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Abstract Consider a single server queueing model which is observed over a contin-
uous time interval (0, T ], where T is determined by a suitable stopping rule. Let θ

be the unknown parameter for the arrival process and θ̂T be the maximum likelihood
estimator of θ . The main goal of this paper is to obtain a moderate deviation result of
the maximum likelihood estimator for the single server queueing model under certain
regular conditions.
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1 Introduction

Statistical analysis on queueing theory has come a long way in the past sixty years.
A key component for the estimation of queueing parameter is maximum likelihood
estimation. The problem of estimation of the unknown parameter using maximum
likelihood estimation has been discussed in the literature over the last several years.
The first theoretical treatment of the estimation problem was given by Clarke (1957),
who derived maximum likelihood estimates of arrival and service rates in an M/M/1
queueing system. Billingsley’s (1961) treatment of inference in Markov processes in
general and Wolff’s (1965) derivation of likelihood ratio tests and maximum likeli-
hood estimates for queues that can be modeled as birth and death processes are other
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significant advances in this area. The papers by Cox (1965) and Goyal and Harris
(1972) are worth mentioning. Since then. significant progress has occurred in adapt-
ing statistical procedures to various systems. Basawa and Prabhu (1981, 1988) and
Acharya (1999) studied the asymptotic inference for single server queues, proving
the consistency and asymptotic normality and finding the rate of convergence of max-
imum likelihood estimators in the queue GI/G/1, respectively. Recently, Acharya
and Singh (2019) studied the asymptotic properties of the maximum likelihood esti-
mator from single server queues using the martingale technique. Singh and Acharya
(2019) discussed the bound for the equivalence of the Bayes and maximum likelihood
estimator and also obtained the bound on the difference between the Bayes estimator
from their true values of arrival and service rate parameter in an M/M/1 queue.

There has been recent interest to study the rate of convergence of the maximum
likelihood estimator. Gao (2001) proved the results on moderate deviations for the
maximum likelihood estimator for the case of independent and identically distributed
observations and Xiao and Liu (2006) for the case of independent but not identi-
cally distributed observations. Miao and Chen (2010) gave a simpler proof to obtain
these results under weaker conditions using Gärtner—Ellis theorem (cf. Dembo and
Zeitouni (1998), Theorem 2.3.6, page 44). Miao andWang (2014) improved the result
in Miao and Chen (2010) by weakening the exponential integrability condition.

Our main aim in this paper is to study the problem of moderate deviations for the
maximum likelihood estimator for single server GI/G/1 queueing model. Section 2
discusses the model of our interest and some elements of the maximum likelihood
estimator. The main results are given in Section 3. In Section 4, we provide examples
to illustrate our results.

2 GI/G/1 queueing model

Consider a single server queueing system in which the interarrival times {uk, k ≥ 1}
and the service times {vk, k ≥ 1} are two independent sequences of independent
and identically distributed nonnegative random variables with densities f (u; θ) and
g(v; φ), respectively, where θ and φ are unknown parameters. Let us assume that f
and g belong to the continuous exponential families given by

f (u; θ) = a1(u)exp{θh1(u) − k1(θ)}, (1)

g(v; φ) = a2(v)exp{φh2(v) − k2(φ)}. (2)

and
f (u; θ) = g(v; φ) = 0 on (−∞, 0),

where �1 = {θ > 0 : k1(θ) < ∞} and �2 = {φ > 0 : k2(φ) < ∞} are open
subsets of R. It is easy to see that, k′

1(θ) = E(h1(u)), σ 2
1 = σ 2(θ) = k′′

1 (θ) =
varθ (h1(u)), k′

2(φ) = E(h2(v)), σ 2
2 = σ 2

2 (φ) = k′′
2 (φ) = varφ(h2(v)), respectively,

the means and variances of the interarrival time and service time which are supposed
to be finite. Here, dashes denotes the derivative with respect to parameters.

For simplicity, we assume that the initial customer arrives at time t = 0. Our
sampling scheme is to observe the system over a continuous time interval [0, T ],
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where T is a suitable stopping time. The sample data consists of

{A(T ), D(T ), u1, u2, · · · · · · , uA(T ), v1, v2, · · · · · · , vD(T )}, (3)

where A(T ) is the number of arrivals and D(T ) is the number of departures during

(0, T ]. Obviously, no arrivals occur during
[∑A(T )

i=1 ui, T
]
and no departures during[

γ (T ) +∑D(T )
i=1 vi, T

]
, where γ (T ) is the total idle period in (0, T ].

