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Abstract The paper is devoted to the Cauchy problem of backward stochastic super-
parabolic equations with quadratic growth. We prove two Itô formulas in the whole
space. Furthermore, we prove the existence of weak solutions for the case of one-
dimensional state space, and the uniqueness of weak solutions without constraint on
the state space.
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1 Introduction

Let d and d0 be integers and {Wt := (W 1
t , . . . , W

d0
t )∗, 0 ≤ t ≤ T } be

a d0-dimensional standard Brownian motion defined on some probability space
(�,F , P ). Denote by {Ft , 0 ≤ t ≤ T } the augmented natural filtration of the stan-
dard Brownian motionW, and by P the predictable field with respect to the filtration
{Ft , 0 ≤ t ≤ T }.

Consider the Cauchy problem of the backward stochastic parabolic equation
(BSPE):
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du = −
⎡
⎣

d∑
i=1

⎛
⎝

d∑
j=1

aijuxj +
d0∑

k=1

σ ikqk

⎞
⎠

xi

+ f (t, x, u, ux, q)

⎤
⎦ dt

+
d0∑

k=1

qkdWk
t , (t, x) ∈ [0, T ) × R

d (1)

with the terminal condition

u(T , x) = ϕ(x), x ∈ R
d . (2)

The BSPE is called super-parabolic if there are two positive constants μ1 and μ2
such that the coefficients aij and σ ik satisfy the following condition:

μ1Id ≤
[
2
(
aij

)
−

(
σ ik

) (
σ jk

)∗]
(t, x) ≤ μ2Id, (3)

with Id being the identity matrix in Rd . Assume that the BSPE is super-parabolic and
that the generator f (ω, t, x, v, p, r) (the argument ω is usually omitted below) has
the following quadratic growth:

|f (t, x, v, p, r)| ≤ λ0(t, x) + λ1|v| + λ2(|p|2 + |r|2), (4)

where λ1 ≥ 0 and λ2 > 0 are constants, and the predictable function λ0(t, x) has
some integrability property (see Theorems 1 and 2 for more details).

When σ ≡ 0 and the data (f, ψ) is invariant with the space variable x, the pre-
ceding BSPE is reduced to a backward stochastic (ordinary) differential equation
(BSDE), whose general form reads

Yt = ξ +
∫ T

t

g(s, Ys, Zs) ds −
∫ T

t

Zs dWs, t ∈ [0, T ]. (5)

Here, the function g : � × [0, T ] × R
d × R

d×d0 → R
d is called the generator of

BSDE (5). The history of BSDE (5) can be traced to Bismut (1973) for the linear
case, and to Bismut (1976) for a specifically structured matrix-valued nonlinear case
where the matrix-valued generator contains a quadratic form of the second unknown.
The uniformly Lipschitz case was later studied by Pardoux and Peng (1990).

Bismut (1976) derived a matrix-valued BSDE of a quadratic generator—the so-
called backward stochastic Riccati equation (BSRE) in the study of linear quadratic
optimal control with random coefficients, while he could not solve it in general. In
that paper, he described the difficulty and failure of his fixed-point techniques in
the proof of the existence and uniqueness for BSDE of a quadratic generator (i.e.,
the so-called quadratic BSDE). It has inspired subsequent intensive efforts in the
research of quadratic BSDE (5). Nowadays, much progress has been made on this
issue: Kobylanski (2000) and Briand and Hu (2006, 2008) gave the existence and
uniqueness result for the case of a scalar-valued (d = 1) quadratic BSDE, Tang
(2003, 2015) solved (using the stochastic maximum principle in Tang (2003) and
dynamic programming in Tang (2015)) the existence and uniqueness result (posed
by Bismut (1976)) for the general BSRE, and Tevzadze (2008) proved the existence
and uniqueness result for a multi-dimensional quadratic BSDE (5) under the assump-
tion that the terminal value is sufficiently small in the supremum norm (also called
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the small terminal value problem). Frei and dos Reis (2011) constructed a counterex-
ample to show that a multi-dimensional quadratic BSDE (5) might fail to have a
global solution (Y, Z) on [0, T ] such that Y is essentially bounded, which illustrates
the difficulty of the quadratic part contributing to the underlying scalar generator
as an unbounded process—the exponential of whose time integral is likely to have
no finite expectation. Hu and Tang (2016) give the existence and uniqueness result
for multi-dimensional BSDEs of diagonally quadratic generators (see El Karoui and
Hamadène (2003) for a background of a diagonally quadratic system of BSDEs).

Backward stochastic partial differential equations (BSPDEs) have recently
received a lot of attentions. The existence, uniqueness, and regularity of solutions
to the Cauchy problem of BSPEs is fairly complete nowadays. See, among oth-
ers, Du et al. (2012) for an Lp theory for non-degenerate BSPEs, Du and Zhang
(2013) for the existence and uniqueness of degenerate parabolic BSPEs, and the
relevant references therein. The previous research usually assumes that the genera-
tor f is uniformly Lipschitz in the unknown variables. Du and Chen (2012) study
the Cauchy−Dirichlet problem of a super-parabolic quadratic BSPDE in a simply
connected bounded domain D:

du = −
[
(aij uxj + σ ikqk)xi + f (t, x, u, ux, q)

]
dt + qkdWk

t ,

with the terminal and boundary conditions:
{

u(t, x) = 0, t ∈ [0, T ], x ∈ ∂D,

u(T , x) = ϕ(x), x ∈ D,

and using the technique of exponential transformation developed by Kobylanski
(2000), they prove the existence and uniqueness of weak solutions.

The paper considers the Cauchy problem of super-parabolic BSPDEs with
quadratic growth in the second unknown variable. The Cauchy problem involves the
whole spatial integrals, which might introduce some unbounded issue to the quadratic
BSPDE and give rise to new difficulty. Two new Itô’s formulas are proved for suitable
functions defined in the whole space Rd , which are crucial to establish the existence
and uniqueness of weak solutions.

The Cauchy problem of (super-parabolic) BSPDEs with quadratic growth in the
second unknown variable arises naturally in the solution of the risk-sensitive optimal
control problem as the associated Hamilton−Jacobi−Bellman (HJB) equation. More
precisely, consider the controlled non-Markovian stochastic differential equations:

Xt = x +
∫ t

s

b(r,Xr, vr) dr +
∫ t

s

σ k(r, Xr, vr ) dWk
r , t ∈ [s, ∞) (6)

and the risk-sensitive cost functional:

Js,x(v) = − 1

μ
E

s,x

[
exp−

(
μ

(∫ T

s

h(s, Xs, vs) ds + ϕ(XT )

))]
, (7)

where the nonzero constant μ is the risk parameter of the controller, whose sign
indicates the attitude (averse or preferable) to the risk . The control v takes values in
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a given set U and is required to satisfy some integrability property. The associated
HJB equation reads

−dV (t, x) = G (t, x,(Vx, Vxx, q, qx)(t, x)) dt−qk(t, x) dWk
t , (t, x)∈ [0, T )×Rd;

V (T , x) = ϕ(x), x ∈ R
d , (8)

where the nonlinear partial differential operator G is defined for (t, x) ∈ [0, T ]×R
d

and (y, Y, z, Z) ∈ R
d × R

d×d × R
d0 × R

d0×d ,

G (t, x, y, Y, z, Z)

=: inf
v∈U

{
1

2
Tr (σσ ∗(t, x, v)Y + σ(t, x, v)Z) + 〈b(t, x, v), y〉 (9)

+h(t, x, v) − 1

2
μ

∣∣z + σ ∗(t, x, v)y
∣∣2
}

.

When the diffusion coefficient σ does not depend on the control variable, we have

G (t, x, y, Y, z, Z)

=: 1

2
Tr (σσ ∗(t, x)Y + σ(t, x)Z) − 1

2
μ

∣∣z + σ ∗(t, x)y
∣∣2 (10)

+ inf
v∈U

{〈b(t, x, v), y〉 + h(t, x, v)} ,

and the HJB Eq. (8) can be written into the form of BSPDE (1) when the coefficients
σ is sufficiently smooth in the state x.

The rest of the paper is organized as follows. In Section 2, we introduce notations,
definitions, and some lemmas. In Section 3, we first prove two Itô’s formulas in the
whole space, and then study the existence and uniqueness of a weak solution to the
BSPE.

2 Preliminaries

2.1 Notation

Denote by vi the i-th component of the vector v ∈ R
d for i = 1, 2, · · · , d , and by

aij the (i, j)-entry of the matrix a ∈ R
m×n for i = 1, 2, · · · , m and j = 1, 2, · · · , n.

