

The proof of ‘(i) ⇐⇒ (iii)’ is given in Section 3.

As a consequence of the above supermodular ordering theorem for upper prod-
ucts, we obtain improved bounds in partially specified internal risk factor models in
comparison to the standard bounds based on marginal information.

Theorem 2 (Improved bounds in internal risk factor models) For Fj ∈ F1 , let
X j ∼ Fj , 1 ≤ j ≤ d , be real-valued random variables such that Ci = CXi ,X1 ≤lo

E for all 2 ≤ i ≤ d . Then, for Y1, . . . , Yd with X j
d=Y j for all 1 ≤ j ≤ d and

CYi ,Y1 = E for all 2 ≤ i ≤ d holds

(X1, . . . , Xd) ≤sm

(
Y1, F

−1
Y2|Y1

(U ), . . . , F−1
Yd |Y1

(U )
)

(12)

for U ∼ U (0, 1) independent of Y1 . In particular, this implies

d∑

i=1

Xi ≤cx Y1 +
d∑

i=2

F−1
Yi |Y1

(U ) . (13)
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Proof Without loss of generality, let Xi ∼ U (0, 1) . Then, (X1, . . . , Xd) follows
a partially specified internal risk factor model with internal risk factor Z = X1 and
dependence constraints CXi ,Z = Ci , 2 ≤ i ≤ d . We obtain

FX1,...,Xd ≤sm M2 ∨ C2 ∨ · · · ∨ Cd ≤sm M2 ∨ E ∨ · · · ∨ E︸ ︷︷ ︸
(d−1)-times

,

where the first inequality follows from Ansari and Rüschendorf (2018), Proposition
2.4.(i) and the second inequality holds due to Theorem 1. Thus, (12) follows from the
representation in (10). The statement in (13) is a consequence of (8) and (12).

Remark 1 (a) The upper bound in (12) is comonotonic conditionally on Y1.

Further, the vector
(
F−1
Y2|Y1

(U ), . . . , F−1
Yd |Y1

(U )
)
is comonotonic because all

copulas CYi ,Y1 = E coincide, 2 ≤ i ≤ d , cf. Ansari and Rüschendorf (2018),
Proposition 2.4(v).

(b) For d = 2 , (12) reduces to (X1, X2) ≤sm (Y1, Y2) and the upper product in
Theorem 1 simplifies to M2 ∨ D2 = (D2)T , resp., M2 ∨ E = ET , where the
copula CT is the transposed copula of C ∈ C2 , i.e., CT (u, v) = C(v, u) . In
this case, the statements of Theorems 1 and 2 are known from the literature,
see, e.g., (Müller (1997), Theorem 2.7). Further, for d > 2 , the result in Theo-
rem 2 cannot be obtained by a simple supermodular mixing argument because,
in the general case, a supermodular ordering of all conditional distributions is
not possible, i.e., there exists a z outside a null set such that

(X1, . . . , Xd)|X1 = z ≤sm (Y1, F
−1
Y2|Y1

(U ), . . . , F−1
Yd |Y1

(U ))|Y1 = z ,

unless CXi ,X1 = E for all i , see (Ansari (2019), Proposition 3.18).
(c) If (Xi , X1) are negatively lower orthant dependent for all 2 ≤ i ≤ d , i.e.,

CXi ,X1(u, v) ≤ 	2(u, v) = uv for all (u, v) ∈ [0, 1]2 , then Theorem 2
simplifies to

(X1, . . . , Xd) ≤sm

(
X1, F

−1
X2

(U ), . . . , F−1
Xd

(U )
)

and
d∑

i=1

Xi ≤cx X1 +
d∑

i=2

F−1
Xi

(U ) ,

where U ∼ U (0, 1) is independent of X1 .

(d) For G ∈ F1
c , the right side in (12), resp., (13) solves the constrainedmaximization

problem (7), resp., (5) for the dependence specification sets

S1 = {M2} , and

S i = {C ∈ C2 |C ≤lo E} , 2 ≤ i ≤ d . (14)

As a consequence of Theorem 2, we also obtain improved upper bounds under
some correlation information. For a bivariate random vector (V1, V2) ∼ C ∈ C2 ,

denote Spearman’s ρ , resp., Kendall’s τ of (V1, V2) by ρS(V1, V2) = ρS(C) , resp.,
τ(V1, V2) = τ(C) .
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For r ∈ [−1, 1] , define Cr (u, v) := sup{C(u, v) |C ∈ C2 , ρS(C) = r} , (u, v) ∈
[0, 1]2 . Then, Cr is a bivariate copula and is given by

Cr (u, v) = min
{
u, v, u+v−1

2 + φ(u + v − 1, 1 + r)
}

,

where φ(a, b) = 1
6

[
(9b + 3

√
9b2 − 3a6)1/3 + (9b − 3

√
9b2 − 3a6)1/3

]
, see

Nelsen et al. (2001) [Theorem 4].
For t ∈ [−1, 1] , define Dt (u, v) := sup{C(u, v) | C ∈ C2 , τ (C) = t} , (u, v) ∈

[0, 1]2 . Then, Dt is a bivariate copula and given by

Dt (u, v) = min

{

u, v,
1

2

[
(u + v − 1) +

√
(u + v − 1)2 + 1 + t

]}

,

see Nelsen et al. (2001) [Theorem 2].

The risk bounds can be improved under correlation bounds as follows.

Corollary 1 (Improved bounds based on correlations) Let X1, . . . , Xd be real-
valued random variables such that either

(i) ρS(X1, Xi ) < 0.5 for all 2 ≤ i ≤ d , or
(ii) τ(X1, Xi ) < 0 for all 2 ≤ i ≤ d .

Let r := max2≤i≤d{ρS(X1, Xi )} , resp., t := max2≤i≤d{τ(X1, Xi )} . Then, for

Y1, . . . , Yd with Y j
d=X j , 1 ≤ j ≤ d , and CYi ,Y1 = Cr , resp., CYi ,Y1 = Dt for all

2 ≤ i ≤ d , it holds true that

(X1, . . . , Xd) ≤sm

(
Y1, F

−1
Y2|Y1

(U ), . . . , F−1
Yd |Y1

(U )
)

<sm

(
F−1
Y1

(U ), . . . , F−1
Yd

(U )
)

,
(15)

where U ∼ U (0, 1) is independent of Y1 .

Proof The result follows from Theorem 2 using the monotonicity of the distribu-
tional bound Cr in r , resp., Dt in t w.r.t. the lower orthant ordering, see Nelsen et al.
(2001) [Corollary 5 (a),(b),(e), resp., Corollary 3 (a),(b),(e)].

Remark 2 For r ∈ (−1, 0.5) and t ∈ (−1, 0) , it holds that ρS(Cr ) > r and
τ(Dt ) > t , see Nelsen et al. (2001) [Corollary 3(h), resp., 5(h)]. Thus, for Fi ∈ F1,

1 ≤ i ≤ d , G ∈ F1
c and

S1 = {M2} , and

S i = {C ∈ C2 | ρS(C) ≤ r} resp. S i = {C ∈ C2 | τ(C) ≤ t} ,

2 ≤ i ≤ d , only an improved upper bound in supermodular ordering for the con-
strained risk vectors but not a solution of maximization problem (5), resp., (7) can be
achieved.
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To also allow a comparison of the univariate marginal distributions, remember
that a bivariate copula D is conditionally increasing (CI) if there exists a bivariate
random vector (U1,U2) ∼ D such that U1|U2 = u2 is stochastically increasing in u2
and U2|U1 = u1 is stochastically increasing in u1 . Equivalently, ∂2D(u, v) is almost
surely decreasing in v for all u ∈ [0, 1] and ∂1D(u, v) is almost surely decreasing in
u for all v ∈ [0, 1] .

If the upper bound E in Theorem 2 is conditionally increasing, then the case of
increasing marginals in convex order can also be handled.

