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Abstract Conditional expectations (like, e.g., discounted prices in financial applica-
tions) are martingales under an appropriate filtration and probability measure. When
the information flow arrives in a punctual way, a reasonable assumption is to sup-
pose the latter to have piecewise constant sample paths between the random times of
information updates. Providing a way to find and construct piecewise constant mar-
tingales evolving in a connected subset of R is the purpose of this paper. After a brief
review of possible standard techniques, we propose a construction scheme based on
the sampling of latent martingales Z̃ with lazy clocks θ . These θ are time-change pro-
cesses staying in arrears of the true time but that can synchronize at random times to
the real (calendar) clock. This specific choice makes the resulting time-changed pro-
cess Zt = Z̃θt a martingale (called a lazy martingale) without any assumption on Z̃,
and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale

Z, so that sample paths of Z on [0, T ] only requires sample paths of
(
θ, Z̃

)
up to T.

This would not be the case if the stochastic clock θ could be ahead of the real clock,
as is typically the case using standard time-change processes. The proposed approach
yields an easy way to construct analytically tractable lazy martingales evolving on
(interval of) R.
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1 Introduction

Martingales play a central role in probability theory, but also in many applications.
This is specifically true in mathematical finance where it is used to model Radon—
Nikodym derivative processes or discounted prices in arbitrage-free market models
(Jeanblanc et al. 2007). More generally, it is very common to deal with conditional
expectation processes Z = (Zt )t∈[0,T ], Zt := E[ZT |Ft ], where F := (Ft )t∈[0,T ] is a
reference filtration and E stands for the expectation operator associated with a given
probability measure P. Many different modeling setups have been proposed to repre-
sent the dynamics of Z (e.g., random walk, Brownian motion, Geometric Brownian
motion, Jump diffusion, etc) depending on some assumptions about its range, path-
wise continuity, or continuous versus discrete-time setting. In many circumstances,
however, information can be considered to arrive at random times, or in a partial
(punctual way).

An interesting application in that respect is the modeling of quoted recovery rates.
The recovery rate r of a firm corresponds to the ratio of the debt that will be recovered
after the firm’s default during an auction process. It is also a major factor driving the
price of corporate bonds or other derivatives instruments likes credit default swaps
or credit linked notes. In many standard models (like those suggested by the Inter-
national Swaps and Derivatives Association (ISDA)), the recovery rate process is
assumed constant (see e.g., Markit (2004)). Many studies stressed the fact that r is
in fact not a constant: it cannot be observed prior to the firm’s default τ ; r is an
Fτ -measurable random variable in [0, 1]. This simple observation can have serious
consequences in terms of pricing and risk-management of credit sensitive products,
and explains the development of stochastic recovery models (Amraoui et al. 2012,
Andersen and Sidenius 2004). A further development in credit risk modeling is to
take into account the fact that recovery rates can be “dynamized” (Gaspar and Slinko
2008). Quoted recovery rates, for instance, can thus be modeled as a stochastic pro-
cess R = (Rt )t≥0 that gives the “market’s view” of a firm’s recovery rate as seen
from time t. Hence, Rt := E[r|Ft ] can be seen as a martingale evolving in the unit
interval. By correlating R with the creditworthiness of the firm, it becomes possible
to account for a well-known fact in finance: recovery rate and default probability are
statistically linked (Altman et al. 2003). However, observations for the process R are
limited: updates in recovery rate quotes arrive in a scarce and random way. Therefore,
in contrast with the common setup, it is more realistic to represent R as a martin-
gale whose trajectories remain constant for long period of times, but “changes” only
occasionally, upon arrival of related information (e.g., when a dealer updates its view
to specialized data providers). More generally, such types of martingales could be
used to model discounted price processes of financial instruments, observed under
partial (punctual) information, e.g., at some random times, but also to represent price
processes of illiquid products. Indeed, without additional information, a reasonable
approach may consist of assuming that discounted prices remain constant between
arrivals of market quotes, and jump to the level given by the new quote when a new
trade is done.

Whereas discrete-time and continuous martingales have been extensively studied
in the literature, very little work has been done with respect to martingales having
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piecewise constant sample paths. In this paper, we propose a methodology to find
and construct such types of martingales. The special case of step-martingales (which
are martingales with piecewise constant sample paths, but restricted to a finite num-
ber of jumps in any finite interval) have been studied in Boel et al. (1975a, b), with
emphasis on representation theorems and applications to communication and control
problems. In Herdegen and Herrmann (2016), the authors investigate a single jump
case, in which the first part of the path (before the unique jump) is supposed to be
deterministic. We extend this research in several ways. First, we relax the (strong)
step-martingale restriction and deal with the broader class of processes featuring pos-
sibly infinitely many jumps in a time interval. Second, our approach allows one to
build martingales that evolve in a bounded interval, a problem that received little
attention so far and which relevance is stressed with the above recovery example, but
could also be of interest for modeling stochastic probabilities or correlations. This
is achieved by introducing a new class of time-change processes called lazy clocks.
Finally, we provide and study numerous examples and propose some construction
algorithms.

The paper is organized as follows. In Section 2 we formally introduce the con-
cept of piecewise constant martingales Z and presents several routes to construct
these processes. We then introduce a different approach in Section 3, where (Zt )t≥0

is modeled as a time-changed process
(
Z̃θt

)
t≥0

, where θ is a lazy clock. The latter

are time-change processes built in such a way that the stochastic clock always stays
in arrears of the real clock (θt ≤ t a.s.). This condition is motivated by computa-
tional considerations: it guarantees that sampling Z over a fixed time horizon [0, T ]
only requires the sampling of

(
Z̃, θ

)
over the same period. Finally, as our objective

is to provide a workable methodology, we derive the analytical expression for the
distributions and moments in some particular cases, and provide efficient sampling
algorithms for the simulations of such martingales.