For a map u defined on the set � × [0, T ] × R
d , the image u(ω, t, x) at the point

(ω, t, x) is occasionally simplified as u(t, x). Let uxi or Diu be the partial differen-
tial of the function u with respect to xi . We also use the convention that the repeated
superscripts or subscripts imply the summation over the corresponding super- and
sub-scripts.

For Banach space B and p ∈ [1, +∞], denote by L
p

P (� × [0, T ], B) the Banach
space of all Lp-integrable predictable processes X : � × [0, T ] → B, equipped with
the norm

‖X‖L
p

P(�×[0,T ], B) :=
(
E

∫ T

0
‖Xt‖p

B dt

) 1
p

;
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by C([0, T ], B) the Banach space of all continuous maps X : [0, T ] → B, equipped
with the norm

‖X‖C([0,T ], B) := sup
t∈[0,T ]

‖Xt‖B;
and by Lp(�, B) the Banach space of all Lp-integrable maps X : � → B, equipped
with the norm

‖X‖Lp(�, B) = (
E‖X‖p

B
) 1

p .

Let Lp(E) be the Banach space of all real Lp-integrable functions f defined on the
measure space (E, E, μ), equipped with the norm

‖f ‖Lp(E) :=
(∫

E

|f |pdμ

) 1
p

.

For a subset D ⊂ R
d , denote by Hm(D) or Hm

0 (D) the Sobolev space Wm,2(D)

orWm,2
0 (D). WriteHm(Rd) forHm

0 (Rd). Moreover, denote by 〈·, ·〉mD the inner prod-
uct in the Hilbert space Hm(D) or Hm

0 (D), and it is simplified by 〈·, ·〉D if m = 0.
Denote by C∞

c (D) the totality of infinitely differentiable functions of compact sup-
ports in D, and by Cm

b (D) the totality of m-times differentiable functions, defined on
D, with all the partial differentials being bounded.

For D ⊂ R
d , define

L
p(D) := L

p

P (� × [0, T ], Lp(D)), H
m−1(D) := L2

P (� × [0, T ], Hm−1(D)),

H
m
0 (D) := L2

P (� × [0, T ], Hm
0 (D)), H

m(D; R
d) := (

H
m(D)

)d
.

Write Hm(Rd) for Hm
0 (Rd). Here, m = 1, 2.

Finally, for Banach spaces B1 and B2, B1 + B2 stands for the space spanned by
B1 and B2, that is, B1 + B2 is the totality of all the sums x1 + x2 with x1 ∈ B1 and
x2 ∈ B2.

2.2 Definitions and lemmas

Consider the definition of a weak solution to the BSPE.

Definition 1 A pair of random fields (u, q) ∈ H
1(Rd) × H

0(Rd ; R
d0) is called

a weak solution to BSPE (1)−(2) if ∀ η ∈ C∞
c (Rd), we have∫

Rd

u(t, x)η(x)dx −
∫
Rd

ϕ(x)η(x)dx

=
∫ T

t

∫
Rd

[
−(aij uxj + σ ikqk)ηxi + f (s, x, u, ux, q) η

]
dxds

−
∫ T

t

∫
Rd

qkη dxdWk
s , a.s.

(11)

A super-parabolic BSPE is defined as follows.

Definition 2 BSPE (1)−(2) is called super-parabolic if there are two positive
constants μ1 and μ2 such that the inequality (3) holds for all (ω, t, x).
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As an immediate consequence, we have:

Lemma 1 Assume that the inequality (3) is satisfied. Then, there is a con-
stant μ0 > 0 such that for any (p, r) ∈ R

d × R
d0 , we have

2aijpipj + 2σ ikpirk + |r|2 ≥ μ0(|p|2 + |r|2). (12)

The proof of the last lemma is referred to Du (2011, Lemma 4.3, page 46).
The following Itô’s formula for functions defined in a simply connected bounded

domain is a special case of Qiu and Tang (2012, Lemma 3.3, page 2445) when f 0 ∈
L
2(D).

Lemma 2 Assume that D is a simply connected bounded domain of Rd , and that
(f 0, f i, qk) ∈ L

1(D) × (H0(D))2 for i = 1, 2, · · · , d and k = 1, 2, · · · , d0, and
u ∈ H

1
0(D) ∩ L2(�, C([0, T ], L2(D))). Further, for any η ∈ C∞

c (Rd), we have for
any t ∈ [0, T ],

〈u(t, ·), η〉D − 〈u(T , ·), η〉D
=

∫ T

t

[
〈f 0, η〉D − 〈f i, ηxi 〉D

]
ds −

∫ T

t

〈qk(s, ·), η〉DdWk
s , a.s.

Then, for any twice differentiable function � such that the first-order and second-
order derivatives �′ and �′′ are bounded with �′(0) = 0, we have

∫
D

�(u(t, x))dx −
∫
D

�(u(T , x))dx

=
∫ T

t

∫
D

[
�′(u)f 0 − �′′(u)uxi f i − 1

2
�′′(u)|q|2

]
(s, x)dxds

−
∫ T

t

∫
D

�′(u(s, x))qk(s, x)dxdWk
s , a.s.

(13)

The lemma in the general case of f 0 ∈ L
1(D) can be proved via approximating

f 0 ∈ L
1(D) with a sequence of fields in the space L2(D).

The following lemma generalizes that of Lepeltier and San Martin (1997) and
Kobylanski (2000, Lemma 2.5), and the proof is the same as theirs.

Lemma 3 Let the sequence {Xn}n converge to X strongly in H
0(Rd). Then, there

is a subsequence {ni}i such that Xni
converges to X almost surely, and X̃ :=

supi |Xni
| ∈ H

0(Rd).

Lemma 4 Assume that {Wt, 0 ≤ t ≤ T } is a d0-dimensional standard Brownian
motion, and ϕ : [0, T ] × � → R

d0 is Ft -adapted and
∫ T

0 |ϕt |2dt < +∞ almost

surely. If E
√∫ T

0 |ϕt |2dt < +∞, the local martingale
{∫ t

0 ϕk
s dWk

s , 0 ≤ t ≤ T
}
is

uniformly integrable.
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3 Existence and uniqueness of weak solutions

3.1 Main Results

Consider the following five assumptions.
(H1) The function f (·, ·, ·, v, p, r) isP×B(Rd)-measurable for each (v, p, r) ∈

R×R
d ×R

d0 , and f (ω, t, x, ·, ·, ·) is continuous for each (ω, t, x) ∈ �×[0, T ]×R
d .

(H2) There are a nonnegative random function λ0 ∈ L
∞(Rd) ∩ L

2(Rd) and con-
stants λ1 > 0 and λ2 > 0, such that the generator f has the following condition of
quadratic growth:

|f (t, x, v, p, r)| ≤ λ0(t, x) + λ1|v| + λ2(|p|2 + |r|2). (14)

(H3) The coefficients aij and σ ik areP×B(Rd)-measurable and bounded, aij =
aji , and satisfy the inequality (3) (also called the super-parabolic condition).

(H4) The nonzero terminal value ϕ : � × R
d → R is FT × B(Rd)-measurable,

and ϕ ∈ L∞(� × R
d) ∩ L2(� × R

d).
(H5) The space dimension d = 1.

Remark 1 In the inequality (14) (see (H2)), for simplicity, without loss of gener-
ality we might take λ := λ2

μ0
, where μ0 comes from (12). Subsequently, unless stated

otherwise, quadratic growth refers to:

|f (t, x, v, p, r)| ≤ λ0(t, x) + λ1|v| + λμ0(|p|2 + |r|2). (15)

We have the following existence of weak solutions.

Theorem 1 Let the five assumptions (H1)−(H5) be satisfied. Then, BSPE (1)−(2)
has a weak solution (u, q) ∈ H

1(Rd) × H
0(Rd ; R

d0) with u ∈ L
∞(R).

The proof of the theorem is divided into three steps. Step one is devoted to the a
priori estimate of the weak solution (see Lemma 5). In this step, we make the expo-
nential transformation, and use a suitable Itô’s formula which has to be proved here
in full details. Step 2 is devoted to the proof of the monotone convergence theo-
rem in the case of quadratic generators (see Lemma 6). In Step 3, Theorem 1 on the
existence of weak solutions to BSPEs is proved via the exponential transformation.

Noting that the five assumptions of Theorem 1 do not assume any Hölder con-
tinuity of the function f even in the first unknown variable (that is, in the fourth
argument), we do not expect any uniqueness of the weak solution without imposing
extra conditions. In fact, Fujita (1969, Theorem 3.1, page 111) is a nonuniqueness
theorem, and includes the following example: BSPE (1)-(2) has at least two solu-

tions (0, 0) and (û, 0) with û(t, x) := (α(T − t))
1
α , (t, x) ∈ [0, T ]×R

d when ϕ ≡ 0,
(aij ) ≡ Id , σ ≡ 0, and f = v1−α with α ∈ (0, 1). To address the uniqueness of
weak solutions, we consider the following two assumptions.

