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Abstract The main achievement of this paper is the finding and proof of Central
Limit Theorem (CLT, see Theorem 12) under the framework of sublinear expecta-
tion. Roughly speaking under some reasonable assumption, the random sequence
{1/√n(X1+· · ·+Xn)}∞i=1 converges in law to a nonlinear normal distribution, called
G-normal distribution, where {Xi }∞i=1 is an i.i.d. sequence under the sublinear expec-
tation. It’s known that the framework of sublinear expectation provides a important
role in situations that the probability measure itself has non-negligible uncertainties.
Under such situation, this new CLT plays a similar role as the one of classical CLT.
The classical CLT can be also directly obtained from this new CLT, since a linear
expectation is a special case of sublinear expectations. A deep regularity estimate
of 2nd order fully nonlinear parabolic PDE is applied to the proof of the CLT. This
paper is originally exhibited in arXiv.(math.PR/0702358v1).

Keywords Central limit theorem · Nonlinear expectation · Probability measure
uncertainty

1 Introduction

The law of large numbers (LLN) and the central limit theorem (CLT) have a long
history, and widely been known as two fundamental results in probability theory and
statistical analysis.

Recently, problems of model uncertainties in statistics, measures of risk, and
superhedging in finance motivated us to introduce, in (Peng 2007), and (Peng 2008)
(see also (Peng 2004), (Peng 2005), and references herein), a new notion of sublinear
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expectation, called “ G-expectation”, and the related “G-normal distribution” (see
Def. 5) from which we were able to define G-Brownian motion as well as the cor-
responding stochastic calculus. The notion of G-normal distribution plays the same
important role in the theory of sublinear expectation as that of normal distribution in
the classic probability theory. It is then natural and interesting to ask if we have the
corresponding LLN and CLT under a sublinear expectation and, in particular, if the
corresponding limit distribution of the CLT is a G-normal distribution. This paper
gives an affirmative answer. The proof of our CLT is short since we borrow a deep
interior estimate of fully nonlinear PDEs in (Wang 1992) which extended a profound
result of (Caffarelli 1989) (see also (Cabre and Caffarelli 1997)) to parabolic PDEs.
The assumptions of our LLN and CLT can still be improved. But the phenomenon
discovered plays the same important role in the theory of nonlinear expectation as
that of the classical LLN and CLT in classic probability theory.

2 Sublinear expectations

Let � be a given set and let H be a linear space of real functions defined on � such
that if X1, · · · , Xn ∈ H, then ϕ(X1, · · · , Xn) ∈ H for each ϕ ∈ Cpoly(R

n), where
Cpoly(R) denotes the space of continuous functions with polynomial growth, i.e.,
there exist constants C and k ≥ 0, such that |ϕ(x)| ≤ C(1 + |x |k). H is considered
as a space of “random variables”.

Here, we use Cpoly(R
n) in our framework only for some technique reason. In

general it can be replaced byCb(R
n), the space of bounded and continuous functions;

by li pb(Rn), the space of bounded and and Lipschitz continuous functions; or by
L0(Rn), the space of Borel measurable functions.

Definition 1 A sublinear expectation E on H is a functional H �→ [−∞, ∞]
satisfying the following properties: for all X, Y ∈ H such that E[|X |], E[|Y |] < ∞,
we have

(a) Monotonicity: if X ≥ Y then E[X ] ≥ E[Y ].
(b) Sub-additivity (or self–dominated property):

E[X ] − E[Y ] ≤ E[X − Y ].
(c) Positive homogeneity: E[λX ] = λE[X ], ∀λ ≥ 0.
(d) Constant translatability: E[X + c] = E[X ] + c.

For each given p ≥ 1, we denote by Hp, the collection of X ∈ H such that
E[|X |p] < ∞. It can be checked (see (Peng 2007) and (Peng 2008)) that

E
[|X + Y |p]1/p ≤ E

[|X |p]1/p + E
[|Y |p]1/p .

We also have Hq ⊆ Hp, for 1 ≤ p ≤ q < ∞, and if 1
p + 1

q = 1, then for each
X ∈ Hp and Y ∈ Hq we have X · Y ∈ H1 and

E[|X · Y |] ≤ E
[|X |p]1/p E [|Y |q]1/q .
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It follows that Hp is a linear space and the sublinear expectation E[·] naturally
induces a norm ‖X‖p := E[|X |p]1/p onHp. The completion ofHp under this norm
forms a Banach space. The expectation E[·] can be extended to this Banach space as
well. This extended E[·] still satisfies the above (a)–(d). But in this paper only the
pre-Banach space Hp is involved.