2 Piecewise constant martingales

In the literature, pure jump processes defined on a filtered probability space
(�,F,F,P), where F = (Ft )t∈[0,T ] and F := FT , are often referred to as stochas-
tic processes having no diffusion part. In this paper we are interested in a subclass of
pure jump processes: piecewise constant (PWC) martingales defined as follows.

Definition 1 (Piecewise constant martingale) A piecewise constant F-martingale
Z is a càdlàg F-martingale whose jumps �Zs = Zs − Zs− are summable (i.e.∑

s≤T |�Zs | < +∞ a.s.) and such that for every t ≥ 0 :

Zt = Z0 +
∑
s≤t

�Zs .

In particular, the sample paths of Z(ω) for ω ∈ � belong to the class of piecewise
constant functions of time.
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Note that an immediate consequence of this definition is that a PWC martingale
has finite variation. Such type of processes may be used to represent martingales
observed under partial (punctual) information, e.g. at some (random) times. One pos-
sible field of application is mathematical finance, where discounted price processes
are martingales under an equivalent measure. Without additional information, a rea-
sonable approach may consist in assuming that discounted prices remain constant
between arrivals of market quotes, and jump to the level given by the new quote when
a new trade is done. More generally, this could represent conditional expectation
processes (i.e. “best guess”) where information arrives in a discontinuous way.

Most of the “usual” martingales with no diffusion term fail to have piece-
wise constant sample paths. For example, Azéma’s first martingale M = (Mt)t≥0
defined as

Mt := sign(Wt )

√
π

2

√
t − g0

t (W) , g0
t (W) := sup{s ≤ t,Ws = 0} , (1)

where W is a Brownian motion, is essentially piecewise square-root. Interestingly,

one can show that Mt = E

[
Wt |Fg0t (W)+

]
, so thatM actually corresponds to the pro-

jection of W onto its slow filtration, see e.g. Dellacherie et al. (1992) and Mansuy
and Yor (2006) and Chapter IV, section 8 of Protter (2005) for a detailed analysis
of this process. Similarly, the Geometric Poisson Process eNt log(1+σ)−λσ t is a posi-
tive martingale with piecewise negative exponential sample paths (Shreve 2004, Ex
11.5.2).

However, finding such type of processes is not difficult. We provide below three
different methods to construct some of them. Yet, not all are equally powerful in
terms of tractability. The last method proves to be quite appealing in that it yields
analytically tractable PWC martingales whose range can be any connected set.

2.1 An autoregressive construction scheme

We start by looking at a subset of PWC martingales, namely step-martingales. These
are martingales whose paths belong to the space of step functions on any bounded
interval, i.e. whose paths are a finite linear combination of indicator functions of
intervals. As a consequence, a step martingale Z admits a finite number of jumps on
[0, T ] taking places at, say (τk, k ≥ 1), and may be decomposed as (with τ0 = 0)

Zt = Z0 +
+∞∑
k=1

(
Zτk

− Zτk−1

)
1{τk≤t} .

Looking at such decomposition, we see that step martingales may easily be
constructed by an autoregressive scheme.

Proposition 1 Let Z be a càdlàg process with integrable variation starting from
Z0. We assume that E[|Z0|] < +∞. Then, the following are equivalent:

i) Z is a step martingale with respect to its natural filtration F,
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ii) there exists a strictly increasing sequence of random times (τk, k ≥ 0) starting
from τ0 = 0, taking values in [0, +∞] and with no point of accumulation such
that

Zt := Z0 +
+∞∑
k=1

(
Zτk

− Zτk−1

)
1{τk≤t} (2)

and which satisfies for any 0 ≤ s ≤ t :

+∞∑
k=1

E
[(

Zτk
− Zτk−1

)
1{s<τk≤t}

∣∣Fs

] = 0 . (3)

Furthermore, the filtration F is given for s ≥ 0 by Fs = σ
((

Zτk
, τk

)
for

k ≥ 0 such thatτk ≤ s).

Proof i) −→ ii) Let Z be a step-martingale with respect to its natural filtration F,
and denote by (τk, k ≥ 0) the sequence of its successive jumps, with τ0 = 0. If Z
only admits a finite number of jumps n0, then we set τn = +∞ for n > n0. This
choice of the sequence (τk, k ≥ 0) implies that the filtration F equals

Fs = σ(Zu, u ≤ s) = σ
((

Zτk
, τk

)
for τk ≤ s

)
, s ≥ 0

and that we have the representation :

Zt = Z0 +
+∞∑
k=1

(
Zτk

− Zτk−1

)
1{τk≤t} .