Theorem 3 (Improved bounds in ≤dcx-order)
Let X1, . . . , Xd be real-valued random variables with CXi ,X1 ≤lo E for all 2 ≤ i ≤
d . Assume that E is conditionally increasing. Then, for Y1, . . . , Yd with X j ≤cx Y j
for all 1 ≤ j ≤ d and CYi ,Y1 = E for all 2 ≤ i ≤ d holds

(X1, . . . , Xd) ≤dcx

(
Y1, F

−1
Y2|Y1

(U ), . . . , F−1
Yd |Y1

(U )
)

,

where U ∼ U (0, 1) is independent of Y1 . This implies

d∑

i=1

Xi ≤cx Y1 +
d∑

i=2

F−1
Yi |Y1

(U ) . (16)

Proof Let Y ′
1, . . . , Y

′
d with X j

d=Y ′
j for all 1 ≤ j ≤ d and CY ′

i ,Y
′
1

= E for all
2 ≤ i ≤ d . Then, we obtain from (12) that

(X1, . . . , Xd) ≤sm

(
Y ′

1, F
−1
Y ′

2,Y
′
1
(V ), . . . , F−1

Y ′
d ,Y ′

1
(V )
)

for V ∼ U (0, 1) independent of Y ′
1. Since both

(
Y ′

1, F
−1
Y ′

2,Y
′
1
(V ), . . . , F−1

Y ′
d ,Y ′

1
(V )
)

and
(
Y1, F

−1
Y2|Y1

(U ), . . . , F−1
Yd |Y1

(U )
)

have the same copula M2 ∨ E ∨ · · · ∨ E︸ ︷︷ ︸
(d−1)-times

, which

is easily shown to be CI, the statement follows from Müller and Scarsini (2001),
Theorem 4.5 using Y ′

i ≤cx Yi .

Remark 3 For F1, . . . , Fd ∈ F1, consider the sets F ′
i := {F ∈ F1|F ≤cx Fi } .

Let the sets S i of dependence specifications be given as in (14). If E = CYi ,Y1 is CI
and Yi ∼ Fi , then the upper bound in (16) solves maximization problem (6) with
marginal specification sets F0 = F1

c and Fi = F ′
i for 1 ≤ i ≤ d .

For a generalization of Theorem 2, we need an extension of (8) as follows.

Lemma 1 Let X = (Xi
k

)
1≤i≤d,1≤k≤m and Y = (Y i

k

)
1≤i≤d,1≤k≤m be (d × m)-

matrices of real random variables with independent columns.
If
(
Xi
k

)
1≤i≤d ≤sm

(
Y i
k

)
1≤i≤d for all 1 ≤ k ≤ m , then it holds true that

d∑

i=1

ψi

(
m∑

k=1

f ik

(
Xi
k

)
)

≤cx

d∑

i=1

ψi

(
m∑

k=1

f ik

(
Y i
k

)
)
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for all increasing convex functions ψi and increasing functions f ik .

Proof By straightforward calculations, it can be shown that the function
h : (Rm)d → R given by

h(x) = ϕ

(
d∑

i=1

ψi

(
m∑

k=1

xik

))

is supermodular for all increasing convex functions ϕ . Then, the invariance under
increasing transformations and the concatenation property of the supermodular order
(see, e.g., Shaked and Shantikumar (2007) [Theorem 9.A.9(a),(b)]) imply that

d∑

i=1

ψi

(
m∑

k=1

f ik

(
Xi
k

)
)

≤icx

d∑

i=1

ψi

(
m∑

k=1

f ik

(
Y i
k

)
)

,

where ≤icx denotes the increasing convex order. Since it holds for 1 ≤ i ≤ d that
∑m

k=1 f ik
(
Xi
k

) d=∑m
k=1 f ik

(
Y i
k

)
, we obtain

E

[
d∑

i=1

ψi

(
m∑

k=1

f ik

(
Xi
k

)
)]

= E

[
d∑

i=1

ψi

(
m∑

k=1

f ik

(
Y i
k

)
)]

.

Hence, the assertion follows from Shaked and Shantikumar (2007) [Theorem
4.A.35].

The application to improved portfolio TVaR bounds in Section 4 is based on the
following generalization of Theorem 2.

Theorem 4 (Concatenation of upper bounds) For Fk
i ∈ F1 , let

(
Xk

1, . . . , X
k
d

)
,

1 ≤ k ≤ m , be independent random vectors with Xk
i ∼ Fk

i . Assume that CXk
i ,X

k
1

≤lo

Ek for Ek ∈ C2 for all 2 ≤ i ≤ d , 1 ≤ k ≤ m . Then, for independent vectors
(
Y k

1 , . . . , Y k
d

)
with Y k

i
d=Xk

i and CYk
i ,Y k

1
= Ek for all 2 ≤ i ≤ d , 1 ≤ k ≤ m holds

(
Xk

1, . . . , X
k
d

)

1≤k≤m
≤sm

(

Y k
1 , F−1

Y k
2 |Y k

1
(Uk), . . . , F−1

Y k
d |Y k

1
(Uk)

)

1≤k≤m
, (17)

where U 1, . . . ,Um ∼ U (0, 1) are i.i.d. and independent of Y k
1 for all k . This implies

d∑

i=1

ϕi

(
m∑

k=1

Xk
i

)

≤cx ϕ1

(
m∑

k=1

Y k
1

)

+
d∑

i=2

ϕi

(
m∑

k=1

F−1
Y k
i |Y k

1
(Uk)

)

(18)

for all increasing convex functions ϕ1, . . . , ϕd .

Proof Statement (17) follows from Theorem 2 with the concatenation property
of the supermodular ordering. Statement (18) is a consequence of Theorem 2 and
Lemma 1.
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Remark 4 Under the assumptions of Theorem 4, the right hand side in (18) solves
maximization problem (5) for

S1 :=
{
M2
}

,

S i :=
{
Cϕi
(∑

k X
k
i

)
,ϕ1(
∑

k X
k
i )

| CXk
i ,X

k
1

≤lo Ek f.a.i, k
}

, 2 ≤ i ≤ d ,

where Fi = Fϕi
(∑

k X
k
i

) , 1 ≤ i ≤ d and G ∈ F1
c .

3 Proof of the supermodular ordering in Theorem 1

In this section, we prove the equivalence of (i) and (iii) in Theorem 1. This requires
some preparations. We approximate the upper products by discrete upper products
based on grid copula approximations. Then, we show that these discrete upper prod-
ucts can be supermodularly ordered using a conditioning argument and mass transfer
theory from Müller (2013). However, requires an extension of the orderings ≤lo ,

≤uo , ≤sm , and of comonotonicity to the frame of signed measures.

3.1 Extensions of ≤lo , ≤uo , and ≤sm to signed measures

For a Borel-measurable subset � ⊂ R
d , denote by B(�) the Borel-σ -algebra on � .

Denote by M1
d the set of probability measures on B(�) . A signed measure on B(�)

is a σ -additive mapping μ : B(�) → R such that μ(∅) = 0 . Let M0
d = M

0
d(�) ,

resp., M1
d = M

1
d(�) be the set of all signed measures μ on B(�) with μ(�) = 0 ,

resp., μ(�) = 1 and finite variation norm ‖μ‖ = μ+(�) + μ−(�) < ∞ , where
μ+, μ− are the unique measures obtained from the Hahn–Jordan decomposition of
μ = μ+ − μ− . Then, the definition of the orderings ≤lo , ≤uo , and ≤sm can be
extended to signed distributions using this decomposition.

Definition 2 Let P, Q ∈ M
1
d be signed measures. Then, define

(i) the lower orthant order P ≤lo Q if P((−∞, x]) ≤ Q((−∞, x]) holds for all
x ∈ R

d ,

(ii) the upper orthant order P ≤uo Q if P((x, ∞)) ≤ Q((x, ∞)) holds for all
x ∈ R

d ,

(iii) the supermodular order P ≤sm Q if
∫

f (x) dP(x) ≤ ∫ f (x) dQ(x) holds for
all supermodular integrable functions f .