Proposition 1 Let X, Y ∈ H1 be such that E[Y ] = −E[−Y ]. Then, we have
E[X + Y ] = E[X ] + E[Y ].

In particular, if E[Y ] = E[−Y ] = 0, then E[X + Y ] = E[X ].

proof It is simply because we have E[X + Y ] ≤ E[X ] + E[Y ] and
E[X + Y ] ≥ E[X ] − E[−Y ] = E[X ] + E[Y ].

3 Law of large numbers

Theorem 1 (Law of Large Numbers) Let a sequence X1, X2, · · · in H2 be such
that

E

[
X2
i

]
= σ 2, E[Xi Xi+ j ] = E[−Xi Xi+ j ] = 0, i, j = 1, 2, · · · , (1)

where σ ∈ (0, ∞) is a fixed number. Then, the sum

Sn = X1 + · · · + Xn (2)

satisfies the following law of large numbers:

lim
n→∞

∥
∥∥
∥
Sn
n

∥
∥∥
∥

2

2
= lim

n→∞E

[∣
∣∣
∣
Sn
n

∣
∣∣
∣

2
]

= 0.

Moreover, the convergence rate is dominated by

E

[∣
∣∣
∣
Sn
n

∣
∣∣
∣

2
]

≤ σ 2

n
.

proof By a simple calculation, we have, using Proposition 1,

E

[∣
∣∣
∣
Sn
n

∣
∣∣
∣

2
]

= 1

n2
E

[
S2n

]
= 1

n2
E

[
S2n−1 + 2Sn−1Xn + X2

n

]

= 1

n2
E

[
S2n−1 + X2

n

]
≤ 1

n2

{
E

[
S2n−1

]
+ E

[
X2
n

]}

≤ · · · = 1

n2
nE

[
X2
1

]
= σ 2

n
.
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Remark 1 The above condition (1) is easily extended to the situation E[(Xi −
μ)2] = σ , E[(Xi − μ)(Xi+ j − μ)] = 0 and E[−(Xi − μ)(Xi+ j − μ)] = 0, for
i, j = 1, 2, · · · . In this case, we have

lim
n→∞E

[∣
∣
∣∣
Sn
n

− μ

∣
∣
∣∣

2
]

= 0.

4 Central limit theorem

We now consider a generalization of the notion of the distribution under E of a ran-
dom variable. To this purpose, we make a set �̃ a linear space of real functions H̃
defined on �̃ as well as a sublinear expectation Ẽ[·] in exact the same way as �, H,
and E defined in Section 2. We can similarly define H̃p for p ≥ 1.

Definition 2 Two random variables, X ∈ H, under E[·] and Y ∈ H̃ under Ẽ[·],
are said to be identically distributed if, for each ϕ ∈ Cpoly(R) such that ϕ(X) ∈ H1,
we have ϕ(Y ) ∈ H̃1 and

E[ϕ(X)] = Ẽ[ϕ(Y )].

Definition 3 A random variable X ∈ H is said to be independent under E[·]
from Y = (Y1, · · · , Yn) ∈ Hn if for each test function ϕ ∈ Cpoly(R

n+1) such
that ϕ(X, Y ) ∈ H1, we have ϕ(X, y) ∈ H1, for each y ∈ R

n and, with ϕ(y) :=
E[ϕ(X, y)], we have

E[ϕ(X, Y )] = E[ϕ(Y )].
A random variable X ∈ H2 is said to be weakly independent of Y if the above test
functions ϕ are taken only among, instead of Cpoly(R

n+1),

ϕ(x, y) = ψ0(y) + ψ1(y)x + ψ2(y)x
2, ψi ∈ Cb

(
R
n) , i = 1, 2, 3.

Remark 2 In the case of linear expectation, this notion is just the classical inde-
pendence. Note that, under sublinear expectations, “X is independent from Y” does
not automatically imply that “ � Y is independent from X”.

Remark 3 If we assume in the above law of large numbers that the sequence
X1,X2, · · · is dynamically independent and identically distributed from each other
and that E[X1] = E[−X1] = 0, E

[
X2
1

]
< ∞. Then, LLN holds.

We denote by li pb(R) the collection of all uniformly Lipschitz and bounded real
functions on R. It is a linear space.



Probability, Uncertainty and Quantitative Risk             (2019) 4:4 Page 5 of 8

Definition 4 A sequence of random variables {ηi }∞i=1 in H is said to converge in
distribution under E if for each ϕ ∈ li pb(R), {E[ϕ(ηi )]}∞i=1 converges.