(H6) There are a deterministic function l0 ∈ L1([0, T ] × R
d) ∩ L∞([0, T ] ×

R
d), l2(t) ∈ L2([0, T ]) and a constant l1 > 0 such that the generator f has the

following quadratic growth
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|f (t, x, v, p, r)| ≤ l0(t, x) + l1(|p|2 + |r|2) (16)

and is differentiable in (p, r) with the partial derivatives growing in a linear manner:

|fp(t, x, v, p, r)| + |fr(t, x, v, p, r)| ≤ l2(t) + l1(|p| + |r|).

(H7) ∀ ε > 0, there is a function �ε(·) ∈ L1([0, T ]) such that the generator f
satisfies the following

|fv(t, x, v, p, r)| ≤ �ε(t) + ε(|p|2 + |r|2).

We have the following result on uniqueness of weak solutions.

Theorem 2 Let the four assumptions (H1), (H3), (H6), and (H7) be satisfied.
Assume that for i = 1, 2, the pair (ui, qi) is a weak solution of BSPE (1)−(2) with
ui being bounded. Then, we have u1 = u2.

Combining both Theorems 1 and 2, we have the following.

Theorem 3 Let the seven assumptions (H1) − (H7) be satisfied. Then,
BSPE (1)−(2) has a unique weak solution (u, q) ∈ H

1(Rd) × H
0(Rd ; R

d0) with
u ∈ L

∞(R).

3.2 Itô’s formula for functions defined in the whole space Rd

In this subsection, we prove two types of Itô’s formulas, which are the key to our
subsequent proof of the existence and uniqueness of a weak solution.

First, we have the following extension of Lemma 2 from simply connected
bounded domains to the whole space Rd .

Theorem 4 Assume that random functions f i, qk ∈ H
0(Rd), f 0 ∈ H

0(Rd) +
L
1(Rd), and u ∈ H

1(Rd)∩L2(�, C([0, T ], L2(Rd))). For ∀ η ∈ C∞
c (Rd), we have

〈u(t, ·), η〉Rd − 〈u(T , ·), η〉Rd

=
∫ T

t

[
〈f 0, η〉Rd − 〈f i, ηxi 〉Rd

]
ds −

∫ T

t

〈qk, η〉Rd dWk
s , a.s.

(17)

Then, for any � ∈ C2
b(R) such that �′(0) = �(0) = 0, we have

∫
Rd

�(u(t, x))dx −
∫
Rd

�(u(T , x))dx

=
∫ T

t

∫
Rd

[
�′(u)f 0 − �′′(u)uxi f

i − 1

2
�′′(u)|q|2

]
(s, x)dxds

−
∫ T

t

∫
Rd

�′(u(s, x))qk(s, x)dxdWk
s , a.s.

(18)
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Proof We use the technique of mollifier to construct ξ ∈ C∞
c (Rd), such that

supp(ξ) ⊂ {|x| ≤ 1},
∫
Rd

ξ(x)dx = 1.

Then, we construct the truncating function ψ ∈ C∞
c (Rd) such that

ψ(x) =
{
1, |x| ≤ 1,

0, |x| ≥ 2.

Define ξε(x) := ε−dξ( x
ε
). For an arbitrary function p(·), define

pε(x) := ψ(εx)

∫
Rd

p(y)ξε(x − y)dy, x ∈ R
d .

For fixed x ∈ R
d , define η(y) := ξε(x − y)ψ(εx). Putting it into (17), we have

uε(t, x) − uε(T , x)

=
∫ T

t

[
f 0,ε(s, x) + Di(f

i,ε(s, x))
]
ds −

∫ T

t

qk,ε(s, x)dWk
s .

(19)

Note that the supports of the mollified functions uε, qε, f 0,ε, and f i,ε are compact
and included in the bounded domain

Dε :=
{
x

∣∣∣∣ |x| ≤ 2

ε

}
.

On both sides of Eq. (19), multiplying by the function η ∈ C∞
c (Rd) and then

integrating over x ∈ Dε, we have

〈uε(t, ·), η〉Dε − 〈uε(T , ·), η〉Dε

=
∫ T

t

[
〈f 0,ε, η〉Dε − 〈f i,ε, ηxi 〉Dε

]
ds −

∫ T

t

〈qk,ε, η〉Dε dWk
s , a.s.

(20)

Since �′(0) = 0, applying Lemma 2 to (20), we have
∫
Dε

�(uε(t, x))dx −
∫
Dε

�(uε(T , x))dx

=
∫ T

t

∫
Dε

[
�′(uε)f 0,ε − �′′(uε)uε

xi f
i,ε − 1

2
�′′(uε)|qε|2

]
(s, x)dxds

−
∫ T

t

∫
Dε

�′(uε(s, x))qk,ε(s, x)dxdWk
s , a.s.

(21)

In view of �(0) = 0, we have
∫
Rd\Dε

�(uε(t, x))dx =
∫
Rd\Dε

�(0)dx = 0.
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Since qε, f 0,ε, and f i,ε vanish on the set Rd \ Dε, the spatial integrals in (21) over
the domain Dε may be written into those over the whole space Rd , that is, we have

∫
Rd

�(uε(t, x))dx −
∫
Rd

�(uε(T , x))dx

=
∫ T

t

∫
Rd

[
�′(uε)f 0,ε − �′′(uε)uε

xi f
i,ε − 1

2
�′′(uε)|qε|2

]
(s, x)dxds

−
∫ T

t

∫
Rd

�′(uε(s, x))qk,ε(s, x)dxdWk
s .

(22)

It remains to prove that all the terms in the equality (22) for a common
subsequence almost surely converge to their counterparts in equality (18).

In view of the properties of mollifier and truncation, for ∀ (t, ω), k =
1, 2, · · · , d0, i = 1, 2, · · · , d , we have

uε(t, ·) H 1(Rd )−−−−→ u(t, ·), ‖uε(t, ·)‖H 1(Rd ) ≤ ‖u(t, ·)‖H 1(Rd ),

qk,ε(t, ·) H 0(Rd )−−−−→ qk(t, ·), ‖qk,ε(t, ·)‖H 0(Rd ) ≤ ‖qk(t, ·)‖H 0(Rd ),

f i,ε(t, ·) H 0(Rd )−−−−→ f i(t, ·), ‖f i,ε(t, ·)‖H 0(Rd ) ≤ ‖f i(t, ·)‖H 0(Rd ).

Since (18) and (22) are linear in f 0, it is sufficient to consider both cases of f 0 ∈
H

0
(
R

d
)
and f 0 ∈ L

1(Rd). Identically as before, we see that ∀ (t, ω),

f 0,ε(t, ·) H 0
(
R

d
)

−−−−→ f 0(t, ·), ‖f 0,ε(t, ·)‖H 0(Rd) ≤ ‖f 0(t, ·)‖H 0(Rd)

for f 0 ∈ H
0
(
R

d
)
; and

f 0,ε(t, ·) L1(Rd )−−−−→ f 0(t, ·), ‖f 0,ε(t, ·)‖L1(Rd) ≤ ‖f 0(t, ·)‖L1(Rd)

for f 0 ∈ L
1
(
R

d
)
. For the detailed proof, see Chen (2005, Theorem 1.1).

On the other hand, in view of Lemma 3, we see that ∀ (t, ω), there is a subsequence
of {uε}, still denoted without loss of generality by {uε}, such that supε |uε(t, ·)| ∈
H 1(Rd) and uε(t, ·) a.e.−−→ u(t, ·).

Finally, assume that |�| + |�′| + |�′′| ≤ M . In what follows, we show the
convergence of each term.

First, we show the following convergence: for ∀ t ∈ [0, T ],
∫
Rd

�(uε(t, x))dx
a.s.−−→

∫
Rd

�(u(t, x))dx. (23)
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Since �′(0) = �(0) = 0, using Taylor’s extension, we have∣∣∣∣
∫
Rd

�(uε(t, x))dx −
∫
Rd

�(u(t, x))dx

∣∣∣∣

≤M

∫
Rd

[
|uε(t, x)|2 + |u(t, x)|2

]
dx

≤2M
∫
Rd

(
sup

ε
|uε(t, x)|

)2

dx.

In view of the convergence uε(t, x)
a.e.−−→ u(t, x), we have

�(uε(t, x))
a.e.−−→ �(u(t, x)).