Taking the expectation with respect to Fs with 0 ≤ s ≤ t on both sides and
applying Fubini’s theorem (since Z is of integrable variation), we deduce that :

Zs = Z0 +
+∞∑
k=1

E
[(

Zτk
− Zτk−1

)
1{τk≤t}|Fs

]

= Z0 +
+∞∑
k=1

(
Zτk

− Zτk−1

)
1{τk≤s} +

+∞∑
k=1

E
[(

Zτk
− Zτk−1

)
1{s<τk≤t}|Fs

]

which implies that the second sum on the right-hand side is null.
ii) −→ i) Define

Zt = Z0 +
+∞∑
k=1

(
Zτk

− Zτk−1

)
1{τk≤t} ,

and observe that since the sequence (τk, k ≥ 0) has no point of accumulation, Z is
clearly a step process. Furthermore, since Z is of integrable variation, we have

E[|Zt |] ≤ E[|Z0|]+E

[∣∣∣∣∣
+∞∑
k=1

(
Zτk

−Zτk−1

)
1{τk≤t}

∣∣∣∣∣

]
≤ E[|Z0|]+E

⎡
⎣ ∑
0<s≤t

|Zs −Zs−|
⎤
⎦<+∞
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which prove that Zt is integrable for any t ≥ 0. Finally, as in the first part of the proof, taking
the expectation with respect to Fs in (2) and using (3), we deduce that :

E[Zt |Fs ] = Z0 +
+∞∑
k=1

(
Zτk

− Zτk−1

)
1{τk≤s} +

+∞∑
k=1

E
[(

Zτk
− Zτk−1

)
1{s<τk≤t}|Fs

] = Zs

which proves that Z is indeed a martingale.

Corollary 1 Let M be a martingale of integrable variation, and let (τk, k ≥ 0)
be an increasing sequence of random times starting from τ0 = 0, taking values in
(0, +∞], with no point of accumulation and which is independent of M. Then, if Z0
is an integrable random variable, the process

Zt = Z0 +
+∞∑
k=1

(
Mτk

− Mτk−1

)
1{τk≤t}, t ≥ 0

is a step martingale with respect to the filtration F given, for s ≥ 0, by Fs =
σ
((

Mτk
, τk

)
for k ≥ 1 such that τk ≤ s

)
.

Proof We only need to check that (3) is satisfied, which is a consequence of the
tower property of conditional expectations. Indeed, define the larger filtration Gs =
σ((τi, i ≥ 1), (Mu, u ≤ s)) and observe that on the set {s < τk ≤ t} :

Fs ⊂ Fτk−1 ⊂ Gτk−1 .

Then, since M is a G-martingale :

E
[(

Mτk
− Mτk−1

)
1{s<τk≤t}|Fs

] = E
[
E
[ (

Mτk
− Mτk−1

)∣∣Gτk−1

]
1{s<τk≤t}|Fs

]

= E
[
E
[ (

Mτk−1 − Mτk−1

)∣∣Gτk−1

]
1{s≤τk−1<τk≤t}|Fs

] = 0 .

Remark 1 Observe that the natural filtration of Z in Proposition 1 satisfies the
identity Ft = Fτk

on the set {τk ≤ t < τk+1}. Since the random times (τk, k ≥ 0) are
stopping times in the filtration F, this implies that F is a jumping filtration, following
the definition of Jacod-Skorokhod (1994).

Example 1 Let N be a counting process and let τ1, . . . , τNt be the sequence of
jump times of N on [0, t] with τ0 := 0. If (Yk, k ≥ 1) is a family of independent and
centered random variables, independent from N, then

Zt := Z0 +
∞∑

k=1

Yk1{τk≤t} = Z0 +
Nt∑

k=1

Yk, Z0 ∈ R

is a PWC martingale. Note that we may choose the range of such a PWC martingale
by taking bounded random variables. For instance, if Z0 = 0 and for any k ≥ 1,

P

(
6a

π2k2
≤ Yk ≤ 6b

π2k2

)
= 1

with a < 0 < b, then for any t ≥ 0, we have Zt ∈ [a, b] a.s.
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The above corollary provides us with a simple method to construct PWC mar-
tingales. Yet, it suffers from two restrictions. First, the distribution of Zt requires
averaging the conditional distribution with respect to the counting process, which
may be an infinite sum. Second, a control on the range of the resulting martin-
gale requires strong assumptions. One might try to relax the i.i.d. assumption of the
Yk’s. In Example 1 the Yk’s are independent but their support decreases as 1/k2.
One could also draw Yk from a distribution whose support is state dependent like[
a − Zτk−1 , b − Zτk−1

]
, then Zt ∈ [a, b] for all t ∈ [0, T ]. In the sequel, we address

these drawbacks by proposing another construction scheme.

2.2 PWCmartingales from pure jumpmartingales with vanishing compensator

Pure jump martingales can easily be obtained by taking the difference of a pure jump
increasing process with a predictable, grounded, right-continuous process of bounded
variation (called dual predictable projections or predictable compensator). The sim-
plest example is probably the compensated Poisson process of parameter λ defined
by (Mt = Nt − λt, t ≥ 0). This process is a pure jump martingale with piecewise
linear sample paths, hence is not a PWC martingale as

∑
s≤t �Ms = Nt �= Mt .

However, it is easy to see that the difference of two Poisson processes with the same
intensity is a PWCmartingale (in fact a step-martingale), and we shall generalize this
idea in the following proposition.

Proposition 2 A F-martingale of integrable variation Z (with Z0 = 0) is PWC if
and only if there exist two F-adapted, integrable and increasing pure jump processes
A and B having the same dual predictable projections (i.e Ap = Bp) such that
Z = A − B.

Proof Assume first that Z is a PWC martingale of integrable variation. We define

At = 1

2

∑
s≤t

(|�Zs | + �Zs) and Bt = 1

2

∑
s≤t

(|�Zs | − �Zs) .

Then A and B are two increasing pure jump processes such that Z = A − B.
They are integrable since Z is of integrable variation, and they satisfy
Ap − Bp = (A − B)p = Zp = 0 which proves the first implication.

Assume now that A and B are pure jump increasing processes. We then have the
representation

Zt = At − Bt =
∑
s≤t

�As −
∑
s≤t

�Bs =
∑
s≤t

�(As − Bs) =
∑
s≤t

�Zs .