We generalize the concept of comonotonicity to signed measures as follows.

3.2 Quasi-comonotonicity

We say that a probability distribution Q , resp., a distribution function F is comono-
tonic if there exists a comonotonic random vector ξ such that ξ ∼ Q , resp.,
Fξ = F .
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For a signed measure P ∈ M
1
d , we define the associated measure generating

function F = FP by F(x) = P((−∞, x]) and its univariate marginal measure
generating functions Fi by Fi (xi ) = P(R×· · ·R× (−∞, xi ]×R×· · ·×R) for x =
(x1, . . . , xd) ∈ R

d and 1 ≤ i ≤ d . We define the notion of quasi-comonotonicity as
follows.

Definition 3 (Quasi-comonotonicity)
We denote P , resp., F as quasi-comonotonic if F(x) = min

1≤i≤d
{Fi (xi )} for all x =

(x1, . . . , xd) ∈ R
d .

Obviously, if P ∈ M1
d , then the quasi-comonotonicity and comonotonicity of P

are equivalent.
The following lemma characterizes the lower orthant ordering of (quasi-) comono-

tonic distributions in terms of the upper orthant order.

Lemma 2 Let P ∈ M
1
d be a signed distribution with univariate marginal distri-

bution functions Fi , 1 ≤ i ≤ d . Let Q ∈ M1
d be a probability distribution. Assume

that Fi (t) ≤ 1 for all t ∈ R , 1 ≤ i ≤ d . If P is quasi-comonotonic and Q is
comonotonic, then it holds that

P ≤lo Q ⇐⇒ P ≥uo Q .

Proof Let Ai = {(y1, . . . , yd) ∈ R
d | yi ∈ (xi , ∞]} , 1 ≤ i ≤ d , and let a j :=

Fi j (xi j ) for i1, . . . , id ∈ {1, . . . , d} such that a1 ≥ . . . ≥ ad . Then, the survival
function F corresponding to F is calculated by

F(x) = P

(
d⋂

i=1

Ai

)

= 1 − P

(
d⋃

i=1

Ac
i

)

= 1 −
∑

∅=J⊂{1,...,d}
(−1)|J |+1P

⎛

⎝
⋂

j∈J

Ac
j

⎞

⎠

= 1 −
∑

∅=J⊂{1,...,d}
(−1)|J |+1 min

j∈J
{Fj (x j )}

= 1 −
d∑

k=1

k∑

j=1

(−1)k− j+2
(
k − 1

k − j

)

ak

= 1 − a1 = 1 − max
1≤i≤d

{Fi (xi )} ,

where the fourth equality holds true because P is quasi-comonotonic, Fi ≤ 1 and
Fi (∞) = 1 for all i . The fifth equality follows since there are

(k−1
k− j

)
subsets of

{1, . . . , k} with k − j + 1 elements such that k is the maximum element. The sixth
equality holds due to the symmetry of the binomial coefficient.
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Let G be the distribution function corresponding to Q with univariate margins
Gi . Then, it holds analogously that G(x) = Q((x, ∞)) = 1 − maxi {Gi (xi )} for
x = (x1, . . . , xd) ∈ R

d . We obtain that

P ≤lo Q

⇐⇒ min
i

{Fi (xi )} ≤ min
i

{Gi (xi )} ∀ (x1, . . . , xd) ∈ R
d

⇐⇒ Fi (t) ≤ Gi (t) ∀ t ∈ R ∀ 1 ≤ i ≤ d

⇐⇒ 1 − max
i

{Fi (xi )} ≥ 1 − max
i

{Gi (xi )} ∀ (x1, . . . , xd) ∈ R
d

⇐⇒ P ≥uo Q ,

where we use for the second equivalence that Fi ,Gi ≤ 1 and Fi (∞) = Gi (∞) = 1
for all 1 ≤ i ≤ d . The third equivalence holds true because Gi ≥ 0 and Gi (−∞) = 0
for all i .

3.3 Grid copula approximation

In this subsection, we consider the approximation of the upper product by grid cop-
ulas. In the proof of the supermodular ordering in Theorem 1, we make essential use
of the property that this approximation is done by distributions with finite support.

For n ∈ N and d ≥ 1 , denote by

G
d
n : =
{(

i1
n , . . . ,

id
n

)
|ik ∈ {1, . . . , n}, k ∈ {1, . . . , d}

}
, resp.,

G
d
n,0 : =

{(
i1
n , . . . ,

id
n

)
|ik ∈ {0, . . . , n}, k ∈ {1, . . . , d}

}

the (extended) uniform unit n-grid of dimension d with edge length 1
n .

The following notion of an n-grid d-copula is related to an d-subcopula with
domain G

d
n , see, e.g., Nelsen (2006), Definition 2.10.5. For our purpose, we also

need a signed version. Denote by �·� the componentwise floor function.

Definition 4 (Grid copula) For d ∈ N , a (signed) n-grid d-copula (briefly grid
copula) D : [0, 1]d → R is the (signed) measure generating function of a (signed)
measure μ ∈ M

1
d(G

d
n,0) with uniform univariate margins, i.e., it holds that

(i) D(u) = D
( �nu�

n

)
= μ
([

0,
�nu�
n

])
for all u ∈ [0, 1]d , and

(ii) for all i = 1, . . . , d holds D(u) = k
n for all k = 0, . . . , n , if ui = k

n and
u j = 1 for all j = i .

Denote by Cd,n (resp., ∈ Cs2,n) the set of all (signed) n-grid d-copulas.

An 1
n -scaled doubly stochastic matrix or, if the dimension of the matrix is clear, a

mass matrix is defined as an n × n-matrix with non-negative entries and row, resp.,
column sums equal to 1

n . By an signed 1
n -scaled doubly stochastic matrix or also

signed mass matrix, we mean an 1
n -scaled doubly stochastic matrix where negative

entries are also allowed.
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Obviously, there is a one-to-one correspondence between the set of (signed) n-grid
2-copulas and the set of (signed) 1

n -scaled doubly stochastic matrices.
For a bivariate (signed) n-grid copula E ∈ C2,n (∈ Cs2,n), the associated (signed)

probability mass function e is defined by

e(u, v) := �1
n�

2
n E(u, v) , (u, v) ∈ G

2
n ,

where �i
n (distinct from 	εi

i ) denotes the difference operator of length 1
n with respect

to the i-th variable, i.e.,

�i
ng(u) := g(u) − g((u − 1

n ei ) ∨ 0)

for u ∈ G
d
n,0 and the i-th unit vector ei . Further, define its associated (signed) mass

matrix (ekl)1≤k,l≤n by

ekl = e
(

1 − k−1
n , l

n

)
. (19)

For every d-copula D ∈ Cd , denote by Gn(D) its canonical n-grid d-copula given
by

Gn(D)(u) := D
( �nu�

n

)
, u ∈ [0, 1]d .

Define the upper product
∨ : (C2,n)

d → Cd,n for grid copulas D1
n, . . . , D

d
n ∈ C2,n

by
d∨

i=1

Di
n(u1, . . . , ud) : =

n∑

k=1

min
1≤i≤d

{
�2

nD
i
n

(
ui ,

k
n

)}

= 1

n

n∑

k=1

min
1≤i≤d

{
n�2

nD
i
n

(
ui ,

k
n

)}
(20)

for (u1, . . . , ud) ∈ [0, 1]d . A version for signed grid copulas is defined analogously.
The following result gives a sufficient supermodular ordering criterion for the

upper product based on the approximations by grid copulas, see Ansari and
Rüschendorf (2018), Proposition 3.7.

Proposition 1 Let Di , Ei ∈ C2 be bivariate copulas for 1 ≤ i ≤ d . Then, it holds
true that

d∨

i=1

Gn(D
i ) ≤sm

d∨

i=1

Gn(E
i ) ∀n ∈ N =⇒

d∨

i=1

Di ≤sm

d∨

i=1

Ei .