Applying the dominated convergence theorem, we have (23).
Next, we show the following convergence

∫ T

t

∫
Rd

�′(uε)f 0,εdxds
a.s.−−→

∫ T

t

∫
Rd

�′(u)f 0dxds. (24)

The proof is divided into both case of f 0 ∈ L
1(Rd) and f 0 ∈ H

0(Rd).
Case I. For f 0 ∈ L

1(Rd), we have
∣∣∣∣
∫ T

t

∫
Rd

[
�′(u)f 0 − �′(uε)f 0,ε

]
dxds

∣∣∣∣

≤
∫ T

t

∫
Rd

[
|�′(uε)||f 0 − f 0,ε| + |f 0||�′(uε) − �′(u)|

]
dxds

≤M

∫ T

t

∫
Rd

|f 0 − f 0,ε|dxds +
∫ T

t

∫
Rd

|f 0||�′(uε) − �′(u)|dxds.

(25)

Since ∫
Rd

|f 0(s, x) − f 0,ε(s, x)|dx → 0, ∀ s ∈ [t, T ]
and ∫

Rd

|f 0(s, x) − f 0,ε(s, x)|dx ≤ 2‖f 0‖L1(Rd ),

using the dominated convergence theorem, we see that the first term in (25) converges
to 0. Since ∫

Rd

|f 0||�′(uε) − �′(u)|dx ≤ 2M
∫
Rd

|f 0|dx

and the right side of the last inequality is integrable in s on [t, T ], applying
the dominated convergence theorem, we see that the second term of (25) and
thus (25) a.s. converges to 0.

Case II. For f 0 ∈ H
0(Rd), in view of the first-order extension of �′, we have

∣∣∣∣
∫ T

t

∫
Rd

[
�′(u)f 0 − �′(uε)f 0,ε

]
dxds

∣∣∣∣

≤M

∫ T

t

∫
Rd

(
|f 0 − f 0,ε||uε| + |f 0||uε − u|

)
dxds.

(26)
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Using Hölder’s inequality, we have ∀s ∈ [t, T ]
∫
Rd

(
|f 0 − f 0,ε||uε| + |f 0||uε − u|

)
dx

≤‖f 0(s, ·) − f 0,ε(s, ·)‖H 0(Rd ) ‖uε(s, ·)‖H 0(Rd )

+ ‖f 0(s, ·)‖H 0(Rd ) ‖uε(s, ·) − u(s, ·)‖H 0(Rd )

≤4‖f 0(s, ·)‖H 0(Rd ) ‖u(s, ·)‖H 0(Rd ).

From the first inequality, we see the convergence to 0 of the following spatial integral
∫
Rd

(
|f 0 − f 0,ε||uε| + |f 0||uε − u|

)
dx.

From the second inequality, we see that the preceding integral is dominated by the
integral function 4‖f 0(s, ·)‖H 0(Rd )‖u(s, ·)‖H 0(Rd ), s ∈ [0, T ]. Applying the dom-
inated convergence theorem, we see that (26) a.s. converges to 0. In conclusion, we
have shown (24).

Now, we prove the following convergence
∫ T

t

∫
Rd

�′′(uε)uε
xi f

i,εdxds
a.s.−−→

∫ T

t

∫
Rd

�′′(u)uxi f idxds. (27)

For ∀ i = 1, 2, · · · , d , we have
∣∣∣∣
∫ T

t

∫
Rd

[
�′′(u)uxi f

i − �′′(uε)uε
xi f

i,ε
]
dxds

∣∣∣∣

≤
∫ T

t

∫
Rd

|�′′(uε)||uxi f i − uε
xi f

i,ε|dxds +
∫ T

t

∫
Rd

|uxi f i ||�′′(uε) − �′′(u)|dxds

≤M

∫ T

t

∫
Rd

|uxi f
i − uε

xi f
i,ε|dxds +

∫ T

t

∫
Rd

|uxi f
i ||�′′(uε) − �′′(u)|dxds

≤M

∫ T

t

∫
Rd

(
|uε

xi ||f i − f i,ε| + |f i ||uxi − uε
xi |

)
dxds

+
∫ T

t

∫
Rd

|uxi f
i ||�′′(uε) − �′′(u)|dxds.

(28)
First, the first integral in the right side of the last inequality converges to 0, whose

proof is identical to that of (26). Next, since
∫
Rd

|uxi f i ||�′′(uε) − �′′(u)|dx ≤
∫
Rd

2M|uxi f i |dx

and the right side of the last inequality is integrable in s over [t, T ], applying the
dominated convergence theorem, we see that the second integral in the right side of
inequality (28) also converges to 0. Therefore, we have (27).

Now, we prove the following convergence:
∫ T

t

∫
Rd

�′′(uε)|qε|2dxds
a.s.−−→

∫ T

t

∫
Rd

�′′(u)|q|2dxds. (29)
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We have∣∣∣∣
∫ T

t

∫
Rd

[
�′′(u)|q|2 − �′′(uε)|qε|2

]
dxds

∣∣∣∣

≤
∫ T

t

∫
Rd

|�′′(uε)|
∣∣∣|q|2 − |qε|2

∣∣∣ dxds +
∫ T

t

∫
Rd

|q|2|�′′(uε) − �′′(u)|dxds

≤M

∫ T

t

∫
Rd

∣∣∣|q|2 − |qε|2
∣∣∣ dxds +

∫ T

t

∫
Rd

|q|2|�′′(uε) − �′′(u)|dxds.

(30)
Since the spatial integral∫

Rd

∣∣∣|q(s, ·)|2 − |qε(s, ·)|2
∣∣∣ dx → 0, ∀ s ∈ [t, T ],

and is dominated by 2‖q(t, ·)‖2
(H 0(Rd ))d0

, and
∫
Rd

|q|2|�′′(uε) − �′′(u)|dx ≤ 2M
∫
Rd

|q|2dx

and the right side of the last inequality is integrable in s over [t, T ], applying the
dominated convergence theorem, we see that both terms in inequality (30) converge
to 0. Therefore, we have (29).

Finally, we prove the zero convergence and the martingale property of the term
∫ T

t

∫
Rd

�′(uε)qk,εdxdWk
s . (31)

Since u ∈ L2(�, C([0, T ], L2(Rd))), there is a constant C > 0 such that

E sup
t∈[0,T ]

‖u(t, ·)‖2
L2(Rd )

≤ C.

Proceeding identically as before, for k = 1, 2, · · · , d0, we have
{∫

Rd

[
�′(uε(s, x))qk,ε(s, x) − �′(u(s, x))qk(s, x)

]
dx

}2

≤ 16M2 ‖u(s, ·)‖2
H 0(Rd )

‖qk(s, ·)‖2
H 0(Rd )

.

While
‖u(s, ·)‖2

L2(Rd )
≤ K(ω), a.s.,

where K(ω) only depends on ω. Since
∫ T

t

{∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dx

}2

ds

≤16M2K(ω)

∫ T

t

‖qk(s, ·)‖2
H 0(Rd )

ds,

proceeding identically as before, for ∀ k, we have
{∫

Rd

[
�′(uε))qk,ε − �′(u)qk

]
dx

}2

→ 0.
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Using the dominated convergence theorem, we have

√∫ T

t

{∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dx

}2

ds
a.s.−−→ 0. (32)

On the other hand, in view of Hölder’s inequality, we have

√∫ T

t

{∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dx

}2

ds

≤
√
16M2

∫ T

t

‖u(s, ·)‖2
H 0(Rd )

‖qk(s, ·)‖2
H 0(Rd )

ds

≤
√√√√16M2

∫ T

t

[
sup

s∈[0,T ]
‖u(s, ·)‖2

H 0(Rd )

]
‖qk(s, ·)‖2

H 0(Rd )
ds

≤
(
16M2 sup

t∈[0,T ]
‖u(t, ·)‖2

H 0(Rd )

) 1
2 (∫ T

t

‖qk(s, ·)‖2
H 0(Rd )

ds

) 1
2

.

Therefore, we have

E

√∫ T

t

{∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dx

}2

ds

≤E

⎡
⎣
(
16M2 sup

t∈[0,T ]
‖u(t, ·)‖2

H 0(Rd )

) 1
2 (∫ T

t

‖qk(s, ·)‖2
H 0(Rd )

ds

) 1
2

⎤
⎦

≤
(
16M2

E sup
t∈[0,T ]

‖u(t, ·)‖2
H 0(Rd )

) 1
2 (

E

∫ T

t

‖qk(s, ·)‖2
H 0(Rd )

ds

) 1
2

≤
√
16M2C

(
E

∫ T

t

‖qk(s, ·)‖2
H 0(Rd )

ds

) 1
2

,

and the random variable

√∫ T

t

{∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dx

}2

ds

is dominated by the random variable

(
4M sup

t∈[0,T ]
‖u(t, ·)‖2

H 0(Rd )

) 1
2 (∫ T

t

‖qk(s, ·)‖2
H 0(Rd )

ds

) 1
2

.
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Combining (32), using the dominated convergence theorem and BDG inequality, we
have

E

∣∣∣∣
∫ T

t

∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dxdWk

s

∣∣∣∣

≤ E

√∫ T

t

{∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dx

}2

ds → 0.