By the triangular inequality, we may check that

|Zt | ≤
∑
s≤t

|�Zs | ≤
∑
s≤t

|�As | +
∑
s≤t

|�Bs | = At + Bt
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hence Z is integrable and of integrable variation. Finally, by definition of the pre-
dictable dual projections, the processes A − Ap and B − Bp are martingales, hence
by difference, so is Z since Ap = Bp.

An easy application of this result is the case of Lévy processes, for which the
compensators are deterministic functions.

Corollary 2 LetA, B be two Lévy processes having the same Lévy measure ν, and
consider a measurable function f such that f (0) = 0 and

∫
R

|f (x)|ν(dx) < +∞.
Then the process

Zt =
∑
s≤t

f (�As) − f (�Bs)

is a PWC martingale.

Proof The proof follows from the fact that the compensator of(∑
s≤t f (�As), t ≥ 0

)
is the deterministic process

(
t
∫
R

f (x)ν(dx), t ≥ 0
)
.

Remark 2 A centered Lévy process Z is a PWC martingale if and only if it has
no drift, no Brownian component and its Lévy measure ν satisfies the integrability
condition

∫
R

|x|ν(dx) < ∞.

As obvious examples, one can mention the difference of two independent Gamma
or Poisson processes of same parameters. Note that stable subordinators are not
allowed here, as they do not fulfill the integrability condition required on A and B.
We give below the PDF of these two examples :

Example 2 Let N1, N2 be two independent Poisson processes with parameter λ.
Then, Z := N1 − N2 is a step martingale taking integer values, with marginal laws
given by the Skellam distribution with parameters μ1 = μ2 = λt :

fZt (k) = e−2λt I|k|(2λt), k ∈ Z , (4)

where Ik is the modified Bessel function of the first kind.

Example 3 Let γ 1, γ 2 be two independent Gamma processes with parameters
a, b > 0. Then, Z := γ 1 − γ 2 is a PWC martingale with marginals given by

fZt (z) = b√
π�(at)

∣∣∣∣
bz

2

∣∣∣∣
at− 1

2

K 1
2−at

(b|z|) , (5)

where Kβ denotes the modified Bessel function of the second kind with parameter
β ∈ R.

Proof The PDF of Zt is given, for 2at > 1, by the inverse Fourier transform, see
Gradshteyn and Ryzhik (2007, p. 349 Formula 3.385(9)) :

fZt (z) = 1

2π

∫

R

e−iuz

(
1 + i u

b

)at (1 − i u
b

)at du .



Probability, Uncertainty and Quantitative Risk             (2019) 4:2 Page 9 of 27

The result then follows by analytic continuation.

We conclude this section with an example of PWC martingale which does not
belong to the family of Lévy processes but has the interesting feature to evolve in a
time-dependent range.

Corollary 3 Let R1, R2 be two squared Bessel processes of dimension δ ∈ (0, 2).
For i = 1, 2 set

g0t

(
Ri
)

:= sup
{
s ≤ t, Ri

s = 0
}

.

Then, Z := g0
(
R1

) − g0
(
R2

)
is a 1-self-similar PWC martingale which evolves in

the cone {[−t, t], t ≥ 0}.

Proof Let R be a squared Bessel processes of dimension δ ∈ (0, 2) and denote by
L0(R) its local time at 0 as given by Tanaka’s formula. Set

Yt =
(
t − g0

t (R)
)1− δ

2
, t ≥ 0 .

In Rainer (1996, Prop. 4.1 and 6.2.1), it is proven that the process X = Y −
1

22−
δ
2 �

(
2− δ

2

)L0(R) is a martingale with respect to the slow filtration
(
Fg0t +, t ≥ 0

)
.

We shall prove that (
2

2 − δ
g0

t (R) − t, t ≥ 0

)

is also a martingale in the same filtration. Notice first that since the random variable
g0

t (R) follows the generalized Arcsine law (see Section 3.1.2 below), the expectation
of this process is constant and equal 0. We then apply Itô’s formula to Y with the

function f (y) = y
2

2−δ :

t − g0
t (R) =

∫ t

0

2

2 − δ
Y

δ
2−δ

s− dYs +
∑
s≤t

Y
2

2−δ
s − Y

2
2−δ

s− − 2

2 − δ

(
s − g0

s−(R)
) δ

2
�Ys .

Observe next that the instants of jumps of Y are the same as those of g0(R), i.e.
{s; Ys �= Ys−} = {

s; g0
s (R) �= g0

s−(R)
}
. But, the jumps of g0(R) only happen at

times s when Rs = 0, in which case g0
s (R) = s or equivalently Ys = 0. This yields

the simplifications :

t − g0
t (R) = 2

2 − δ

∫ t

0
Y

δ
2−δ

s− dYs +
∑
s≤t

−
(
s − g0

s−(R)
)

+ 2

2 − δ

(
s − g0

s−(R)
) δ

2
(
s − g0

s−(R)
)1− δ

2

= 2

2 − δ

∫ t

0
Y

δ
2−δ

s− dYs +
(

2

2 − δ
− 1

)∑
s≤t

(
g0

s (R) − g0
s−(R)

)

= 2

2 − δ

∫ t

0
Y

δ
2−δ

s− dYs +
(

2

2 − δ
− 1

)
g0

t (R)

and it remains to prove that the stochastic integral is a martingale. Since the support
of dL0(R) is included in {s; Rs = 0} ⊂ {s; Ys = 0}, and L0(R) is continuous, we
deduce that
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∫ t

0
Y

δ
2−δ

s− dL0
s (R) =

∫ t

0
Y

δ
2−δ

s dL0
s (R) = 0

hence the process

t − 2

2 − δ
g0

t (R) =
∫ t

0
Y

δ
2−δ

s− dYs =
∫ t

0
Y

δ
2−δ

s− dXs

is a local martingale. To prove that it is a true martingale, choose an horizon T and
observe that the process

(
t − 2

2 − δ
g0

t (R) + 2

2 − δ
T , 0 ≤ t ≤ T

)

is now a positive local martingale, hence a supermartingale with constant expectation,
hence a true martingale. Finally, the self-similarity of g0

t (R) comes from that of R
(see Revuz—Yor 1999, Proposition 1.6, p. 443). Indeed, for any fixed t > 0 :

g0
t (R)=sup{s ≤ t, Rs = 0} (law)= sup{s ≤ t, tRs/t = 0} = t sup{u ≤ 1, Ru = 0} = t g0

1(R) .