Some possible stopping rules to determine T are given below:

Rule 1. Observe the system until a fixed time t. Here, T = t with probability one
and A(T ) and D(T ) are both random variables.

Rule 2. Observe the system until d departures have occurred so that D(T ) = d .
Here, T = γ (T ) + v1 + v2 + · · · + vd and A(T ) are random variables.

Rule 3. Observe the system until m arrivals take place so that A(T ) = m. Here,
T = u1 + u2 + u3 + · · · + um and D(T ) are random variables.

Rule 4. Stop at the nth transition epoch. Here, T , A(T ) and D(T ) are all random
variables and A(T ) + D(T ) = n.

Under rule 4, we stop either with an arrival or in a departure. If we stop with an arrival,

then
∑A(T )

i=1 ui = T and no departures during
[
γ (T ) +∑D(T )

i=1 vi, T
]
. Similarly, if

we stop in a departure, then γ (T ) +∑D(T )
i=1 vi = T and there are no arrivals during[∑A(T )

i=1 ui, T
]
.

The likelihood function based on data (3) is given by

LT (θ, φ) =
A(T )∏
i=1

f (ui, θ)

D(T )∏
i=1

g(vi, φ)

×
⎡
⎣1 − Fθ [T −

A(T )∑
i=1

ui]
⎤
⎦
⎡
⎣1 − Gφ[T − γ (T ) −

D(T )∑
i=1

vi]
⎤
⎦ ,

(4)

where F and G are distribution functions corresponding to the densities f and g,
respectively. The likelihood function LT (θ, φ) remains valid under all the stopping
rules.

The approximate likelihood La
T (θ, φ) is defined as

La
T (θ, φ) =

A(T )∏
i=1

f (ui, θ)

D(T )∏
i=1

g(vi, φ). (5)

The maximum likelihood estimates obtained from (5) are asymptotically equivalent
to those obtained from (4) provided that the following two conditions are satisfied
for T → ∞:

(A(T ))−1/2 ∂

∂θ
log

⎡
⎣1 − Fθ

⎛
⎝T −

A(T )∑
i=1

ui

⎞
⎠
⎤
⎦ p−→ 0

and



Page 4 of 13 S.K. Singh

(D(T ))−1/2 ∂

∂φ
log

⎡
⎣1 − Gφ

⎛
⎝T − γ (T ) −

D(T )∑
i=1

vi

⎞
⎠
⎤
⎦ p−→ 0.

The implications of these conditions have been explained by Basawa and Prabhu
(1988). From (5), we have the log-likelihood function

�T (θ, φ) = logLa
T (θ, φ) =�T (u1, u2, ..., uA(T ); θ) + �T (v1, v2, ..., vD(T ); φ)

=
A(T )∑
i=1

�(ui; θ) +
D(T )∑
i=1

�(vi; φ)
(6)

with
�(ui; θ) = logf (ui; θ) = loga1(ui) + θh1(ui) − k1(θ)

and
�(vi; φ) = logg(vi; φ) = loga2(vi) + φh2(vi) − k2(φ).

Denote

�
(1)
T (u1, u2, ..., uA(T ); θ) = ∂�T (u1, u2, ..., uA(T ); θ)

∂θ
, �(1)(ui; θ) = ∂logf (ui; θ)

∂θ

and

�
(1)
T (v1, v2, ..., vD(T ); φ) = ∂�T (v1, v2, ..., vD(T ); φ)

∂φ
, �(1)(vi; φ) = ∂logg(vi; φ)

∂φ
.

The maximum likelihood estimators θ̂T = θ̂T (u1, u2, ..., uA(T )) and φ̂T =
φ̂T (v1, v2, ..., vD(T )) of θ and φ are given by

θ̂T = η−1
1

⎡
⎣(A(T ))−1

A(T )∑
i=1

h1(ui)

⎤
⎦ , (7)

φ̂T = η−1
2

⎡
⎣(D(T ))−1

D(T )∑
i=1

h2(vi)

⎤
⎦ , (8)

respectively, where η−1
i (.) denotes the inverse functions of ηi(.) for i = 1, 2 and

η1(θ) = E(h1(u)) = k
′
1(θ)

and
η2(φ) = E(h2(v)) = k

′
2(φ).