(33)

Hence, the sequence
∫ T

t

∫
Rd

[
�′(uε)qk,ε − �′(u)qk

]
dxdWk

s

has a subsequence which almost surely converges to 0. Meanwhile, we have

E

√∫ T

0

[∫
Rd

�′(u)qkdx

]2
ds < +∞.

It follows from Lemma 4 that the process
∫ t

0

∫
Rd

�′(u)qkdxdWk
s , t ∈ [0, T ]

is a martingale, and has zero expectation. Now, we arrive at the convergence (29).
The proof is complete.

Remark 2 In the proof of the existence Theorem 1, the generator has the following
quadratic growth:

|f 0(t, x, v, p, r)| ≤ λ0(t, x) + λ1|v| + λ2(|p|2 + |r|2).
Assumption (H2) gives that λ0 ∈ H

0(Rd). Therefore, λ0 + λ1|v| ∈ H
0(Rd) and

λ2(|p|2 +|r|2) ∈ L
1(Rd), yielding the required condition f 0 ∈ H

0(Rd)+L
1(Rd) to

apply Theorem 4. Similarly, in the proof of the uniqueness Theorem 2, the generator
has the following quadratic growth:

|f 0(t, x, v, p, r)| ≤ l0(t, x) + l1(|p|2 + |r|2).
In view of Assumption (H6), we have f 0 ∈ L

1(Rd), and thus Theorem 4 can be used.

Remark 3 In comparison with Lemma 2, Theorem 4 requires the extra condition
�(0) = 0 on �. Otherwise, �(0) = c �= 0, and a strictly positive deterministic
function u(t, x) of compact support and only depending on x obviously satisfies all
the conditions required in Theorem 4, but the integral∫

Rd\supp{u(t,·)}
�(u(t, x)) dx =

∫
Rd\supp{u(t,·)}

c dx

is not finite for each t and thus not integrable in t. If�(0) = 0, using the second-order
Taylor’s extension, we see that the spatial integral∫

Rd

|�(u(t, x))|dx ≤ M

∫
Rd

|u(t, x)|2dx
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is integrable in t on [0, T ]. Therefore, the extra condition �(0) = 0 is crucial to
validity of the Itô’s formula stated in Theorem 4.

We have the following type of Itô’s formula for the case of d = 1.

Theorem 5 Assume that the strictly positive function ζ : [0, T ] → [δ,+∞) sat-
isfies the following ordinary differential equation:

ζ(t) = ζ(T ) +
∫ T

t

f (s)ds,

where f ∈ L∞([0, T ]) and the constant δ > 0. The random functions f i, f 0, qk, u

are as defined as in Theorem 4, and the Eq. (17) holds for ∀ η ∈ C∞
c (Rd). If d = 1,

then for any � ∈ C2
b(R) such that �(x)

∣∣
x≤0 = 0 and |�′′(x)| ≤ K|x| holds for

some positive constant K, we have (noting that f = f 1)∫
Rd

�(u(t, x) − ζ(t))dx −
∫
Rd

�(u(T , x) − ζ(T ))dx

=
∫ T

t

∫
Rd

[
�′(u − ζ )(f 0 − f ) − �′′(u − ζ )uxf − 1

2
�′′(u − ζ )|q|2

]
dxds

−
∫ T

t

∫
Rd

�′(u(s, x) − ζ(s))qk(s, x)dxdWk
s , a.s..

(34)

Proof Since � ∈ C2
b(R), we have |�| + |�′| + |�′′| ≤ M . On the other hand,

since �(x)
∣∣
x≤0 = 0 , we have

�′(x)

∣∣∣∣x≤0 = �′′(x)

∣∣∣
x≤0

= 0.

If y ≥ 0, we have

|�′′(x − y)| ≤ K|x − y|χ{x≥y} ≤ K|x|. (35)

Since

θ(x) := E

∫ T

0
|u(s, x)f (s, x)|ds

is integrable over R, we can choose k(n) such that

E

∫ T

0

∫
|x|≥k(n)

|uf |dxds ≤ 1

n2
, (36)

and k(n) strictly increases to +∞ as n tends to ∞. Construct the deterministic
truncating function αn(·) ∈ C∞

c (R) as a mollified version of the following function

α0
n(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, |x| ≤ k(n);
1 − 1

n
[|x| − k(n)], |x| ∈ (k(n), k(n) + 1

n
);

0, |x| ≥ k(n) + 1

n
.
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We have |α′
n(x)| ≤ 2n and 0 ≤ αn(x) ≤ 1. Define

Dn := {x | αn(x) = 1}, En := {x | αn(x) = 0}.
Obviously,

{αn(x)ζ(t), (t, x) ∈ [0, T ] × R
d} ∈ H

1(R) ∩ L2(�, C([0, T ], L2(R))),

{αn(x)f (t), (t, x) ∈ [0, T ] × R
d} ∈ H

0(R) ∩ L
1(R).

Moreover, for any η ∈ C∞
c (R), we have that almost surely,

〈u(t, ·) − αn(·)ζ(t), η〉R − 〈u(T , ·) − αn(·)ζ(T ), η〉R
=

∫ T

t

[
〈f 0(s, ·) − αn(·)f (s), η〉R − 〈f (s, ·), ηx〉R

]
ds −

∫ T

t

〈qk(s, ·), η〉R dWk
s .

Applying Theorem 4, we have∫
R

�(u(t, x) − αn(x)ζ(t))dx −
∫
R

�(u(T , x) − αn(x)ζ(T )) dx

=
∫ T

t

∫
R

[
�′(u−αnζ )(f 0−αnf )−�′′(u−αnζ )(ux −(αn)xζ )f − 1

2
�′′(u−αnζ )|q|2

]
dxds

−
∫ T

t

∫
R

�′(u(s, x) − αn(x)ζ(s))qk(s, x) dxdWk
s .

(37)
In what follows, we now prove that as n → ∞, all terms of the Eq. (37) converge to
their respective counterparts of the Eq. (34).

First, we prove the following convergence∫
R

�(u(t, x) − αn(x)ζ(t))dx
a.s.−−→

∫
R

�(u(t, x) − ζ(t))dx. (38)

Note that ∫
R

�(u(t, x) − αn(x)ζ(t))dx

=
∫

Dn

�(u − ζ )dx +
∫

En

�(u)dx +
∫
R\(Dn∪En)

�(u − αnζ )dx.

Define the set Bt := {x | u(t, x) ≥ ζ(t)}. We have∣∣∣∣
∫
R

�(u(t, x) − αn(x)ζ(t))dx −
∫
R

�(u(t, x) − ζ(t))dx

∣∣∣∣

≤
∫
R\(Dn∪En)

|�(u − αnζ ) − �(u − ζ )| dx +
∫

En

|�(u) − �(u − ζ )| dx

≤2M
∫
R\(Dn∪En)

dx +
∫

En∩Bt

|�(u) − �(u − ζ )| dx +
∫

En\Bt

|�(u)| dx

≤4M

n
+

∫
En∩Bt

|�(u) − �(u − ζ )| dx + M

∫
En\Bt

|u|2dx

≤4M

n
+ 2M

∫
En∩Bt

dx + M

∫
En

|u|2dx.

(39)



Page 18 of 29 R. Qiu, S. Tang

In view of Chebyshev’s inequality, we have meas(Bt ) < +∞. Noting that En =
{x | |x| ≥ k(n) + 1

n
}, we have

lim
n→+∞

∫
En

|u|2dx = 0, lim
n→+∞

∫
En∩Bt

dx → 0,

and thus each side of inequality (39) converges to 0. Then, we have (38).
Now, consider both integrals of the right side of Eq. (37). For fixed (t, x), as

n → ∞, we have

�′′(u − αnζ )|q|2 → �′′(u − ζ )|q|2, �′′(u − αnζ )f ux → �′′(u − ζ )f ux,

and they are dominated by M|q|2 and |f ux |, respectively. Using the dominated con-
vergence theorem, we see that both integrals converge to their respective counterparts
of Eq. (34).