We make use of the above ordering criterion because the approximation is done
by distributions with finite support. But the supermodular ordering of distributions
with finite support enjoys a dual characterization by mass transfers as follows.

3.4 Mass transfer theory

This section and the notation herein is based on the mass transfer theory as developed
in Müller (2013).
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For signed measures P, Q ∈ M
1
d with finite support, denote the signed measure

Q − P a transfer from P to Q . To indicate this transfer, write

n∑

i=1

αiδxi →
m∑

i=1

βiδyi , (21)

where (Q − P)− = ∑n
i=1 αiδxi and (Q − P)+ = ∑m

i=1 βiδyi for αi , β j > 0 and
xi , y j ∈ R

d , 1 ≤ i ≤ n , 1 ≤ j ≤ m . A reverse transfer from P to Q is a transfer
from Q to P .

Since Q = P + (Q − P) = P −∑n
i=1 αiδxi +∑m

i=1 βiδyi , the mapping in
(21) illustrates the mass that is transferred from P to Q . By definition, it holds that
Q − P ∈ M

0
d . Thus, mass is only shifted and, in total, neither created nor lost.

For a set M ⊂ M
0
d of transfers, one is interested in the class F of continuous

functions f : S → R such that

m∑

j=1

β j f (y j ) ≥
n∑

i=1

αi f (xi )

whenever μ ∈ M , where μ := ∑m
j=1 β jδy j −∑n

i=1 αiδxi , αi , β j > 0 . Then, F is
said to be induced from M.

We focus on the set of �-monotone, resp., �-antitone, resp., supermodular trans-
fers. These sets induce the classes F� of �-monotone, resp., F−

� of �-antitone, resp.,
Fsm of supermodular functions on S .

Definition 5 Let η > 0 . Let x ≤ y with strict inequality xi < yi for k indices
i1, . . . , ik for some k ∈ {1, . . . , d} . Denote by Vo(x, y) , resp., Ve(x, y) the set of all
vertices z of the k-dimensional hyperbox [x, y] such that the number of components
with zi = xi , i ∈ {i1, . . . , ik} is odd, resp., even.

(i) A transfer indicated by

η

⎛

⎝
∑

z∈V0(x,y)

δz

⎞

⎠→ η

⎛

⎝
∑

z∈Ve(x,y)

δz

⎞

⎠

is called a (k-dimensional) �-monotone transfer.
(ii) A transfer indicated by

η

⎛

⎝
∑

z∈Vo(x,y)

δz

⎞

⎠→ η

⎛

⎝
∑

z∈Ve(x,y)

δz

⎞

⎠ if k is even, and

η

⎛

⎝
∑

z∈Ve(x,y)

δz

⎞

⎠→ η

⎛

⎝
∑

z∈Vo(x,y)

δz

⎞

⎠ if k is odd

is called a (k-dimensional) �-antitone transfer.
(iii) For v, w ∈ R

d , a transfer indicated by

η(δv + δw) → η(δv∧w + δv∨w)
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is called a supermodular transfer, where ∧ , resp., ∨ denotes the component-
wise minimum, resp., maximum.

The characterizations of the orderings ≤uo , ≤lo , resp., ≤sm by mass transfers due
to (Müller (2013), Theorems 2.5.7 and 2.5.4) also hold in the case of signed mea-
sures because the proof makes only a statement on transfers, i.e., on the difference of
measures.

Proposition 2 For signed measures P, Q ∈ M
1
d with finite support holds:

(i) P ≤uo Q if and only if Q can be obtained from P by a finite number of
�-monotone transfers.

(ii) P ≤lo Q if and only if Q can be obtained from P by a finite number of �-
antitone transfers.

(iii) P ≤sm Q if and only if Q can be obtained from P by a finite number of
supermodular transfers.

Remark 5 From Definition 5, we obtain that exactly the one-dimensional �-
monotone, resp., �-antitone transfers affect the univariate marginal distributions.
Hence, for measures P, Q ∈ M1

d(�) with equal univariate distributions, i.e.,
Pπi = Qπi , πi the i-th projection, for all 1 ≤ i ≤ d , holds that P ≤uo Q , resp.,
P ≤lo Q if and only if Q can be obtained from P by a finite number of at least
2-dimensional �-monotone, resp., �-antitone transfers. But note that also the one-
dimensional �-monotone, resp., �-antitone transfers can affect the copula, resp.,
dependence structure.

Now, we are able to give the proof of the main ordering result of this paper.

3.5 Proof of ‘(i) ⇐⇒ (iii)’ in Theorem 1

Assume that (iii) holds. Then, the closures of the upper product and the supermodular
ordering under marginalization imply (Di )T = M2 ∨ Di ≤sm M2 ∨ E = ET . But
this means that Di ≤lo E .

For the reverse direction, assume that Di ≤lo E for all 2 ≤ i ≤ d . Consider
the discretized grid copulas Di

n := Gn(Di ), M2
n := Gn(M2), and En := Gn(E) ,

2 ≤ i ≤ d, and denote by din , resp., en the associated mass matrices of Di
n , resp.,

En . We prove for the upper products of grid copulas, defined in (20), that

Cn := M2
n ∨ D2

n ∨ · · · ∨ Dd
n ≤sm M2

n ∨ En ∨ · · · ∨ En︸ ︷︷ ︸
(d−1)-times

=: Bn , (22)

showing that there exists a finite number of supermodular transfers that transfer Cn
to Bn . This yields (iii) applying Propositions 2 (iii) and 1.

To show (22), consider for 2 ≤ i ≤ d the signed grid copulas (Di
n,k)1≤k≤n on G

2
n

defined through the signed mass matrices (din,k)1≤k≤n given by
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din,1 : = din , and

din,k+1(ui , t) =

⎧
⎪⎨

⎪⎩

en(ui , t) if t = k
n ,

din,k(ui , t) + din,k

(
ui , t − 1

n

)
− en
(
ui , t − 1

n

)
if t = k+1

n ,

din,k(ui , t) if t = k
n , k+1

n

(23)

for 1 ≤ k ≤ n − 1 .

For all 2 ≤ i ≤ d and for all n ∈ N , the sequence (din,k)1≤k≤n of signed mass

matrices adjusts the signed mass matrix din column by column to the signed mass
matrix en . It holds that din,n = en for all i and n .

For Cn,k := M2
n ∨ D2

n,k ∨ · · · ∨ Dd
n,k , 1 ≤ k ≤ n , we show that

Cn,k ≤sm Cn,k+1 (24)

for all 1 ≤ k ≤ n − 1 . Then, transitivity of the supermodular ordering implies (22)
because Cn,1 = Cn and Cn,n = Bn .

We observe that Di ≤lo E yields Di
n ≤lo En and also

Di
n,k ≤lo Di

n,k+1 ≤lo En (25)

for all 1 ≤ k ≤ n − 1 . Further, we observe that Cn,k and Cn,k+1 are (signed) grid
copulas with uniform univariate marginals, i.e.,

Cn,k(1, . . . , 1, u j , 1, . . . , 1) = u j = Cn,k+1(1, . . . , 1, u j , 1 . . . , 1) (26)

for all u j ∈ G
1
n,0 and 1 ≤ j ≤ d . This holds because �2

nD
i
n,k(ui , t) ≤ 1

n for all

(ui , t) ∈ G
2
n,0 and for all i and k , even if din,k can get negative for t = k

n and some
ui < 1 .

By construction of (Di
n,k)1≤k≤n , it holds that

�2
nD

i
n,k+1(ui , t) = �2

n En(ui , t) for t ≤ k
n , (27)

for all 1 ≤ k ≤ n − 1 and for all ui ∈ G
1
n,0 , 2 ≤ i ≤ d .