Since �T (v1, v2, ..., vD(T )), �(vi; φ), and φ̂T are of the same form as in the case
of θ , hereafter we will deal with only for the arrival process (for the parameter θ ).
However, the same can be done for the departure process.

Let

θT = θT (u1, u2, .., uA(T )) = inf
{
θ ∈ θ : �

(1)
T (u1, u2, .., uA(T ); θ) ≤ 0

}

and

θ̄T = θ̄T (u1, u2, .., uA(T )) = sup
{
θ ∈ θ : �

(1)
T (u1, u2, .., uA(T ); θ) ≥ 0

}
.
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Then,

θT (u1, u2, .., uA(T )) ≤ θ̂T (u1, u2, .., uA(T )) ≤ θ̄T (u1, u2, .., uA(T ))

and, for every ε > 0,

Pθ (θT ≥ θ + ε) ≤ Pθ

(
�
(1)
T (u1, u2, .., uA(T ); θ + ε) ≥ 0

)
≤ Pθ(θ̄T ≥ θ + ε)

and

Pθ(θ̄T ≤ θ − ε) ≤ Pθ

(
�
(1)
T (u1, u2, .., uA(T ); θ − ε) ≤ 0

)
≤ Pθ(θT ≤ θ − ε).

We assume that the following conditions hold:

(C1) For each θ ∈ �, the derivatives

�(i)(u; θ) = ∂i logf (u; θ)

∂θi
, i = 1, 2, 3

exist for all u ∈ R.
(C2) For each θ ∈ �, there exists a neighbourhood N(θ, δ) of θ for some δ > 0

and non-negative measurable functions Ai(u; θ), i = 1, 2, 3 such that

sup
u∈R

∫

R

A3
i (u; θ)f (u; θ)dy < ∞, i = 1, 2, 3

and

sup
θ ′∈N(θ,δ)

|�(i)(u; θ ′)| ≤ Ai(u; θ), i = 1, 2, 3.

(C3) For each θ ∈ �, the probability density function f (u; θ) has a finite Fisher
information, that is,

0 ≤ I (θ) = Eθ

[(
∂logf (u; θ)

∂θ

)2
]

< ∞

for all u ∈ R.
(C4) For each θ ∈ �, there exists μ = μ(θ) > 0 and ν = ν(θ) > 0 such that

sup
(x,ε)∈[−μ,μ]×[−ν,ν]

φ(x; θ, ε) < ∞,

where

φ(x; θ, ε) = sup
u

Eθ

[
exp(x�(1)(u1; θ + ε))

]
.

Under conditions (C1) − (C3), it can be easily seen that, for all i ≥ 1,

Eθ(�
(1)(ui; θ)) = 0 (9)

and

Eθ(�
(2)(ui; θ)) = −Eθ [(�(1)(ui; θ))2] = −I (θ). (10)
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3 Main results

In this section, we study the problem of moderate deviation, i.e., the rate of
convergence of the probability Pθ(λ(T )|θ̂T − θ | ≥ ε), where

λ(T ) ↑ +∞,
λ(T )√
A(T )

↓ 0 as T → ∞.

Theorem 1 Let conditions (C1) to (C4) hold, then

lim inf
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θ̄T − θ) ≥ ε

) ≥ −1

2
I (θ)ε2, (11)

lim inf
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θT − θ) ≤ −ε

) ≥ −1

2
I (θ)ε2, (12)

lim sup
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θT − θ) ≥ ε

) ≤ −1

2
I (θ)ε2, (13)

and

lim sup
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θ̄T − θ) ≤ −ε

) ≤ −1

2
I (θ)ε2. (14)

Furthermore,

lim
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )|θ̂T − θ | ≤ ε

)
= −1

2
I (θ)ε2. (15)

Theorem 2 Let conditions (C1) to (C4) hold, then, for any closed subset F ⊂ �,
we have

lim sup
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θ̂T − θ) ∈ F

)
≤ −1

2
I (θ) inf

x∈F
ω2, (16)

and, for any open subset G ⊂ �,

lim inf
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θ̂T − θ) ∈ G

)
≥ −1

2
I (θ) inf

x∈G
ω2, (17)

and, for any ε > 0,

lim
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )|θ̂T − θ | ≥ ε

)
= −1

2
I (θ)ε2. (18)

To prove the above theorems, we need the following key lemma.