Remark 3 When δ = 1, we have X = W 2 where W is a standard Brownian
motion. Using Lévy Arcsine law, the PDF of Z1 is given by the convolution, for z ∈
[0, 1] :

fZ1(z) = 1

π2

∫ 1−z

0

1√
x(1 − x)

1√
(z + x)(1 − z − x)

dx = 2

π2
F
(π

2
,
√
1 − z2

)
,

where F denotes the incomplete elliptic integral of the first kind, see Gradshteyn and
Ryzhik (2007, p. 275, Formula 3.147(5)). This yields, by symmetry and scaling :

fZt (z) = 2

π2

∫ π
2

0

dx√
t2 cos2(x) + z2 sin2(x)

1{0<|z|≤t} .

Both the recursive and the vanishing compensators approaches are rather restric-
tive in terms of attainable range and analytical tractability. In the next subsection, we
provide a more general method that can be used to build PWC martingales to any
connected set of R in a simple and tractable way.

2.3 PWC martingales using time-changed techniques

In this section, we construct a PWC martingale Z by time-changing a latent (P,F)-

martingale Z̃ =
(
Z̃t

)
t≥0

with the help of a suitable time-change process θ .

Definition 2 (time change process) A F-time change process θ = (θt )∈[0,T ] is a
stochastic process satisfying

• θ0 = 0,
• for any t ∈ [0, T ], θt is Ft -measurable (i.e. θ is adapted to the filtration F),
• the map t 
→ θt is càdlàg a.s. non-decreasing.
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Under mild conditions stated below, Z :=
(
Z̃θt

)
t≥0

is proven to be a martingale

with respect to its own filtration, with the desired piecewise constant behavior. Most
results regarding time-changed martingales deal with continuous martingales time-
changed with a continuous process (Cont and Tankov 2004, Jeanblanc et al. 2007,
Revuz and Yor 1999). This does not provide a satisfactory solution to our problem as
the resulting martingale will obviously have continuous sample paths. On the other
hand, it is obvious that not all time-changed martingales remain martingales, so that
conditions are required on Z̃ and/or on θ .

Remark 4 Every F-martingale time-changed with a F-adapted process remains
a semi-martingale but not necessarily a martingale. For instance, setting Z̃ = W

and θt = inf{s : Ws > t} then Z̃θt = t . Also, if θ is independent from Z̃, then the
martingale property is always satisfied, but Z may fail to be integrable. For example
if Z̃ = W and θ is an independent α-stable subordinator with α = 1/2 then the

time-changed process Z is not integrable: E
[∣∣∣Z̃θt

∣∣∣ |θt

]
=

√
2
π

√
θt and E

[√
θt

]
is

undefined. The proposition below gives sufficient conditions for Z to be integrable.

Proposition 3 Let Z̃ be a martingale, and θ be a time-change process independent
from Z̃. We assume that θ has PWC paths and that one of the following assumptions
hold :

1. Z̃ is a positive martingale,
2. Z̃ is uniformly integrable,
3. there exists an increasing function k such that θt ≤ k(t) a.s. for all t.

Then Z :=
(
Z̃θt

)
t≥0

is a martingale with respect to its natural filtration.

Proof We first check that Z is integrable.

1. When Z̃ is a positive martingale, we have E[|Zt |] = E

[
Z̃θt

]
= E[Z0] < +∞.

2. When Z̃ is uniformly integrable, we have

E[|Zt |] = E

[∣∣∣Z̃θt

∣∣∣
]

≤ E

[∣∣∣Z̃∞
∣∣∣
]

< +∞.

3. When θt ≤ k(t) a.s. for all t, we have E[|Zt |] = E

[∣∣∣Z̃θt

∣∣∣
]

≤ E

[∣∣∣Z̃k(t)

∣∣∣
]

< +∞.

Next, to prove the martingale property, define the larger filtration G given for s ≥
0 by Gs = σ

(
(θu, u ≥ 0) ,

(
Z̃u, u ≤ θs

)
. Applying the tower property of conditional

expectation with 0 ≤ s ≤ t , we obtain :

E[Zt |Fs] = E

[
E

[
Z̃θt |Gs

]∣∣∣Fs

]
= E

[
Z̃θs |Fs

]
= E [Zs |Fs] = Zs

where the second equality follows from the independence between Z̃ and θ . Finally,
since θ has PWC paths, so does Z :
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Zt = Z̃θt = Z̃θ0 +
∑
s≤t

(
Z̃θs − Z̃θs−

)
= Z0 +

∑
s≤t

(Zs − Zs−)

which ends the proof.