To show (24), fix column k ∈ {1, . . . , n − 1} of the signed mass matrices. Con-
ditioning under u1 ∈ G

1
n , consider the conditional (signed) measure generating

functions

Cu1
n,l := n�1

nCn,l(u1, ·) = n(Cn,l(u1, ·) − Cn,l

(
u1 − 1

n , ·
)

for l = 1, . . . , n , where

Cn,l(u) =
∑

z∈G1
n

min

{
1
n1{u1≥z}, min

2≤i≤d
{�2

nD
i
n,l(ui , z)}

}

=
∑

z≤u1
z∈G1

n

min
2≤i≤d

{�2
nD

i
n,l(ui , z)}

is the upper product of the (signed) grid copulas Mn, D2
n,l , . . . , D

d
n,l for u ∈ G

d
n,0 .

Hence, it holds for the conditional (signed) measure generating function that

Cu1
n,l(u−1) = n min

2≤i≤d
{�2

nD
i
n,l(ui , u1)} ,
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and for its corresponding (signed) survival function that

Cu1
n,l(u−1) = 1 − n max

2≤i≤d
{�2

nD
i
n,l(ui , u1)} ,

where u−1 = (u2, . . . , ud) ∈ G
d−1
n,0 .

By the construction of (Di
n,l)1≤l≤n , it holds that

Cx
n,k = Cx

n,k+1 for all x ∈ G
1
n \ { kn , k+1

n } . (28)

We show that

Cx
n,k ≥uo Cx

n,k+1 for x = k
n , (29)

Cx
n,k ≤uo Cx

n,k+1 for x = k+1
n , and (30)

PU1(·) × PC ·
n,k

≤sm PU1(·) × PC ·
n,k+1

for U1 ∼ U ({ kn , k+1
n }) , (31)

where PU1(·) × PC ·
n,k

, resp., PU1(·) × PC ·
n,k+1

is the conditional measure generat-

ing function of PCn,k , resp., PCn,k+1 given the set { kn , k+1
n } × G

d−1
n,0 . Then, (28) and

(31) imply (24) using (a slightly generalized version of) the closure of the supermod-
ular ordering under mixtures given by Shaked and Shantikumar (2007) [Theorem
9.A.9.(d)].

To show (29), let us fix u1 = k
n . Then, we calculate

min
2≤i≤d

{�2
nD

i
n,k

(
ui ,

k
n

)} +
k−1∑

m=1
min

2≤i≤d
{�2

n En
(
ui ,

m
n

)} (32)

=
k∑

m=1
min

2≤i≤d
{�2

nD
i
n,k(ui ,

m
n )}

≤ min
2≤i≤d

{Di
n,k(ui , u1)}

≤ min
2≤i≤d

{En(ui , u1)}
= En( min

2≤i≤d
{ui }, u1) (33)

=
k∑

m=1
�2

n En( min
2≤i≤d

{ui }, m
n )

=
k∑

m=1
min

2≤i≤d
{�2

n En
(
ui ,

m
n

)} , (34)

where the first equality follows from (27), the first inequality is Jensen’s inequality,
the second inequality is due to (25). Equality (33) holds because En is a grid copula
and does not depend on i , the third equality holds by definition of �2

n , and the last
equality is true because En is a grid copula, thus 2-increasing, and hence �2

n En(·, t)
is increasing for all t ∈ G

1
n .
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Then, from (32) and (34) it follows for the k-th columns of the matrices that

min
2≤i≤d

{�2
nD

i
n,k(ui , u1)} ≤ min

2≤i≤d
{�2

n En(ui , u1)} = min
2≤i≤d

{�2
nD

i
n,k+1(ui , u1)} ,

where the equality holds true due to (27). This means that

Cu1
n,k ≤lo C

u1
n,k+1 (35)

holds. Further, Cu1
n,k corresponds to a quasi-comonotonic signed measure in M

1
d with

univariate marginals given by n�2
nD

i
n,k(·, u1) ≤ 1 , and Cu1

n,k+1 corresponds to a
comonotonic probability distribution. Thus, we obtain from Lemma 2 that (29) holds.

Next, we show (30). Due to (29) and Proposition 2, there exists a finite number
of reverse �-monotone transfers that transfer Cu1

n,k to Cu1
n,k+1 , i.e., there exist m ∈ N

and a finite sequence
(
Pu1
l

)
1≤l≤m of signed measures on G

d−1
n such that

Pu1
1 = PCu1

n,k
, Pu1

m = PCu1
n,k+1

, and

μ
u1
l := Pu1

l+1 − Pu1
l is a reverse �-monotone transfer f.a. 1 ≤ l ≤ m − 1 .

Since the univariate margins of Cu1
n,k and Cu1

n,k+1 do not coincide, some of the trans-
fers
(
μ
u1
l

)
l must be one-dimensional, see Remark 5. Each one-dimensional transfer

μ
u1
l transports mass from one point ul = (ul2, . . . , uld

) ∈ G
d−1
n to another point

vl = (vl2, . . . , vld
) ∈ G

d−1
n such that vlι < ulι for an ι ∈ {2, . . . , d} and ulj = vlj for

all j = ι , i.e., μ
u1
l = ηl

(
δvl − δul

)
is indicated by

ηlδul → ηlδvl (36)

for some ηl > 0 . Since applying mass transfers is commutative, we first choose
to apply all of these one-dimensional reverse �-monotone transfers. Because δ-
dimensional �-monotone transfers leave the univariate marginals unchanged for
δ ≥ 2 , see Remark 5, the univariate margins of Cu1

n,k must be adjusted to the
univariate margins of Cu1

n,k+1 having applied all of these one-dimensional reverse
�-monotone transfers.

Then, since the grid copula of Cu1
n,k+1 is the upper Fréchet bound and hence

the greatest element in the ≤uo-ordering, no further reverse �-monotone transfer is
possible. Thus, Cu1

n,k+1 is reached from above having applied only one-dimensional
�-monotone transfers μ

u1
l , 1 ≤ l ≤ m − 1 , on PCu1

n,k
, i.e.,

PCu1
n,k

+
m−1∑

l=1

μ
u1
l = PCu1

n,k
+

m−1∑

l=1

ηl(δvl − δul ) = PCu1
n,k+1

. (37)

For all reverse �-monotone transfers μ
u1
l , consider its corresponding reverse

transfer μ
u1+1/n
l := −μ

u1
l on G

d−1
n indicated by ηlδvl → ηlδul . Define

Pu1+1/n
1 := P

C
u1+1/n
n,k

, and

Pu1+1/n
l+1 := Pu1+1/n

l + μ
u1+1/n
l = Pu1+1/n

l − μ
u1
l for l = 1, . . . ,m − 1 . (38)
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The transfers
(
μ
u1+1/n
l

)

l
are one-dimensional �-monotone transfers. Then, it

holds true that they adjust the univariate marginals of P
C
u1+1/n
n,k

to the univariate

marginals of P
C
u1+1/n
n,k+1

. This can be seen because only two entries (in column k) of

matrix ι are changed by the mass transfer μ
u1
l . All other columns and matrices j = ι

are unaffected by this transfer. From (28) follows that exactly the reverse transfers
μ
u1+1/n
l applied simultaneously on the corresponding entries in column k+1 of mass

matrix ι guarantee the uniform margin condition (26) to stay fulfilled. Having applied
all transfers μl , then each column j = k + 1 of the mass matrix din,k is adjusted to

column j of the mass matrix din,k+1 for all 2 ≤ i ≤ d . But this also means that col-

umn k + 1 of the mass matrix din,k must be adjusted to column k + 1 of din,k+1 due to
the uniform margin condition.