Definition 5 A random variable ξ ∈ H̃ is called G-normal distributed under Ẽ, if
for each ϕ ∈ li pb(R), the following function defined by

u(t, x) := E

[
ϕ(x + √

tξ)
]
, (t, x) ∈ [0, ∞) × R

is the unique (bounded and continuous) viscosity solution of the following parabolic
PDE defined on [0, ∞) × R:

∂t u − G(∂2xxu) = 0, u|t=0 = ϕ, (3)

where G = Gσ,σ (α) is the following sublinear function parameterized by σ and σ

with 0 ≤ σ ≤ σ :

G(α) = 1

2

(
σ 2α+ − σ 2α−)

, α ∈ R.

Here, we denote α+ := max{0, α} and α− := (−α)+.

Remark 4 A simple construction of a G-normal distributed random variable ξ is
to take �̃ = R, H̃ = Cpoly(R). The expectation Ẽ is defined by Ẽ[ϕ] := uϕ(1, 0),
where u = uϕ is the unique polynomial growth and continuous viscosity solution of
(3) with ϕ ∈ Cpoly(R) = H̃1. The G-normal distributed random variable is ξ(ω) ≡
ω, ω ∈ �̃ = R.

Our main result is:

Theorem 2 (Central Limit Theorem) Let a sequence {Xi }∞i=1 in H3 be identi-
cally distributed with each other. We also assume that, each Xn+1 is independent (or
weakly independent) from (X1, · · · , Xn) for n = 1, 2, · · · . We assume, furthermore,
that

E[X1] = E[−X1] = 0, E
[
X2
1

]
= σ 2, −E

[
−X2

1

]
= σ 2,

for some fixed numbers 0 < σ ≤ σ < ∞. Then, {Xi }∞i=1 converges in law to the
G-normal distribution: for each ϕ ∈ li pb(R),

lim
n→∞E

[
ϕ

(
Sn√
n

)]
= Ẽ[ϕ(ξ)], (4)

where ξ is G-normal distributed under Ẽ..

proof For a function ϕ ∈ li pb(R) and a small but fixed h > 0, let V be the unique
viscosity solution of

∂t V + G(∂2xx V ) = 0, (t, x) ∈ [0, 1 + h] × R, V |t=1+h = ϕ. (5)

We have, according to the definition of G-normal distribution,

V (t, x) = Ẽ

[
ϕ

(
x + √

1 + h − tξ
)]

.
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Particularly,
V (h, 0) = Ẽ[ϕ(ξ)], V (1 + h, x) = ϕ(x). (6)

Since (5) is a uniformly parabolic PDE and G is a convex function, thus, by the
interior regularity of V (see Wang (Wang 1992), Theorem 4.13), we have

‖V ‖C1+α/2,2+α([0,1]×R) < ∞, for some α ∈ (0, 1).

We set δ = 1
n and S0 = 0. Then,

V
(
1,

√
δSn

)
− V (0, 0) =

n−1∑

i=0

{
V

(
(i + 1)δ,

√
δSi+1

)
− V

(
iδ,

√
δSi

)}

=
n−1∑

i=0

{[
V

(
(i + 1)δ,

√
δSi+1

)
− V

(
iδ,

√
δSi+1

)]

+
[
V

(
iδ,

√
δSi+1

)
− V

(
iδ,

√
δSi

)]}

=
n−1∑

i=0

{
∂t V

(
iδ,

√
δSi

)
δ + 1

2
∂2xx V

(
iδ,

√
δSi

)
X2
i+1δ

+∂x V
(
iδ,

√
δSi

)
Xi+1

√
δ + I iδ

}

with, by Taylor’s expansion,

I iδ =
∫ 1

0

[
∂t V

(
(i + β)δ,

√
δSi+1

)
− ∂t V

(
iδ,

√
δSi+1

)]
dβδ

+
[
∂t V

(
iδ,

√
δSi+1

)
− ∂t V

(
iδ,

√
δSi

)]
δ

+
∫ 1

0

∫ 1

0

[
∂2xx V

(
iδ,

√
δSi + γβXi+1

√
δ
)

− ∂2xx V
(
iδ,

√
δSi

)]
βdβdγ X2

i+1δ.