From a practical point of view, general time-changed processes θ that are
unbounded on [0, T ] may cause some problems. Indeed, to simulate sample paths for
Z on [0, T ], one needs to simulate sample paths for Z̃ on [0, θT ]. This is annoying
as θT can take arbitrarily large values. Hence, the class of time changed processes
θ that are bounded by some function k on [0, T ] for any T < ∞ whilst preserv-
ing analytical tractability prove to be quite interesting. This is of course violated by
most of the standard time change processes (e.g. integrated CIR, Poisson, Gamma,
or Compounded Poisson subordinators). A naive alternative consists in capping the
later but this would trigger some difficulties. For instance, using θt = Nt ∧ t where
N is a Poisson process would mean that Z = Z0 before the first jump of N, but
then the resulting process may have linear pieces (hence not be piecewise constant).
There exist however simple time change processes θ satisfying sups∈[0,t] θs ≤ k(t)

for some functions k bounded on any closed interval and being piecewise constant,
having stochastic jumps and having a non-zero possibility to jump in any time set
of non-zero measure. Building PWC martingales using such type of processes is the
purpose of next section.

3 Lazy martingales

We first present a stochastic time-changed process that satisfies this condition in the
sense that the calendar time is always ahead of the stochastic clock that is, satisfies
the boundedness requirement of the above lemma with the linear boundary k(t) = t .
We then use the later to create PWC martingales.

3.1 Lazy clocks

We would like to define stochastic clocks that keep time frozen almost everywhere,
can jump occasionally, but can’t go ahead of the real clock. Those stochastic clocks
would then exhibit the piecewise constant path and the last constraint has the nice
feature that any stochastic process Z adapted to F is also adapted to F enlarged with
the filtration generated by θ . In particular, we do not need to know the value of Z
after the real time t. As far as Z is concerned, only the sample paths of Z (in fact Z̃)
up to θt ≤ t matters. In the sequel, we consider a specific class of such processes,
called lazy clocks hereafter, that have the specific property that the stochastic clock
typically “sleeps” (i.e. is “on hold”), but gets synchronized to the calendar time at
some random times.

Definition 3 (lazy clock) The stochastic process θ : R
+ → R

+, t 
→ θt is a
F-lazy clock if it satisfies the following properties
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i) it is an F-time change process: in particular, it is grounded (θ0 = 0), càdlàg
and non-decreasing;

ii) it has piecewise constant sample paths : θt = ∑
s≤t �θs;

iii) it can jump at any time and, when it does, it synchronizes to the calendar clock,
i.e. there is the equality {s > 0; θs �= θs−} = {s > 0; θs = s}.

In the sense of this definition, Poisson and Compound Poisson processes are exam-
ples of subordinators that keep time frozen almost everywhere but are not lazy clocks
however as nothing constraints them to reach the calendar time at each jump time
(i.e., they do not satisfy θτ = τ at every jump time τ ). Neither are their capped
versions as there are some intervals during which θ cannot jump or grows linearly.

Remark 5 Note that for each t > 0, the random variable θt is a priori not a
F-stopping time. By contrast, if F is right-continuous, the first passage time of the
stochastic process θ beyond a given level is a stopping time. More precisely, the
sequence (Ct , t ≥ 0),

Ct := inf{s ; θs > t}
is an increasing family of F-stopping times. Conversely, for every t ≥ 0, the lazy
clock θ is a family of (FCs , s ≥ 0)-stopping times, see Revuz-Yor (Revuz and Yor
1999, Chapter V, Prop.(1.1)).

In the following, we show that lazy clocks are essentially linked with last passage
times, as illustrated in the next proposition.

Proposition 4 A process θ is a F-lazy clock if and only if there exists a càdlàg
process A starting from 0, adapted to F, such that the setZ := {s; As− = 0 or As = 0}
has a.s. zero Lebesgue measure and θ = g with

gt := sup{s ≤ t; As− = 0 or As = 0}, t ≥ 0 .

Proof If θ is a lazy clock, then the result is immediate by taking At = θt − t which
is càdlàg, and whose set of zeroes coincides with the jumps of θ , hence is countable.
Conversely, fix a scenario ω ∈ �. Since A is càdlàg, the set Z(ω) = {s; As−(ω) = 0
or As(ω) = 0} is closed, hence its complementary may be written as a countable
union of disjoint intervals. We claim that

Zc(ω) =
⋃
s≥0

]gs−(ω), gs(ω)[ . (6)

Indeed, observe first that since s 
−→ gs(ω) is increasing, its has a countable
number of discontinuities, hence the union on the right hand side is countable. Fur-
thermore, the intervals which are not empty are such that As(ω) = 0 or As−(ω) = 0
and gs(ω) = s. In particular, if s1 < s2 are associated with non empty intervals, then
gs1(ω) = s1 ≤ gs−

2
(ω) which proves that the intervals are disjoint.

Now, let u ∈ Zc(ω). Then Au(ω) �= 0. Define du(ω) = inf{s ≥ u, As−(ω) = 0
or As(ω) = 0}. By right-continuity, du(ω) > u. We also have Au−(ω) �= 0 which
implies that gu(ω) < u. Therefore, u ∈]gu(ω), du(ω)[ which is non empty, and
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this may also be written u ∈]gd−
u (ω)(ω), gdu(ω)(ω)[ which proves the first inclusion.

Conversely, it is clear that if u ∈]gs−(ω), gs(ω)[, then Au(ω) �= 0 and Au−(ω) �= 0.
Otherwise, we would have u = gu(ω) ≤ gs−(ω) which would be a contradiction.
Equality (6) is thus proved. Finally, it remains to write :

gt =
∫ gt

0
1Zds +

∫ gt

0
1Zcds =

∑
s≤t

�gs

since Z has zero Lebesgue measure.