Since applying the one-dimensional transfers μ
u1+1/n
l on P

C
u1+1/n
n,k

(which is

comonotonic) can change the dependence structure, the signed measure Pu1+1/n
m is

not necessarily quasi-comonotonic, i.e., Pu1+1/n
m does not necessarily coincide with

P
C
u1+1/n
n,k+1

(which is quasi-comonotonic). We show that

Pu1+1/n
m = P

C
u1+1/n
n,k+1

. (39)

Since Cu1
n,k ≤lo C

u1
n,k+1 , see (35), it also holds that

�2
nD

i
n,k

(
ui ,

k
n

) ≤ �2
nD

i
n,k+1

(
ui ,

k
n

) ∀ui ∈ G
1
n ∀i ∈ {2, . . . , d} ,

where we use that

�2
nD

i
n,k

(·, k
n

)
, �2

nD
i
n,k+1

(·, k
n

) ≤ 1
n and

�2
nD

i
n,k

(
1, k

n

) = �2
nD

i
n,k+1

(
1, k

n

) = 1
n

for all 2 ≤ i ≤ d . By construction of
(
din,l

)

1≤l≤n
, it follows that

�2
nD

i
n,k

(
ui ,

k+1
n

)
≥ �2

nD
i
n,k+1

(
ui ,

k+1
n

)
∀ui ∈ G

1
n ∀i ∈ {2, . . . , d} .

This implies

min
2≤i≤d

{�2
nD

i
n,k

(
ui ,

k+1
n

)
} ≥ min

2≤i≤d
{�2

nD
2
n,k+1

(
ui ,

k+1
n

)
} ∀ui ∈ G

1
n , 2 ≤ i ≤ d .

But this means that Cu1+1/n
n,k ≥lo Cu1+1/n

n,k+1 . Due to (23), it holds that Cu1+1/n
n,k is

comonotonic and Cu1+1/n
n,k+1 is quasi-comonotonic with univariate marginal measure

generating functions n�2
nD

i
n,k+1

(
·, k+1

n

)
≤ 1 . Thus, Proposition 2 yields (30).

Further, (30) and Proposition 2 imply that there exist m′ ∈ N and a finite number
of reverse �-monotone transfers (γl)1≤l≤m′ that adjust P

C
u1+1/n
n,k+1

to P
C
u1+1/n
n,k

. With

the same argument as above, these transfers are one-dimensional. Further, the reverse
transfers (γ r

l )1≤l≤m′ , where γ r
l = −γl , correspond to the �-monotone transfers
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(
μ
u1+1/n
l

)

1≤l≤m
that adjust the margins of Cu1+1/n

n,k to the margins of Cu1+1/n
n,k+1 . This

yields m = m′ ,
∑m−1

l=1 μ
u1+1/n
l = ∑m′−1

l=1 γ r
l and thus Pu1+1/n

m = P
C
u1+1/n
n,k+1

, which

proves (39). Hence, (38) yields

P
C
u1+1/n
n,k

+
m−1∑

l=1

μ
u1+1/n
l = P

C
u1+1/n
n,k+1

. (40)

It remains to show (31). Each transfer μ
u1
l , , resp.,, μ

u1+1/n
l on G

d−1
n can be

extended to a reverse �-monotone, resp., �-monotone transfer μl,r , resp., μl on
{u1} × G

d−1
n , resp., {u1 + 1

n } × G
d−1
n , indicated by

ηlδ(u1,ul) → ηlδ(u1,v
l) resp. ηlδ(u1+1/n,vl) → ηlδ(u1+1/n,ul) . (41)

Then, for each l ∈ {1, . . . ,m − 1} , applying the transfers μl,r and μl in (41)
simultaneously yields exactly a transfer νl on {u1, u1 + 1

n } ×G
d−1
n between

(
u1, ul
)

and
(
u1 + 1

n , vl
)

, indicated by

ηl
(
δ(u1,ul) + δ(u1+1/n,vl)

)
→ ηl
(
δ(u1,v

l) + δ(u1+1/n,ul)

)
.

Each transfer νl is a supermodular transfer. Denote by ε{x} the one-point probabil-
ity measure in x . Then, finally, we obtain

PU1 (·) × PC ·
n,k+1

= 1

2

(

ε{u1} × PCu1
n,k+1

+ ε{u1+ 1
n } × P

C
u1+1/n
n,k+1

)

= 1

2

(

ε{u1} ×
(

PCu1
n,k

+
m−1∑

l=1

μ
u1
l

)

+ ε{u1+ 1
n } ×
(

P
C
u1+1/n
n,k

+
m−1∑

l=1

μ
u1+1/n
l

))

= 1

2

(

ε{u1} × PCu1
n,k

+
m−1∑

l=1

μl,r + ε{u1+ 1
n } × P

C
u1+1/n
n,k

+
m−1∑

l=1

μl

)

= 1

2

(

ε{u1} × PCu1
n,k

+ ε{u1+ 1
n } × P

C
u1+1/n
n,k

+
m−1∑

l=1

νl

)

= PU1(·) × PC ·
n,k

+ 1

2

m−1∑

l=1

νl

which implies (31) using Proposition 2. The first and last equality hold due to the
definition of the measures. The second equality is given by (37) and (40), the third
equality holds by the definition of μl,r , resp., μl , and the fourth equality holds true
by the definition of νl . �

Remark 6 (a) The proof is based on an approximation by finite sequences of
signed grid copulas that fulfill the conditioning argument in (28)–(31). Fur-
ther, we use the necessary condition that the lower orthant ordering holds
true–indeed, (32) and (34) yield Cn,k ≤lo Cn,k+1–in order to show that the
supermodular ordering is also fulfilled.
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(b) The condition that the upper bound E for Di is a joint upper bound, i.e., it
does not depend on i , is crucial for the proof. Otherwise, Eq. (33) can fail, see
also (11). In general, it holds that

Di ≤lo Ei ∀i =⇒ M2 ∨ D1 ∨ · · · ∨ Dd ≤lo M2 ∨ E1 ∨ · · · ∨ Ed .

For a counterexample assume that D1 = D2 <lo E1 <lo E2 . Then, it holds

M2 ∨ D1 ∨ D2(1, ·, ·) = M2 >lo E1 ∨ E2 = M2 ∨ E1 ∨ E2(1, ·, ·) ,

using the marginalization and the maximality property of the upper prod-
uct, see Ansari and Rüschendorf (2018), Proposition 2.4, which yields a
contradiction to M2 ∨ D1 ∨ D2 ≤lo M2 ∨ E1 ∨ E2 .

(c) While in the proof the Di
n,k , 1 ≤ k ≤ n , can be signed grid copulas with

�2
nD

i
n,k(ui , t) ≤ 1

n for all (ui , t) ∈ G
2
n,0 , it is necessary that En is a grid cop-

ula and not only a signed grid copula. Otherwise, both monotonicity properties
in (33) and (34) can fail.

We illustrate the idea of the proof with an example for n = 4 and d = 3 :

Example 1 Let D2
4, D3

4, E4 be 4-grid copulas given through the mass matrices
d2

4 , d3
4 , resp., e4 by

d2
4 = 1

16

⎛

⎜
⎜
⎝

3 1 0 0
0 2 1 1
0 1 2 1
1 0 1 2

⎞

⎟
⎟
⎠ , d3

4 = 1
16

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
0 1 2 1
2 1 0 1

⎞

⎟
⎟
⎠ , e4 = 1

16

⎛

⎜
⎜
⎝

0 1 1 2
1 1 2 0
1 0 1 2
2 2 0 0

⎞

⎟
⎟
⎠ .

Then, we observe that D2
4, D3

4 ≤lo E4 . Consider the signed 4-grid copulas Di
4,l ,

1 ≤ l ≤ 4 , i = 2, 3 , in Fig. 1 constructed by (23). The conditional distribution

of M2
4 ∨ D2

4,1 ∨ D3
4,1 under u1 = 1

4 is given by 4 �2
4 M

2
4 ∨ D2

4,1 ∨ D3
4,1

(
1
4 , ·, ·
)

=
4 min

i
{�2

4D
i
(
·, 1

4

)
} , where the arguments of the min-function correspond to the

distributions given through the first columns of d2
4 , resp., d3

4 .