Now, we prove the following convergence:
∫ T

t

∫
R

�′(u − αnζ )f αndxds
a.s.−−→

∫ T

t

∫
R

�′(u − ζ )f dxds. (40)

Assume that ‖f ‖L∞([0,T ]) ≤ N . We have
∫ T

t

∫
R

∣∣�′(u(s, x) − αn(x)ζ(s))f (s)αn(x) − �′(u(s, x) − αn(x)ζ(s))f (s)
∣∣ dxds

=
∫ T

t

∫
R\(Dn∪En)

|f | ∣∣�′(u − αnζ )αn − �′(u − ζ )
∣∣ dxds +

∫ T

t

∫
En

∣∣�′(u − ζ )f
∣∣ dxds

≤2M
∫ T

t

∫
R\(Dn∪En)

|f |dxds +
∫ T

t

∫
En∩Bs

∣∣�′(u − ζ )f
∣∣ dxds

≤2M
∫ T

t

∫
[R\(Dn∪En)]∪(En∩Bs)

|f |dxds

≤2MN

∫ T

t

meas
{[R \ (Dn ∪ En)] ∪ (En ∩ Bs)

}
ds

≤2MN

{
T meas

[
R \ (Dn ∪ En)

] +
∫ T

t

meas(En ∩ Bs)ds

}

≤4MNT

n
+ 2MNT

∫ T

t

meas(En ∩ Bs)ds.

(41)
First, limn→∞ meas(En ∩ Bs) = 0 for any s. It follows from Chebyshev’s inequality
that

meas(Bs) ≤ 1

ζ 2(s)

∫
R

u2(s, x)dx ≤ 1

δ2

∫
R

u2(s, x)dx.

Therefore, the function {meas(En ∩ Bs), s ∈ [0, T ]} is dominated by

1

δ2

∫
R

u2(s, x)dx.

Using the dominated convergence theorem, the second term of the right side of
inequality (41) converges to 0. Then, we have the convergence (40).
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Now, we prove

∫ T

t

∫
R

�′(u − αnζ )f 0dxds
a.s.−−→

∫ T

t

∫
R

�′(u − ζ )f 0dxds. (42)

Consider both cases of f 0 ∈ L
1(R) and f 0 ∈ H

0(R).
(i) For f 0 ∈ L

1(Rd), fixing (t, x), we have

lim
n→∞ �′(u − αnζ )f 0 = �′(u − ζ )f 0,

and |�′(u − αnζ )f 0| ≤ M|f 0|. Using the dominated convergence theorem, we have
the convergence (42).

(ii) For f 0 ∈ H
0(Rd), using Taylor’s extension, we have

∫ T

t

∫
R

∣∣∣�′(u − αnζ )f 0 − �′(u − αnζ )f 0
∣∣∣ dxds

=
∫ T

t

∫
R\(Dn∪En)

|f 0| ∣∣�′(u − αnζ ) − �′(u − ζ )
∣∣ dxds

+
∫ T

t

∫
En∩Bs

|f 0| ∣∣�′(u) − �′(u − ζ )
∣∣ dxds +

∫ T

t

∫
En\Bs

∣∣∣�′(u)f 0
∣∣∣ dxds

≤2M
∫ T

t

∫
[R\(Dn∪En)]∪(En∩Bs)

|f 0|dxds + M

∫ T

t

∫
En

∣∣∣uf 0
∣∣∣ dxds.

(43)
It is sufficient to show that the first integral of the right side of the last inequality
converges to 0 as n tends to ∞. Using Hölder’s inequality, we have

∫ T

t

∫
[R\(Dn∪En)]∪(En∩Bs)

|f 0|dxds

≤
∫ T

t

{
meas

{[R \ (Dn ∪ En)] ∪ (En ∩ Bs)
}} 1

2

(∫
R

|f 0|2dx

) 1
2

ds

≤
{∫ T

t

meas
{[R \ (Dn ∪ En)] ∪ (En ∩ Bs)

}
ds

} 1
2
(∫ T

t

∫
R

|f 0|2dxds

) 1
2

.

Proceeding identically as before, in the right side of the last inequality, the first factor
converges to 0, and the second factor is bounded. Therefore, the right side of the last
inequality (43) converges to 0. In summary, as f 0 ∈ H

0(Rd) + L
1(Rd), we have the

convergence (42).
Now, we prove the following convergence

∫ T

t

∫
R

f �′′(u − αnζ )(αn)xζdxds
a.s.−−→ 0 (44)

for some subsequence n := ni , which tends to +∞ as i → +∞. In view
of the increasing property of the upper bound Kx+ of the function |�′′(x)|, and
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inequalities (35), (36), and |α′
n(x)| ≤ 2n, we have

E

∫ T

t

∫
R

∣∣f �′′(u − αnζ )(αn)xζ
∣∣ dxds

≤(|ζ(T )| + T N) E

∫ T

t

∫
R\(Dn∪En)

2n|�′′(u − αnζ )f |dxds

≤2K(|ζ(T )| + T N) E

∫ T

t

∫
R\(Dn∪En)

n|uf |dxds

≤2K(|ζ(T )| + T N)

n
→ 0, asn → +∞,

(45)

which yields (44).
Finally, we prove the convergence of the stochastic integral in the right side of

Eq. (37). Identically as in the proof of Theorem 4, it is sufficient to prove the
following convergence

lim
n→+∞E

√∫ T

t

{∫
Rd

[�′(u − αnζ ) − �′(u − ζ )] qkdx

}2

ds = 0. (46)

For any k, we have
{∫

R

[
�′(u − αnζ ) − �′(u − ζ )

]
qkdx

}2

≤
(
2M

∫
[R\(Dn∪En)]∪(En∩Bs)

|qk|dx

)2

+
[∫

En\Bs

∣∣∣�′(u)qk
∣∣∣ dx

]2

≤ 4M2 meas
{[R \ (Dn ∪ En)] ∪ (En ∩ Bs)

}(∫
R

|qk|2dx

)2

+ M2
[∫

En\Bs

|uqk|dx

]2
.

Using the same arguments as in (41), we see that the right side of the last inequality
converges to 0 as n tends to +∞. Since ζ > 0, we have

|�′(u − ζ )| ≤ M|u − ζ |χ{u≥ζ } ≤ M|u|.
Using the same arguments as in (33) in the proof of Theorem 4, we arrive at the
convergence (46) and see that the stochastic integral in Eq. (34) has zero expectation.

The proof is complete.

Remark 4 In the preceding proof, due to the assumption that the spatial dimen-
sion d = 1, the truncating function αn has the following useful properties: (i) the
measure of the set Rd \ (Dn ∪ En) tends to 0, and (ii) |α′

n(x)| ≤ 2n. In the case
where d ≥ 2, for the same truncating function αn, the preceding property (ii) and
thus inequality (45) are still true. However, since

meas
[
R

d \ (Dn ∪ En)
]

= O

([
k(n) + 1

n

]d

− [k(n)]d
)

= O

( [k(n)]d−1

n

)
,

it is not clear whether there is some k(n) such that the preceding sequence of
measures converges to 0 as n → ∞ and meanwhile inequality (36) is guaranteed.
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3.3 The proof of the main results

In this subsection, we prove Theorems 1 and 2. Once the suitable Itô’s formula can be
applied, all the arguments to prove the existence and uniqueness are quite natural. We
mainly follow the proof of Du and Chen (2012, Theorem 1.1), except that the spatial
integrals over the whole space Rd of some quantities have to be carefully estimated
to guarantee that they are finite.

First, we have the following a priori estimate.

Lemma 5 Let Assumptions (H2) − (H5) be satisfied, and BSPE (1)−(2) has
a weak solution (u, q) ∈ H

1(Rd) × H
0(Rd ; R

d0) such that u ∈ L
∞(Rd) ∩

L2(�, C([0, T ], L2(Rd))). Then, we have

‖u(t, ·)‖L∞(�×Rd ) ≤ eλ1(T −t) − 1

λ1
‖λ0‖L∞(Rd ) + eλ1(T −t)‖ϕ‖L∞(�×Rd ). (47)

Further, there is a constant C which only depends on ‖ϕ‖L2(�×Rd ), ‖λ0‖L2(Rd ) and
constants μ0, λ1, T , such that

‖ux‖2H0(Rd )
+ ‖q‖2

H0(Rd ; Rd0 )
≤ C. (48)

Proof We follow the routine in the proof of Du and Chen (2012, Proposition 5.1).
First, to prove (47), we consider the following ordinary differential equation

ξ(t) = ‖ϕ‖L∞(�×Rd ) +
∫ T

t

(λ1ξ(s) + ‖λ0‖L∞(Rd ))ds.

It has the following explicit solution

ξ(t) = eλ1(T −t) − 1

λ1
‖λ0‖L∞(Rd ) + eλ1(T −t)‖ϕ‖L∞(�×Rd ).

We construct function �1 ∈ C2(R) such that

�1(x) =
⎧⎨
⎩

e2λ(M1+1) − [1 + 2λ(M1 + 1) + 2λ2(M1 + 1)2], x ∈ [M1 + 1, +∞];
e2λx − (1 + 2λx + 2λ2x2), x ∈ [0, M1];
0, x ∈ (−∞, 0],

where the positive constant

M1 := eλ1T

λ1
‖λ0‖L∞(Rd ) + eλ1T ‖ϕ‖L∞(�×Rd ) + ‖u‖L∞(Rd ).