Remark 6 1. Note that lazy clocks are naturally involved with PWC martin-
gales. Indeed, if M is a PWC martingale, then Mt = Mgt(M) where gt (M) =
sup{s ≤ t, �Ms �= 0} is a lazy clock.

2. If G denotes the natural filtration of the process A, then, following the definition
in Dellacherie-Meyer (Dellacherie et al. 1992, Chapter XX, section 28), we see
that θ is adapted to the slow filtration (Ggt+)t≥0.

3. It was observed in Remark 5 that lazy clocks are, in general, not stopping times.
F-lazy clocks are however F-honest times, see e.g.Aksamit and Jeanblanc (2017)
and Mansuy and Yor (2006)1. To see this, observe first that when s ≥ t , θt is
obviously Fs-measurable. Consider now the case s < t . Conditionally on the
event {gt < s}, we have gt < s < t . By definition, the lazy clock takes a
constant value on [gt , t), leading to gt = gs . Therefore gt is (conditionally) Fs-
measurable in this case as well. This shows that gt is an honest time. Observe
that honest times are known to be closely linked with last passage times. In this
specific context, the connection is given in Proposition 4.

4. The natural filtration of a lazy clock is called a lazy filtration, by extension of the
slow filtration.

We give below a few examples of lazy clocks related to last passage times prior
a given time t, whose PDF is known explicitly. Whereas some of these random vari-
ables (and corresponding distributions) have been studied in the literature, we use
last passage times as clocks, i.e. in a dynamic way, as stochastic processes evolving
with t.

3.1.1 Poisson lazy clocks

Let (Xn, n ≥ 1) be strictly positive random variables and consider the counting
process N := (Nt )t≥0 defined as

Nt :=
+∞∑
k=1

1{∑k
i=1 Xi≤t

}, t ≥ 0 .

1We are grateful to an anonymous referee for pointing this out.
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Then the process (gt (N), t ≥ 0) defined as the last jump time of N prior to t or
zero if N did not jump by time t:

gt (N) := sup{s ≤ t, Ns �= Ns−} =
+∞∑
k=1

Xk1{∑k
i=1 Xi≤t

} . (7)

is a lazy clock. Its cumulative distribution function (CDF) is easily given, for s ≤ t ,
by P(gt (N) ≤ s) = P(Nt = Ns). If N is a Poisson process with intensity λ, i.e.
when the random variables (Xk, k ≥ 1) are i.i.d. with an exponential distribution of
parameter λ, we obtain in particular P(gt (N) ≤ s) = e−λ(t−s), see Vrins (2016) for
similar computations. Sample paths are shown on Fig. 1.

3.1.2 Diffusion lazy clock

Another simple example is given by the last passage time ga
t (X) of a diffusion X to

some level a before time t. Its CDF may be written, applying the Markov property :

P
(
ga

t (X) ≤ s
) = E

[
PXs (Ta > t − s)

]

where Ta = inf{u ≥ 0 : Xu = a}.
- Let b ∈ R and consider the drifted Brownian motion (Xt )t≥0, Xt := Bt − bt .

Then, the probability density function (PDF) of ga
t (B − b) is given by (see for

instance Salminen (1988) or Kahale (2008) :

fga
t (B−b)(s)=

φ
(

a+bs√
s

)
√

s

(
2√

t − s
φ
(
b
√

t − s
) + 2b�

(
b
√

t − s
)− b

)
, 0 < s < t

where � denotes the standard Normal CDF � and �′ = φ. Note that when
a �= 0, the distribution of ga

t (B − b) may have a mass at 0, see Shreve (2004,
Corollary 7.2.2).

a b

Fig. 1 (Sample path of lazy clocks) : a Poisson lazy clock (λ = 3/2, see Section 3.1.1), b Brownian lazy
clock (see Section 3.1.2)
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- Let R be a Bessel process with dimension δ ∈ (0, 2) and set ν = δ
2 − 1. Then,

the PDF of g0
t (R) is given by the generalized Arcsine law (see Gradinaru et al.

(1999)) :

fg0t (R)(s) = 1

�(|ν|)�(1 + ν)
(t − s)νs−1−ν , 0 < s < t .

3.1.3 Stable lazy clock

The generalized Arcsine law also appears when dealing with stable Lévy processes
L with parameter α ∈ (1, 2]. Then, from Bertoin (1996, Chapter VIII, Theorem 12),
the PDF of g0

t (L) is given by :

fg0t (L)(s) = sin(π/α)

π
s− 1

α (t − s)
1
α
−1 , 0 < s < t .

3.2 Time-changed martingales with lazy clocks

In this section we introduce lazy martingales. A lazy martingale Z is defined
as a stochastic process obtained by time-changing a latent martingale Z̃ with an

independent lazy clock θ . Lazy martingales Z =
(
Z̃θt

)
t≥0

are expected to be

PWC martingales; this is proven in Theorem 1 below. Note that from Point 3) of
Proposition 3, the process Z is always a martingale, i.e. no assumption are needed
on Z̃.

We first show that (in most situations) the lazy clock is adapted to the filtration
generated by Z. This is done by observing that the knowledge of θ amounts to the
knowledge of its jump times, since the size of the jumps are always obtained as a
difference with the calendar time. In particular, the properties of the lazy clocks allow
one to reconstruct the trajectories of Z on [0, t] only from past values of Z̃ and θ ; no
information about the future (measured according to the real clock) is required. We
then provide the resulting distribution when the clock g(N) is governed by Poisson,
inhomogeneous Poisson or Cox processes.

Theorem 1 Let Z̃ beamartingale independent from the lazy clock θ . ThenZ = Z̃θ

is a PWC martingale in its natural filtration F. If furthermore F is assumed to be

complete and if ∀u �= v, P

(
Z̃u = Z̃v

)
= 0, then, θ is adapted to the filtration of Z.