Since

Cu1
4,1 = 4 · M2

4 ∨ D2
4,1 ∨ D3

4,1

(
1
4 , ·, ·
)

≥uo 4 · M2
4 ∨ E4 ∨ E4

(
1
4 , ·, ·
)

= Cu1
4,2 ,

the solid-marked reverse �-monotone transfers can be applied to adjust the first
column of d2

4,1 , resp., d3
4,1 to the first column of e4 . These transfers are balanced

by the dashed-marked �-monotone transfers in the second columns which guarantee
that the new matrices d2

4,2 , resp., d3
4,2 are still (signed) copula mass matrices. This

procedure is repeated column by column until d2
4,4 = d3

4,4 = e4 .
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Fig. 1 This figure illustrates the mass transfers in Example 1

4 Application to improved portfolio TVaR bounds

In this section, we determine improved Tail-Value-at-Risk bounds for a portfolio
�t = ∑8

i=1 Y
i
t , t ≥ 0 , t in trading days, of d = 8 (derivatives on) assets Sit apply-

ing Theorem 4 about internal risk factor models. More specifically, let Y i
t = Sit for

i = 1, . . . , 6 and Y i
t = (Sit − Ki )+ for i = 7, 8 , where K 7 = 70 and K 8 = 10 .

In this application, (Sit )t≥0 denotes the asset price process of Audi (i = 1), Allianz
(i = 2), Daimler (i = 3), Siemens (i = 4), Adidas (i = 5), Volkswagen (i = 6),
SAP (i = 7), resp., Deutsche Bank (i = 8).

We aim to determine improved TVaR bounds for �T for T = 1 year =
254 trading days , resp., T = 2 years = 508 trading days . The underlying process
St = (S1

t , . . . , S
8
t ) is modeled by an integrable exponential process St = S0 exp(Lt )

under the following assumptions:
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Let m ∈ N and 0 = t0 < t1 < · · · < tm = T with ti − ti−1 = T
m for 1 ≤ i ≤ m .

(I) The component processes (Li
t )t≥0 are Lévy processes for all i .

(II) The increments (ξ1
k , . . . , ξdk ) := (L1

tk − L1
tk−1

, . . . , Ld
tk − Ld

tk−1
) , 1 ≤ k ≤ m,

are independent in k (but not necessarily stationary).
(III) For all k , there exists a bivariate copula Ek ∈ C2 such that Cξ ik ,ξ

1
k

≤lo Ek for
all 2 ≤ i ≤ d .

Assumptions (I) – (III) are consistent. Assumption (I) is a standard assumption
on the log-increments of (Sit )t≥0 while Assumption (II) generalizes the dependence
assumptions for multivariate Lévy models because neither multivariate stationarity
nor independence for all increments is assumed. Assumption (III) reduces the depen-
dence structure between the k-th log-increment of the i-th component and the k-th
log-increment of the first component (which is the internal risk factor) by a subclass
S i
k = {C ∈ C2|C ≤lo Ek} of bivariate copulas.

Then, Theorem 4 yields improved bounds in convex order for the portfolio �T if
the claims Y i

T are of the form Y i
T = ψi (SiT ) = ψi (exp(Li

T )) = ψi
(
exp
(∑m

k=1 ξ ik

))

with ψi increasing convex.
For the estimation of the distribution of SiT , we make the following specification

of Assumption (4):

(1) Each
(
Sit
)
t≥0 , i = 1, . . . , 8 , follows an exponential NIG process, i.e.,

Sit = Si0 exp
(
Li
t

)
t ≥ 0 ,

where Si0 > 0 and where each
(
Li
t

)
t≥0 is an NIG process with parameters

αi , βi , δi , νi .

For the estimation of upper bounds in supermodular order for the increments(
ξ1
k , . . . , ξ8

k

)
, we specify Assumption (I) as follows:

(3) For fixed ν ∈ (2, ∞] , the copula Ek in Assumption (III) is given by a t-copula
with some correlation parameter ρk ∈ [−1, 1] (which we specify later) and ν

degrees of freedom, i.e., Ek = Cρk
ν .

We make use of the relation between the (pseudo-)correlation parameter ρ of
elliptical copulas and Kendall’s τ given by ρ(τ) = sin

(
π
2 τ
)

, see McNeil et al.
(2015) [Proposition 5.37], because Kendall’s rank correlation does not depend on the
specified univariate marginal distributions in contrast to Pearson’s correlation. Thus,
in order to determine a reasonable value for ρk , we estimate an upper bound for

τk := max2≤i≤8{τ ik } , where τ ik := τ
(
Cξ ik ,ξ

1
k

)
. Since it is not possible to determine

the dependence structure of each increment from a single observation, we estimate τ ik
from a sample of past observations. To do so, we assume that the dependence struc-
ture of

(
ξ ik , ξ

1
k

)
does not jump too rapidly to strong positive dependence in a short

period of time as follows:
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(2) For n ∈ N , define the averaged correlations over the past n time points at time
k by τ ik,n := 1

n

∑n−1
j=0 τ ik−n+ j , for k > n . Then, we assume that

τk = max
2≤i≤d

{τ ik } ≤ max
2≤i≤d

{τ ik,n} + εk (42)

for some error εk ≥ 0 (which we fix later).

The above assumptions include the basic assumptions of multivariate exponential
Lévy models because the stationarity condition in Assumption (II) yields (42). Fur-
ther, ρk = 1 yields Ek = M2 which means that Assumption (III) is trivially fulfilled
in this case. Note that in this application the dependence constraints are allowed to
come from quite a big subclass of copulas (see Remark 4).

Under the Assumptions (I) – (III), the dependence structure of
(
Y i
T , Y 1

T

)
is not

uniquely determined for i = 2, . . . , 8 . Thus, we need to solve the constrained maxi-
mization problem (5) to obtain improved upper bounds compared to applying (2) for
partially specified risk factor models.

We mention that the structure of this section and the underlying data are similar
to Ansari and Rüschendorf (2018), Section 4. But, there, the risk factor (which is the
“DAX”) is an external risk factor which is not part of the portfolio, whereas in our
application the internal risk factor “AUDI” is part of the underlying portfolio. This
allows use of the simplified ordering conditions established in this paper. Further,
the improved TVaR-bounds in this application are based on large sets of dependence
specifications of the daily log-returns (see Assumption (III) and Remark 4), whereas
in Ansari and Rüschendorf (2018) all the dependence constraints on the time-T log-
returns are assumed to come from a one-parametric family of copulas.

4.1 Application to real market data

As data set, we take the daily adjusted close data from “Yahoo! Finance” from
23/04/2008 to 20/04/2018. It contains the values of 2540 trading days for 8 assets
(with some missing data) which we denote by

(
s1
k , . . . , s

8
k

)
1≤k≤2540 . More precisely,

(
s1
k

)
k are the adjusted close data of “AUDI AG (NSU.DE)”,

(
s2
k

)
k of “Allianz SE

(ALV.DE)”,
(
s3
k

)
k of “Daimler AG (DAI.DE)”,

(
s4
k

)
k of “Siemens Aktiengesellschaft

(SIE.DE)”,
(
s5
k

)
k of “adidas AG (ADS.DE)”,

(
s6
k

)
k “Volkswagen AG (VOW.DE)”,

(
s7
k

)
k of “SAP SE (SAP.DE)” and

(
s8
k

)
k of “Deutsche Bank Aktiengesellschaft

(DBK.DE)”.

We choose τ̂ ik,n := τ̂

((
xik−n+ j , x

1
k−n+ j

)

0≤ j<n

)

as an estimator for τ ik,n in

Assumption (4), where τ̂ denotes Kendall’s rank correlation coefficient (see, e.g.,
(McNeil et al. (2015), equation (5.50))) and

(
xik
)

2≤k≤2540 are the historical log-

returns of the i-th component, i.e., xik := log sik−log sik−1 for 2 ≤ k ≤ 2540 . Further,
we choose n = 30 and εk = ε = 0.05 in (42).