It can be verified that both functions ξ and �1 satisfy all the requirements of Theo-
rem 5. We can apply Itô’s formula (34) to u(t, x) − ξ(t), and follow the proof of Du
and Chen (2012, Proposition 5.1) to arrive at inequality (47).

Now, we use Itô’s formula (18) to prove inequality (48). For this purpose, construct
�2 ∈ C2(R) such that

�2(x) =
⎧⎨
⎩

1
2λ2

[e2λ(M2+1) − 1 − 2λ(M2 + 1)], x ∈ [M2 + 1, +∞];
1

2λ2
(e2λx − 1 − 2λx), x ∈ [0, M2];

�2(−x), x ∈ (−∞, 0],
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where the positive constant M2 := ‖u‖L∞(Rd ). It can be verified that the function
�2 satisfies all the requirements of Theorem 4. We can apply Itô’s formula (18) to
u(t, x), and follow the proof of Du and Chen (2012, Proposition 5.1) to arrive at the
following inequality

sup
t∈[0,T ]

E

∫
Rd

|u|2dx ≤
(

k2

k1
‖ϕ‖L2(�×Rd ) + 1

2k1
‖λ0‖L2(Rd )

)
e

k24+2k4λ1
2k1

T

for constants k1, k2, k3, and k4.
We have

μ0E

∫ T

t

∫
Rd

(|ux |2 + |q|2)dxds

≤k2‖ϕ‖L2(�×Rd ) + 1

2
‖λ0‖L2(Rd ) + (

k24

2
+ k4λ1)

∫ T

t

E

∫
Rd

|u|2dxds

≤k2‖ϕ‖L2(�×Rd ) + 1

2
‖λ0‖L2(Rd ) + (

k24

2
+ k4λ1)T sup

t∈[0,T ]
E

∫
Rd

|u|2dxds

≤
[
k2 + (

k24

2
+ k4λ1)

k2T

k1
e

k24+2k4λ1
2k1

T

]
‖ϕ‖L2(�×Rd )

+
[
1

2
+ (

k24

2
+ k4λ1)

T

2k1
e

k24+2k4λ1
2k1

T

]
‖λ0‖L2(Rd ).

(49)

The proof is then complete.

We have the following monotone convergence theorem for BSPEs of quadratic
generators.

Lemma 6 Assume that random functions f n(ω, t, x, v, p, r) and f (ω, t, x, v, p, r)

satisfy (H1), ϕn(x) and ϕ(x) satisfy (H4), and random coefficients aij and σ ik

satisfy (H3). Moreover, we make the following three assumptions.
(i) For any (ω, t, x), f n locally uniformly in (v, p, r) converges to f, and ϕn

converges to ϕ strongly in L2(� × R
d).

(ii) There are positive constants λ̃ and nonnegative random function λ̃2 ∈
L

∞(Rd) ∩ L
2(Rd) such that

|f n(t, x, v, p, r)| ≤ λ̃2(t, x) + λ̃μ0(|p|2 + |r|2).
(iii) For any integer n, BSPE (f n, ϕn) has a weak solution (un, qn) ∈ H

1(Rd) ×
H

0(Rd ; R
d0) such that un ∈ L

∞(Rd) ∩ L2(�, C([0, T ], L2(Rd))). Moreover,
{un}n is monotone and is uniformly bounded.

Then, BSPE (1)−(2) has a weak solution (u, q) ∈ H
1(Rd) × H

0(Rd ; R
d0) such

that u ∈ L
∞(Rd) ∩ L2(�, C([0, T ], L2(Rd))), and

lim
n→∞ ‖un − u‖

H1(Rd ) = 0, lim
n→∞ ‖qn − q‖

H0(Rd ; Rd0 ) = 0.



Probability, Uncertainty and Quantitative Risk             (2019) 4:3 Page 23 of 29

Proof The whole proof consists of the following three steps, as in Du and Chen
(2012, Proposition 5.2). Step 1 is devoted to the proof of the strong convergence of
(un, qn) to (u, q) in the space H1(Rd) × H

0(Rd ; R
d0). Step 2 is devoted to proving

that (u, q) is a weak solution to BSPE (1)−(2). Step 3 is devoted to the proof of the
inclusion u ∈ L2(�, C([0, T ], L2(Rd))). Step 3 is the same as that of Du and Chen
(2012, the proof of Proposition 5.2) and thus is omitted here. We only sketch the first
two steps.

Step 1. From the assumptions, we see that there is a constant M3 > 0 such that for
any integers n,m, we have ‖un−um‖L∞(Rd ) ≤ M3. Define the function �3 ∈ C2(R)

such that

�3(x) :=

⎧⎪⎨
⎪⎩

1
200̃λ2

[e20̃λ(M3+1) − 1 − 20λ(M3 + 1)], x ∈ [M3 + 1, +∞];
1

200̃λ2
(e2̃λx − 1 − 20λx), x ∈ [0, M3];

�2(−x), x ∈ (−∞, 0].
The function �3 satisfies all requirements of Theorem 4. We then can apply Itô’s
formula (18) in Theorem 4 to un − um. Then, following the remaining arguments in
Step 1 of Du and Chen (2012, the proof of Proposition 5.2), to show that (un, qn)

converges to (u, q) strongly in the space H1(Rd) ×H
0(Rd; R

d0) and u ∈ L
∞(Rd).

Step 2. In view of Lemma 3, we assume without loss of generality that all the three
functions supn |un|, supn |un

xj |, and supn |qk,n| belong to the space H
0(Rd), and

each of (un, un
xj , q

k,n) converges to (u, uxj , qk) almost everywhere in (ω, t, x). Our

spatial integral over the whole space Rd brings difficulty in this step. We begin with
the definition of weak solutions. Since (un, qn) is a weak solution to BSPE (f n, ϕn),
we have for any η ∈ C∞

c (Rd),
∫
Rd

un(t, x)η(x)dx −
∫
Rd

ϕn(x)dx

=
∫ T

t

∫
Rd

[
−(aij un

xj + σ ikqk,n)ηxj + f n
(
s, x, un, un

x, q
n
)
η
]
dxds

−
∫ T

t

∫
Rd

qk,n(s, x)η(x)dxdWk
s , a.s.

(50)

For fixed η, take Cη := supp(η), and positive constants M4 := ‖η‖W 1,+∞(Rd ) and
M5 := supi,j |aij | + supi,k |σ ik|. It is sufficient to prove the convergence of every
integral in Eq. (50) .

First, since
∫
Rd

∣∣[un(t, x) − u(t, x)]η(x)
∣∣ dx =

∫
Cη

∣∣[un(t, x) − u(t, x)]η(x)
∣∣ dx,

noting that |[un(t, x) − u(t, x)]η(x)| ≤ 2M4 supn |un(t, x)| and the right side of the
last inequality is integrable over the bounded domainCη, we have from the dominated
convergence theorem that

∫
Rd

∣∣[un(t, x) − u(t, x)]η(x)
∣∣ dx

a.s.−−→ 0.
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Identically, noting that the sequence {ϕn}n is uniformly bounded, we can also prove
∫
Rd

∣∣[ϕn(x) − ϕ(x)]η(x)
∣∣ dx

a.s.−−→ 0.

Since
∫ T

t

∫
Rd

∣∣∣−[aijun
xj + σ ikqk,n]ηxj

∣∣∣ dxds

≤
∫ T

t

∫
Rd

2M4M5

(
sup
n

|un
xj | + sup

n
|qk,n|

)
χ{x∈Cη}dxds

≤4M4M5

(∫ T

t

∫
Rd

(
sup
n

|un
xj |2 + sup

n
|qk,n|2

)
dxds

) 1
2
(∫ T

t

∫
Rd

χ{x∈Cη}dxds

) 1
2

.

We can see that the dominating function
(
supn |un

xj | + supn |qk,n|
)

χ{x∈Cη} has the
necessary integrability required in the dominated convergence theorem, and we have

∫ T

t

∫
Rd

∣∣∣−(aij un
xj + σ ikqk,n)ηxj

∣∣∣ dxds
a.s.−−→

∫ T

t

∫
Rd

∣∣∣−(aij uxj + σ ikqk)ηxj

∣∣∣ dxds.

From Assumption (i), we have the following: almost everywhere at (ω, t, x),

lim
n→∞ f n(t, x, un(t, x), un

x(t, x), qn(t, x)) = f (t, x, u(t, x), ux(t, x), q(t, x)).