Lemma 1

lim
T →∞

λ2(T )

A(T )
logPθ

(
�
(1)
T (u1, u2, ..., uA(T ); θ + ε

λ(T )
) ≥ 0

)
= −1

2
I (θ)ε2 (19)

and

lim
T →∞

λ2(T )

A(T )
logPθ

(
�
(1)
T (u1, u2, ..., uA(T ); θ − ε

λ(T )
) ≤ 0

)
= −1

2
I (θ)ε2. (20)
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Proof From Taylor’s expansion of �(u; θ) within the neighbourhood N(θ, δ), we
have

sup
u∈R

∣∣∣�(1)(u; γ ) − �(1)(u; θ) − (γ − θ)�(2)(u; θ)

∣∣∣ ≤ 1

2
(γ − θ)2A3(u; θ).

Hence, for any i ≥ 1,

∣∣∣∣�(1)
(

ui; θ + ε

λ(T )

)
− �(1)(ui; θ) − ε

λ(T )
�(2)(ui; θ)

∣∣∣∣ ≤
ε2

2λ2(T )
A3(ui; θ).

Thus, by the condition (C2) and the Eqs. (9) and (10), it follows that

Eθ

[
�(1)

(
ui; θ + ε

λ(T )

)]
=Eθ

[
�(1)(ui; θ)

]
+ ε

λ(T )
Eθ

[
�(2)(ui; θ)

]
+ o

(
1

λ(T )

)

= −I (θ)
ε

λ(T )
+ o

(
1

λ(T )

)
.

(21)
Therefore, it follows that

Pθ

(
�
(1)
T

(
u1, u2, ..., uA(T ); θ + ε

λ(T )

)
≥ 0

)

= Pθ

⎡
⎣ λ(T )

A(T )

A(T )∑
i=1

(
�(1)

(
ui; θ + ε

λ(T )

)
− Eθ

(
�(1)

(
ui; θ + ε

λ(T )

)))

≥ − λ(T )

A(T )

A(T )∑
i=1

Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))⎤
⎦

= Pθ

⎡
⎣ λ(T )

A(T )

A(T )∑
i=1

(
�(1)

(
ui; θ + ε

λ(T )

)
− Eθ

(
�(1)

(
ui; θ + ε

λ(T )

)))

≥ I (θ)ε + o(1)

⎤
⎦ (using equation (21)).

We now compute the Cramér functional

lim
T →∞

λ2(T )

A(T )
logEθ

⎧⎨
⎩exp

⎛
⎝ x

λ(T )

A(T )∑
i=1

[
�(1)

(
ui; θ + ε

λ(T )

)

−Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))]⎞
⎠
⎫⎬
⎭
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for any x ∈ R. Applying Taylor’s expansion, the condition (C4), and Eqs. (9), (10),
(21) it follows that, for every i ≥ 1, and for x ∈ R,

Eθ

{
exp

(
x

λ(T )
�(1)

(
ui; θ + ε

λ(T )

))}

=1 + x

λ(T )
Eθ

[
�(1)

(
ui; θ + ε

λ(T )

)]

+ x2

2λ2(T )
Eθ

([
�(1)(ui; θ + ε

λ(T )
)

]2)
+ o

(
1

λ2(T )

)

=1 + 1

λ2(T )

(
x2

2
I (θ) − xεI (θ)

)
+ o

(
1

λ2(T )

)
.

(22)

Thus, it follows that

logEθexp

⎛
⎝ x

λ(T )

⎡
⎣

A(T )∑
i=1

�(1)
(

ui; θ + ε

λ(T )

)
−

A(T )∑
i=1

Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))⎤
⎦
⎞
⎠

=log

⎡
⎣Eθ

⎧⎨
⎩exp

⎛
⎝ x

λ(T )

A(T )∑
i=1

�(1)
(

ui; θ + ε

λ(T )

)⎞
⎠
⎫⎬
⎭

⎤
⎦

+
⎛
⎝− x

λ(T )

A(T )∑
i=1

Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))⎞
⎠

=log

⎡
⎣

A(T )∏
i=1

Eθ

{
exp

(
x

λ(T )
�(1)

(
ui; θ + ε

λ(T )

))}⎤
⎦

+
⎛
⎝− x

λ(T )

A(T )∑
i=1

Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))⎞
⎠

=
A(T )∑
i=1

log

[
Eθ

{
exp

(
x

λ(T )
�(1)

(
ui; θ + ε

λ(T )

))}]

+
⎛
⎝− x

λ(T )

A(T )∑
i=1

Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))⎞
⎠
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=A(T )log

[
1 + 1

λ2(T )