Thus,

E

[
n−1∑

i=0

∂t V
(
iδ,

√
δSi

)
δ + 1

2
∂2xx V

(
iδ,

√
δSi

)
X2
i+1δ + ∂x V

(
iδ,

√
δSi

)
Xi+1

√
δ

]

− E[−Iδ]
≤ E

[
V

(
1,

√
δSn

)]
− V (0, 0)

≤E

[
n−1∑

i=0

∂t V
(
iδ,

√
δSi

)
δ+ 1

2
∂2xx V

(
iδ,

√
δSi

)
X2
i+1δ+∂x V

(
iδ,

√
δSi

)
Xi+1

√
δ

]

+ E[Iδ]
Since E

[
∂x V

(
iδ,

√
δSi

)
Xi+1

√
δ
]

= E

[
−∂x V

(
iδ,

√
δSi

)
Xi+1

√
δ
]

= 0, and

E

[
1

2
∂2xx V

(
iδ,

√
δSi

)
X2
i+1δ

]
= E

[
G

(
∂2xx V

(
iδ,

√
δSi

))
δ
]
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We have, by applying ∂t V
(
iδ,

√
δSi

)
+ 1

2∂
2
xx V

(
iδ,

√
δSi

)
= 0,

E

[
n−1∑

i=0

∂t V
(
iδ,

√
δSi

)
δ + 1

2
∂2xx V

(
iδ,

√
δSi

)
X2
i+1δ + ∂x V

(
iδ,

√
δSi

)
Xi+1

√
δ

]

= 0.

It then follows that

−E

[

−
n−1∑

i=0

I iδ

]

≤ E

[
V

(
1,

√
δSn

)]
− V (0, 0) ≤ E

[
n−1∑

i=0

I iδ

]

.

But since both ∂t V and ∂2xx V are uniformly α-Hölder continuous in x and α
2 -Hölder

continuous in t on [0, 1]×R, we then have |I iδ | ≤ Cδ1+α/2
[
1 + |Xi+1| + |Xi+1|2+α

]
.

It follows that

E

[
|I iδ |

]
≤ Cδ1+α/2

(
1 + E

[|X1|α
] + E

[
|X1|2+α

])
.

Thus,

−C

(
1

n

)α/2 (
1 + E

[
|X1|α + |X1|2+α

])
≤ E

[
V

(
1,

√
δSn

)]
− V (0, 0)

≤C

(
1

n

)α/2 (
1 + E

[
|X1|α+|X1|2+α

])
.

As n → ∞, we thus have

lim
n→∞E

[
V

(
1,

√
δSn

)]
= V (0, 0). (7)

On the other hand, we have, for each t, t ′ ∈ [0, 1 + h] and x ∈ R,

|V (t, x) − V (t ′, x)| = |Ẽ
[
ϕ(x + √

1 + h − tξ)
]

− Ẽ

[
ϕ

(√
1 + h − t ′ξ

)]
|

≤ |Ẽ
[
ϕ

(
x + √

1 + h − tξ
)

− ϕ
(
x + √

1 + h − t ′ξ
)]

|
≤ kϕ |

(
|√1 + h − t − √

1 + h − t ′|
)
Ẽ[|ξ |]

≤ C
√|t − t ′|,

where kϕ denotes the Lipschitz constant of ϕ. Thus, |V (0, 0)−V (0, h)| ≤ C
√
h and,

by (6),

|E
[
V

(
1,

√
δSn

)]
− E

[
ϕ

(√
δSn

)]
|

= |E
[
V

(
1,

√
δSn

)]
− E

[
V

(
1 + h,

√
δSn

)]
| ≤ C

√
h.

It follows form (7) and (6) that

lim sup
n→∞

|E
[
ϕ

(
Sn√
n

)]
− Ẽ[ϕ(ξ)]| ≤ 2C

√
h.
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Since h can be arbitrarily small, we thus have

lim
n→∞E

[
ϕ

(
Sn√
n

)]
= Ẽ[ϕ(ξ)].

Corollary 1 The convergence (4) holds for the case where ϕ is a bounded and
uniformly continuous function.

proof We can find a sequence {ϕk}∞k=1 in li pb(R) such that ϕk → ϕ uniformly on
R. By

|E
[
ϕ

(
Sn√
n

)]
− Ẽ[ϕ(ξ)]| ≤ |E

[
ϕ(

Sn√
n
)

]
− E

[
ϕk

(
Sn√
n

)]
|

+ |Ẽ[ϕ(ξ)] − Ẽ[ϕk(ξ)]| + |E
[
ϕk

(
Sn√
n

)]
− Ẽ[ϕk(ξ)]|.

We can easily check that (4) holds.
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