Since
∫ T

t

∫
Rd

∣∣f n(t, x, un(t, x), un
x(t, x), qn(t, x))η(x)

∣∣ dxds

≤
∫ T

t

∫
Rd

[
λ̃2(t, x) + λ̃μ0 sup

n
(|un

x |2 + |qn|2)
]

χ{x∈Cη} dxds

≤
∫ T

t

∫
Rd

λ̃μ0 sup
n

(|un
x |2 + |qn|2) dxds +

∫ T

t

∫
Cη

λ̃2(t, x) dxds

≤
∫ T

t

∫
Rd

λ̃μ0 sup
n

(|un
x |2 + |qn|2) dxds + T meas(Cη) ‖λ̃2‖L∞(Rd ),

the dominant function
[
λ̃2(t, x) + λ̃μ0 supn(|un

x |2 + |qn|2)]χ{x∈Cη} has the integra-
bility required in the dominant convergence theorem, and we have

∫ T

t

∫
Rd

∣∣f n(t, x, un, un
x, q

n)η
∣∣ dxds

a.s.−−→
∫ T

t

∫
Rd

|f (t, x, u, ux, q)η| dxds. (51)

Finally, we prove for k = 1, 2, · · · , d0 that

E

∫ T

t

{∫
Rd

[
qk,n(t, x) − qk(t, x)

]
η(x)dx

}2

ds → 0. (52)
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Since [qk,n(t, x) − qk(t, x)]η(x) → 0 almost everywhere in (ω, t, x) and

E

∫ T

t

{∫
Rd

[
qk,n(t, x) − qk(t, x)

]
η(x)dx

}2

ds

≤4M2
4 E

∫ T

t

[∫
Rd

sup
n

|qk,n| χ{x∈Cη}dx

]2
ds

≤4M2
4 meas(Cη) E

∫ T

t

∫
Rd

sup
n

|qk,n|2dxds,

apply twice the dominant convergence theorem, and we have (52).
Concluding the above and setting n → ∞ in Eq. (50), we see that (u, q) is a weak

solution to BSPE (1)−(2). The proof is complete.

Remark 5 The last lemma does not invoke Theorem 5, and is true for any
dimension d.

The following gives a weak solution of a quadratic BSPE via that of the
exponential-transferred one.

Lemma 7 Assume that (v, r) ∈ H
1(Rd) × H

0(Rd ; R
d0) is a weak solution of

BSPE {
dv = − [

(aij vxj + σ ikrk)xi + F(t, x)
]
dt + rkdWk

t ,

v(T , x) = e2λϕ(x) − 1,

where both functions F(·, ·) and ϕ(·) are bounded, and that there are two constants
γ > 0 and � > 0 such that 0 ≤ γ ≤ v + 1 ≤ �. Then, the pair (u, q) defined by

u := 1

2λ
ln(v + 1), q := r

2λ(v + 1)
,

is a weak solution of BSPE
{

du = − [
(aij uxj + σ ikqk)xi + f (t, x, u, ux, q)

]
dt + qkdWk

t ,

u(T , x) = ϕ(x),

where

f (t, x, u, ux, q) := 1

2λ
e−2λuF (t, x) + λ(2aijuxi uxj + 2σ ikuxi q

k + |q|2).

Proof From the definition of (u, q), we have

|u| ≤ γ + | ln γ |
2λγ

|v|, |uxi | = |vxi |
2λ(v + 1)

≤ |vxi |
2λγ

, |q| ≤ |r|
2λγ

.

Therefore, (u, q) ∈ H
1(Rd) × H

0(Rd ; R
d0).

Now, we can follow the same arguments of Du and Chen (2012, Lemma 3.5) to
complete the proof.

At last, we prove the existence and uniqueness of weak solutions. Now, we first
prove the existence Theorem 1 of weak solutions.
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Proof Define

M6 := eλ1(T −t) − 1

λ1
‖λ0‖L∞(Rd ) + eλ1(T −t)‖ϕ‖L∞(�×Rd ).

From Lemma 5, we see that if (u, q) is a weak solution of BSPE (1)−(2) with u being
bounded, then u ≤ M6.

Identically as in the proof of Du and Chen (2012, Theorem 2.1) (see Du and
Chen (2012, pages 459 and 460)), we construct the generator Fn and consider the
associated BSPE:

{
dvn = −

[
(aij vn

xj + σ ikrn,k)xi + Fn(t, x, vn, vn
x , rn)

]
dt + rn,kdWk

t ,

vn(T , x) = e2λϕ(x) − 1.

In view of Du and Tang (2010, Lemma 2.3), the last BSPE has a weak solu-
tion (vn, rn) ∈ H

1(R) ∩ L2(�, C([0, T ], L2(Rd))) × H
0(R; R

d0) such that

e−2λ(M6+1) − 1 ≤ vn+1 ≤ vn ≤ e2λ(M6+1) − 1.

Define

un := 1

2λ
ln(vn + 1), qn := rn

2λ(vn + 1)
.

Lemma 7 indicates that (un, qn) is a weak solution to BSPE:
{

dun = −
[
(aij un

xj + σ ikqn,k)xi + f n(t, x, un, un
x, q

n)
]
dt + qn,kdWk

t ,

un(T , x) = ϕ(x)

where the generator

f n(t, x, u, ux, q) := 1

2λ
e−2λuFn(t, x, e2λu − 1, 2λe2λuux, 2λe2λuq)

+ λ(2aijuxi uxj + 2σ ikuxi q
k + |q|2).

Noting that {un}n is monotone, and using Lemma 6, we see that the following BSPE

du = − [
(aij uxj + σ ikqk)xi + f̃ (t, x, u, ux, q)

]
dt + qkdWk

t ,

u(T , x) = ϕ(x)

for the limit f̃ of {f n}n, has a weak solution (u, q) with u being the point-wise
limit of un and belonging to the space L∞(R) ∩ L2(�, C([0, T ], L2(R))). While
if u ≤ M6, we have f̃ = f .

Concluding the above, we see that (u, q) is a weak solution to BSPE (1)−(2) such
that u ∈ L

∞(R). The proof is complete.

Next, we prove the uniqueness Theorem 2 of weak solutions.

Proof Define ũ+ := (u1 − u2)+ and q̃ := q1 − q2. Since both u1 and u2 are
bounded, assume without loss of generality that ũ+ ≤ M7. Construct a deterministic
function �4 ∈ C2(R) such that
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�4(x) =
⎧⎨
⎩

(M7 + 1)2m, x ∈ [M7 + 1, +∞];
x2m, x ∈ [0, M7];
0, x ∈ (−∞, 0],

where integer m ≥ 2. It is easily verified that �4 satisfies all the conditions of
Theorem 4 such that Itô’s formula (18) can be applied, and we have

∫
Rd

∣∣̃u+(t, x)
∣∣2m dx

+m(2m − 1)
∫ T

t

∫
Rd

(̃
u+)2(m−1)

(
2aij ũxi ũxj + 2σ ikũxi q̃

k + |̃q|2
)

(s, x) dxds

= 2m
∫ T

t

∫
Rd

(̃
u+)2m−1

f̃ (s, x) dxds − 2m
∫ T

t

∫
Rd

(̃
u+)2m−1

q̃ k(s, x) dxdWk
s ,(53)

where

f̃ (s, x) := f (s, x, (u1, u1x, q
1)(s, x)) − f (s, x, (u2, u2x, q

2)(s, x))

=
(∫ 1

0
fu(s, x, �λ(s, x)) dλ

)
ũ(s, x) (54)

+
(∫ 1

0
fz(s, x, �λ(s, x)) dλ

)
(̃ux, q̃)∗ (s, x)

with

ûλ := λu1 + (1−λ)u2, q̂λ := λq1 + (1−λ)q2, �λ(s, x) := (̂
uλ, ûλ

x, q̂
λ
)
(s, x).

The rest is the same as that of Du and Chen (2012) to complete the proof.

Remark 6 Our proof of Theorem 2 appeals to neither Theorem 5 nor the a priori
estimate in Lemma 5, and therefore our uniqueness assertion applies to arbitrary
spatial dimension d.

Remark 7 In contrast to Theorem 2 which requires that the quadratic generator
satisfies (16), Du and Chen (2012, Theorem 2.1, page 450) actually requires the
following weaker condition:

|f (t, x, v, p, r)| ≤ l̃0(t) + l1(|p|2 + |r|2).
where l̃0(·) ∈ L∞([0, T ]). This is because the latter paper (Du and Chen 2012)
considers the Cauchy−Dirichlet problem in a bounded spatial domain, while we
consider the Cauchy problem where the spatial domain is the whole space and is
unbounded. Our assumption (16) ensures that the generator f ∈ L

1(Rd), and then
Theorem 4 can be applied.
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