(
x2

2
I (θ) − xεI (θ)

)
+ o

(
1

λ2(T )

)]

+
(

A(T )I (θ)
xε

λ2(T )
+ o

(
1

λ2(T )

))

=A(T )

[
1

λ2(T )

(
x2

2
I (θ) − xεI (θ)

)
+ o

(
1

λ2(T )

)]

+
(

A(T )I (θ)
xε

λ2(T )
+ o

(
1

λ2(T )

))

= A(T )

λ2(T )

x2

2
I (θ) + o

(
1

λ2(T )

)

(23)

Thus, we get that

lim
T →∞

λ2(T )

A(T )
logEθ

⎧⎨
⎩exp

⎛
⎝ x

λ(T )

A(T )∑
i=1

[
�(1)

(
ui; θ + ε

λ(T )

)

−Eθ

(
�(1)

(
ui; θ + ε

λ(T )

))] A(T )∑
i=1

⎞
⎠
⎫⎬
⎭ = I (θ)

2
x2.

Hence, by the Gärtner-Ellis theorem (cf. Gärtner (1977); Ellis (1984); Dembo and
Zeitouni (1998, Theorem 2.3.6, page 44), we prove the result in Eq. (19) of Lemma 1.
The result in Eq. (20) can be proved in similar manner.

Proof of Theorem 1 Note that

Pθ

(
λ(T )(θ̄T − θ) ≥ ε

) ≥ Pθ

(
�
(1)
T

(
u1, u2, ..., uA(T ); θ + ε

λ(T )

)
≥ 0

)

and

Pθ

(
λ(T )(θT − θ) ≤ ε

) ≥ Pθ

(
�
(1)
T

(
u1, u2, ..., uA(T ); θ + ε

λ(T )

)
≥ 0

)
.

Then, from Lemma 1, it is seen that the relation (11) and (13) hold. Using the similar
arguments, (12), (14), and (15) can be proved.

Proof of Theorem 2 For a fixed close subset F ⊂ � ⊂ R, define ω1 = inf{ω >

0; ω ∈ F} and ω2 = sup{ω < 0; ω ∈ F}. Let I (ω : θ) = 1
2I (θ)ω2. Then,

lim sup
T →∞

λ2(T )

A(T )
logPθ

(
λ(T )(θ̂T − θ) ∈ F

)

≤lim sup
T →∞

λ2(T )

A(T )
log
(
Pθ

(
λ(T )(θ̂T −θ) ≤ ω2

)
+logPθ

(
λ(T )(θ̂T − θ) ≥ ω1

))

≤max{−I (ω2, θ), −I (ω1, θ)} = − inf
ω∈F

I (ω : θ) = −1

2
I (θ) inf

ω∈F
ω2.

(24)
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Next, for a given open subset G ⊂ � ⊂ R, for ∀ω ∈ G, ∀ε > 0 such that (ω − ε, ω +
ε) ⊂ G, we have

Pθ

(
λ(T )(θ̂T − θ) ∈ G

)
≥Pθ

(
ω − ε ≤ λ(T )(θ̂T − θ) ≤ ω + ε

)

=Pθ

⎛
⎝

A(T )∑
i=1

�(1)
(

ui; θ + ω + ε

λ(T )

)

≤ 0,
A(T )∑
i=1

�(1)
(

ui; θ + ω − ε

λ(T )

)
≥ 0

⎞
⎠ .

(25)

From Eq. (6), we have

SA(T ) =
A(T )∑
i=1

�(1)(ui; θ) =
A(T )∑
i=1

h1(ui) − A(T )k1(θ).

It is easy to see that the sequence {SA(T ), A(T ) ≥ 1} is a square integrable martingale
with zero mean. Using the martingale central limit theorem (see Hall and Heyde
(1980)), we have

Pθ

⎛
⎝ 1√

A(T )

A(T )∑
i=1

�(1)(ui; θ) ≥ ηx

⎞
⎠→ 1 − �(

ηx

γθ

)

for some γθ > 0. Using similar arguments as in the Proof of Theorem 1, we have,
∀x > 0 and ∀η > 0,

lim inf
T →∞ Pθ

(
λ(T )(θ̂T − θ) ∈ G

)

≥ 1

x2
log

(
�

(
x(η + I (θ)(ω + ε))

σθ

)
− �

(
x(η + I (θ)(ω − ε))

σθ

))
.

