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The proof of (Geiss and Steinicke (2018), Theorem 3.5) needs an extra step address-
ing the problem that our conditions on the generator are not sufficient to guarantee
the existence of the considered optional projection:

In Definition 3.3 we defined fn as the optional projection of

(ω, t, y, z, u) �→ o,Jf (n, ω, t, y, z, u)

with respect to Fn (given by Fn
t := Ft ∩ J n), with parameters (y, z, u). However,

this optional projection does not always exist for generators f satisfying (A1)–(A3).
Sufficient for the existence of the optional projection of a process is boundedness

or non-negativity. To guarantee the existence one can replace first f (ω, s, y, z, u) by

f K (ω, s, y, z, u) = (−K ) ∨ f (ω, s, y, z, u) ∧ K

for some K > 0.
Clearly, (A1) and (A2) are satisfied for f K . Concerning (A3), one observes that

only the cases where both factors of (y− y′)( f (s, y, z, u)− f (s, y′, z′, u′)) are either
positive or negative are relevant. Since

min
{
f (s, y, z, u) − f (s, y′, z′, u′), 0

} ≤ f K (s, y, z, u) − f K
(
s, y′, z′, u′)

≤ max
{
f (s, y, z, u) − f (s, y′, z′, u′), 0

}
,

(A3) is satisfied for f K . The above inequality implies that also (Aγ ) holds for f K .

Hence in order to prove Theorem 3.5, one first starts with f K and f ′K and gets

Y K
t ≤ Y ′K

t P-a.s.
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Next we will see that ‖Yt − Y K
t ‖ and ‖Y ′

t − Y ′K
t ‖ converge to zero for K → ∞, so

that Yt ≤ Y ′
t P-a.s. follows. In the proof of Proposition 4.2 it was shown that for

data (ξ, f ) and
(
ξ, f K

)
it holds

sup
t∈[0,T ]

‖Yt − Y K
t ‖2

≤ h

(
a, b, 2E

∫ T

0
|Yt − Y K

t |
∣∣∣ f (t, Yt , Zt ,Ut ) − f K (t, Yt , Zt ,Ut )

∣∣∣ dt
)

.

To see that the r.h.s. goes to zero, one can use that

E

∫ T

0
|Yt − Y K

t |
∣∣∣ f (t, Yt , Zt ,Ut ) − f K (t, Yt , Zt ,Ut )

∣∣∣ dt

≤ √
T sup

t∈[0,T ]
‖Yt − Y K

t ‖
(
E

∫ T

0

∣∣∣ f (t, Yt , Zt ,Ut ) − f K (t, Yt , Zt ,Ut )

∣∣∣
2
dt

)1/2

.

The factor supt∈[0,T ] ‖Yt − Y K
t ‖ is bounded according to Proposition 4.1, and the

integral goes to zero by monotone convergence. Since limx→0 h(a, b, x) = 0, one
derives that limK→∞ ‖Yt −Y K

t ‖ = 0, and in the same way it follows limK→∞ ‖Y ′
t −

Y ′K
t ‖ = 0.
Moreover, Theorem 3.4 and Lemma 5.1 in Geiss and Steinicke (2018) are only

valid, if fn in Definition 3.3 exists. For the proof of Theorem 3.5 this does not cause
a problem since we need these results for f Kn only.

For more general conditions for the existence of an optional projection than non-
negativity or boundedness we refer to (Dellacherie and Meyer (1982), Remarks
VI.44.(f)) and (He et al. 1992).
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