In Fig. 2, the historical estimates τ̂k,30 are illustrated for 31 ≤ k ≤ 2540 and
for i = 2, . . . , 8 . Further, the plot at the bottom-right shows the maximum of the
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Fig. 2 Plots of estimated Kendall’s rank correlation coefficients τ̂ ik,n , for i = 2, . . . , 8 , for n = 30 , and

for different k; at the bottom right: τ̂k,30 = max2≤i≤8{τ̂ ik,30} (solid) and ρ̂k = max2≤i≤8{ρ(τ̂ ik,30 + εk)}
(dotted) for different k and εk = ε = 0.05 .

historical estimates τ̂k,30 = max2≤i≤8{τ̂ ik,30} (solid graph) as an estimator for τk, and

it also shows the estimated historical upper bound ρ̂k := max2≤i≤8{ρ
(
τ̂ ik,n + εk

)
}

(dotted graph) with error εk for ρk , 31 ≤ k ≤ 2540 , see Assumption 4.
As we observe from Fig. 2 there is no strong correlation between the log-returns(

x1
k

)
k of “AUDI” and the log-returns

(
xik
)
k , i = 1 , of the other assets. We use this

property to apply Theorem 4 as follows.
For the prediction of an improved worst-case upper bound for �T w.r.t. convex

order for T = 1 year, resp., T = 2 years, we choose the worst-case period of the
historical estimates ρ̂k for ρk with a length of m = 254 trading days, resp., m = 508
trading days. We identify visually that (ρ̂k)k takes the historically largest values in a
period of length m = 254 , resp., m = 508 for 1797 ≤ k ≤ 2050 , resp., 1543 ≤ k ≤
2050 , see the plot at the bottom right in Fig. 2. Thus, we decide on (ρ̂k)1797≤k≤2050 ,

resp., (ρ̂k)1543≤k≤2050 as the worst-case estimate for (ρk)1≤k≤254 , resp., (ρk)1≤k≤508
with error εk = 0.05 in (42).
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Then, we obtain from Theorem 4 that

�T =
8∑

i=1

Y i
T =

6∑

i=1

SiT +
8∑

i=7

(SiT − Ki )+

=
6∑

i=1

exp

(
m∑

k=1

ξ ik

)

+
8∑

i=7

(

exp

(
m∑

k=1

ξ ik

)

− Ki

)

+

≤cx exp

(
m∑

k=1

ζ 1
k

)

+
6∑

i=2

exp

(
m∑

k=1

F−1
ζ ik |ζ 1

k
(Uk)

)

+
8∑

i=7

(

exp

(
m∑

k=1

F−1
ζ ik |ζ 1

k
(Uk)

)

− Ki

)

+
=: �c

T,(ρk),ν

≤cx

8∑

i=1

F−1
Y i
T

(U ) =: �c
T ,

(43)

where ζ ik ∼ ξ ik for 1 ≤ i ≤ 8 , Cζ ik ,ζ
1
k

= Ek = Cρk
ν for ρk = ρ̂2050−m+k+1 and

2 ≤ i ≤ 8 , Uk ∼ U (0, 1) and Uk, ζ 1
l independent for all 1 ≤ k, l ≤ m . Denote

by τζ 1
k

the distributional transform of ζ 1
k , see Rüschendorf (2009), and let tν be the

distribution function of the t-distribution with ν degrees of freedom. Then, it holds
that

F−1
ζ ik |ζ 1

k
(Uk) = F−1

ζ ik

(
f
(
ρk, ν, τζ 1

k
,Uk
))

,

where f is given by

f (r, ν, z, e) := tν

⎛

⎜
⎜
⎝r t

−1
ν (z) +

√
√
√
√

(
ν + t−1

ν (z)2
)

(1 − r2)

ν + 1
t−1
ν+1(e)

⎞

⎟
⎟
⎠ .

Note that the distribution function of ( f (r, ν, Z , ε), Z) , Z , ε ∼ U (0, 1) inde-
pendent, is the t-copula with correlation r and ν degrees of freedom, see Aas et al.
(2009).

The Tail-Value-at-Risk at level λ (also known as Expected Shortfall) is defined by

TVaRλ(ζ ) := 1

1 − λ

∫ 1

λ

F−1
ζ (t) dt , λ ∈ (0, 1) . (44)

for a real-valued random variable ζ . If ζ is integrable, then TVaRλ is a convex
law-invariant risk measure, see, e.g., Föllmer and Schied (2010), which satisfies the
Fatou-property. As a consequence of (4) and (43) we obtain

TVaRλ(�T ) ≤ TVaRλ

(
�c

T,(ρk ),ν

)
≤ TVaRλ

(
�c

T

)
. (45)
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Table 1 Comparison of the improved risk bound TVaRλ

(
�c

T,(ρk ),ν

)
with the standard comonotonic risk

bound TVaRλ

(
�c

T

)
for TVaRλ(�T ) for T = 1 year, resp., T = 2 years, for different levels λ and for

different ν .

T = 1 year TVaRλ

(
�c

254,(ρk ),ν

)
TVaRλ

(
�c

254

)

E[�254] = 1536 ν = 3 ν = 10 ν = ∞

λ = 0.5 1878 (11.1%) 1876 (11.5%) 1873 (12.1%) 1920

λ = 0.8 2218 (12.4%) 2213 (12.9%) 2208 (13.6%) 2314

λ = 0.9 2452 (13.1%) 2445 (13.6%) 2437 (14.4%) 2589

λ = 0.95 2678 (13.6%) 2669 (14.3%) 2657 (15.2%) 2858

λ = 0.99 3195 (14.7%) 3179 (15.6%) 3155 (16.8%) 3482

λ = 0.995 3419 (15.2%) 3400 (16.1%) 3369 (17.5%) 3757

λ = 0.999 3955 (16.4%) 3929 (17.3%) 3876 (19.1%) 4430

T = 2 years TVaRλ(�
c
508,(ρk ),ν

) TVaRλ(�
c
508)

E[�508] = 1528 ν = 3 ν = 10 ν = ∞

λ = 0.5 1992 (12.5%) 1990 (13.0%) 1987 (13.5%) 2059

λ = 0.8 2498 (14.8%) 2491 (15.3%) 2484 (16.0%) 2666

λ = 0.9 2865 (15.9%) 2856 (16.5%) 2844 (17.2%) 3118

λ = 0.95 3233 (16.8%) 3219 (17.5%) 3201 (18.4%) 3577

λ = 0.99 4114 (18.5%) 4085 (19.4%) 4048 (20.6%) 4700

λ = 0.995 4513 (19.0%) 4473 (20.1%) 4428 (21.3%) 5215

λ = 0.999 5500 (20.4%) 5422 (22.0%) 5353 (23.4%) 6520

The relative DU-improvement given by 1 −
(

TVaRλ

(
�c

T,(ρk ),ν

)
− E[�T ]

)
/
(
TVaRλ

(
�c

T

)− E[�T ]) is

displayed in parentheses

4.2 Empirical results and conclusion

The improved risk bounds TVaRλ

(
�c

T,(ρk ),ν

)
for TVaRλ(�T ) are compared in

Table 1 with the standard comonotonic risk bound TVaRλ

(
�c

T

)
(5 million simulated

points) for different values of λ and ν and for T = 1 year (= 254 trading days), resp.,
T = 2 years (= 508 trading days).

As observed from Table 1, there is a substantial improvement of the risk bounds
up to 20% for T = 1 year and about 20% for T = 2 years for all degrees of freedom
ν of the t-copulas Cρk

ν and high levels of λ . For T = 2 years, the improvement is
even better because the two-year worst-case period for ρ̂k also contains the one-year
worst-case period for ρ̂k where in the latter one attains higher values.

We see that the improvement is larger for higher values of ν. This can be explained
by the fact that Cρ

ν has a higher tail-dependence for smaller values of ν, see, e.g.,
Demarta and McNeil (2005). Thus, for small ν, more extreme events (= realizations
of the log-increments) occur more often simultaneously which sums up to a higher
risk.
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The results of this application clearly indicate the potential usefulness and flexi-
bility of the comparison results for the supermodular ordering to an improvement of
the standard risk bounds.
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