(26)

Now, letting η → 0 first, then x → ∞, and finally ε → 0, we get

lim inf
T →∞ Pθ

(
λ(T )(θ̂T − θ) ∈ G

)
≥ −1

2
I (θ)ω2,

which completes the proof, since we have chosen an arbitrary ω in G in the above
discussion.

4 Examples

4.1 M/M/1 queue

Let us consider the simplest of the queueing models used in practice, that is, an
M/M/1 queue. The arrivals are assumed to occur in a Poisson process with rate θ and
the service time distribution follows exponential distribution with mean 1/φ. Here,

f (u, θ) = θe−θu and g(v, φ) = φe−φv.
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The log-likelihood function becomes

�T (θ, φ) = A(T )log θ − θ

A(T )∑
i=1

ui + D(T )log φ − φ

D(T )∑
i=1

vi

and the maximum likelihood estimators are

θ̂T =
[∑A(T )

i=1 ui

A(T )

]−1

, φ̂T =
[∑D(T )

i=1 vi

D(T )

]−1

. (27)

For this example, the logarithm of interarrival density function is �(ui; θ) = logθ −
θui , and the first three derivatives are �(1)(ui; θ) = 1

θ
− ui , �(2)(ui; θ) = − 1

θ2
, and

�(3)(ui; θ) = 2
θ3
. It is easy to see that conditions (C1) to (C4) hold. Hence, the

results of Section 3 hold for θ̂T , the maximum likelihood estimator of θ with the
Fisher information I (θ) = 1

θ2
.

4.2 Ek/M/1 queue

Here, we consider the Ek/M/1 queueing model. The interarrival and service time
densities are

f (u, θ) = θ(θu)k−1e−θu

(k − 1)! and g(v, φ) = φe−φv.

The log-likelihood function is

�T (θ, φ) = kA(T )log θ + (k − 1)
A(T )∑
i=1

logui − θ

A(T )∑
i=1

ui − A(T )log[(k − 1)!]

+ D(T )log φ − φ

D(T )∑
i=1

vi

and the maximum likelihood estimators are

θ̂T =
[∑A(T )

i=1 ui

kA(T )

]−1

, φ̂T =
[∑D(T )

i=1 vi

D(T )

]−1

. (28)

The logarithm of interarrival density function is

�(ui; θ) = klog θ + (k − 1)logui − θui − log[(k − 1)!].
So, �(1)(ui; θ) = k

θ
− ui , �(2)(ui; θ) = − k

θ2
, �(3)(ui; θ) = 2k

θ3
, and the

Fisher information I (θ) = k

θ2
. One can easily find that conditions (C1) to

(C4) hold. Hence, the results of Section 3 hold for θ̂T , the maximum likelihood
estimator of θ .



Page 12 of 13 S.K. Singh

Acknowledgements

The author would like to thank the reviewers and the editor for their helpful comments. Also, the author
gives thanks to his PhD supervisor, Retired Professor S. K. Acharya, Sambalpur University, Odisha, India,
for the discussions and suggestions to improve the paper.

Authors’ contributions

The author read and approved the final manuscript.

Funding

The author received no specific funding for this work.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current
study.

Competing interests

The author declares that he has no competing interest.

References

Acharya, S.K. (1999). On normal approximation for Maximum likelihood estimation from single server
queues, Queueing Syst. 31, 207–216.

Acharya, S.K. and S.K. Singh. (2019). Asymptotic properties of maximum likelihood estimators from single
server queues: A martingale approach, Commun. Stat. Theory Methods 48, 3549–3557.

Basawa, I.V. and N.U. Prabhu. (1981). Estimation in single server queues, Naval. Res. Logist. Quart. 28,
475–487.

Basawa, I.V. and N.U. Prabhu. (1988). Large sample inference from single server queues, Queueing Syst.
3, 289–304.

Billingsley, P. (1961). Statistical Inference for Markov Processes, The University of Chicago Press,
Chicago.

Clarke, A.B. (1957).Maximum likelihood estimates in a simple queue, Ann. Math. Statist 28, 1036–1040.
Cox, D.R. (1965). Some problems of statistical analysis connected with congestion (W.L. Smith and W.B.

Wilkinson, eds.), University of North Carolina Press, Chapel Hill.
Dembo, A. and O. Zeitouni. (1998). Large deviation Techniques and Applications, 2nd edn, Springer, New

York.
Ellis, R.S. (1984). Large deviations for a general class of random vectors, Ann. Probab. 12, 1–12.
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