Proof Since by definition θt ≤ t for any t ≥ 0, we first deduce from Point 3) of
Proposition 3 that the process Z is a PWC martingale. Then, the fact that θ is adapted
to the natural filtration of Z follows from the identity

{0 < s ≤ t; θs �= θs−} = {0 < s ≤ t; Zs �= Zs−}∪{0 < s ≤ t; Zs = Zs− and θs = s} .
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Indeed, observe that the set N = {0 < s ≤ t; Zs = Zs− and θs = s} is of
measure zero since, using the independence between Z and θ ,

P(N )=P

({
0<s ≤ t; Z̃θs = Z̃θs− and θs =s

})
≤ E

⎡
⎣ ∑
0<s≤t,θs=s

P
(
Zθs =Zθs−

)
⎤
⎦=0

thanks to the assumption ∀u �= v, P

(
Z̃u = Z̃v

)
= 0. Therefore, we have

{0 < s ≤ t; θs �= θs−} = {0 < s ≤ t; Zs �= Zs−} a.s.

and taking the supremum on both sides and using Point 3) in the definition of a
lazy clock, we deduce that θt = sup {s ≤ t; Zs �= Zs−} a.s., which proves that θ is
adapted to the natural filtration of Z since F is complete.

Example 4 Let Z̃ be a continuous martingale and N an independent Poisson
process with intensity λ. Then, Z = (Zt )t≥0 defined as Zt := Z̃gt (N) is a right-
continuous PWC martingale in its natural filtration with same range as Z. Moreover,
its CDF is given by

FZt (z) = P(Zt ≤ z) = e−λt

(
1{Z0≤z} + λ

∫ t

0
F

Z̃u
(z)eλudu

)
. (8)

This result follows from the example of Subsection 3.1.1, using the independence
assumption between Z̃ and N :

FZt (z) =
∫ ∞

0
F

Z̃u
(z)P(gt (N) ∈ du) . (9)

A similar result applies when N is a Cox process, i.e. an inhomogeneous Poisson
process whose intensity λ := (λt )t≥0 is an independent (positive) stochastic process.

Corollary 4 Let N be Cox process independent from Z̃ and define P(s, t) :=
E
[
e−(�t−�s)

]
where �t := ∫ t

0 λudu. Then,

FZt (z) =
(
1{Z0≤z}P(0, t) +

∫ t

0
F

Z̃s
(z)dsP (s, t)

)
. (10)

Proof If λ is deterministic, i.e. in the inhomogeneous Poisson case, a direct
adaptation of Example 4 yields the expression

FZt (z) = e−�(t)

(
1{Z0≤z} +

∫ t

0
λ(u)F

Z̃u
(z)e�(u)du

)
.

Now, the Cox case may be obtained from the inhomogeneous Poisson case by
conditioning with respect to the (independent) stochastic intensity. Indeed, applying
the tower property of conditional expectation:
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FZt (z) = E [E [P(Zt ≤ z)|λu, 0 ≤ u ≤ t]]

= 1{Z0≤z}E
[
e−�t

] + E

[∫ t

0
λsP

(
Z̃s ≤ z

)
e−(�t−�s)ds

]

= 1{Z0≤z}P(0, t) +
∫ t

0
F

Z̃s
(z)E

[
λse

−(�t−�s)
]
ds

where in the second line we have used the independence between λ and Z̃, and in
the last equality Tonelli’s theorem to exchange the integral and expectation operators
when applied to non-negative functions. Finally, from Leibniz rule, λse

−(�t−�s) =
d
ds

e−(�t−�s) so

E

[
λse

−(�t−�s)
]

= d

ds
E

[
e−(�t−�s)

]
= d

ds
P (s, t) . (11)

Remark 7 Notice that P(s, t) does not correspond to the expectation of e− ∫ t
s λudu

conditional upon Fs , the filtration generated by λ up to s as often the case e.g. in
mathematical finance. It is an unconditional expectation that can be evaluated with
the help of the tower law. In the specific case where λ is an affine process, for exam-

ple if E
[
e− ∫ t

s λudu|λs = x
]
takes the form A(s, t)e−B(s,t)x for some deterministic

functions A, B, then

P(s, t) = E

[
e− ∫ t

s λudu
]

= E

[
E

[
A(s, t)e−B(s,t)λs

]]
= A(s, t)ϕλs (iB(s, t)) .

where ϕλs (u) := E
[
eiuλs

]
denotes the characteristic function of the random

variable λs .

Example 5 In the case λ follows a CIR process, i.e. if dλt = k(θ − λt )dt +
σ
√

λtdWt with λ0 > 0 then λs has the same law as rs/cs where cs =
ν/

(
θ
(
1 − e−ks

))
and rs is a non-central chi-squared random variable with non-

centrality parameter ν = 4kθ/σ 2 and κs = csλ0e
−ks degrees of freedom. In this

case, ϕλs (u) = E
[
ei(u/cs)rs

] = ϕrs (u/cs) where ϕrs (v) = exp
(

νiv
1−2iv

)

(1−2iv)κs /2 .

3.3 Some lazy martingales without independence assumption

We have seen that when Z̃ is a martingale and θ an independent lazy clock, then(
Zt = Z̃θt , t ≥ 0

)
is a PWC martingale in its natural filtration. We now give an

example where the lazy clock θ is not independent from the latent process Z̃.

Proposition 5 Let B and W be two correlated Brownian motions with coefficient
ρ and f a continuous function. Define the lazy clock :

g
f
t (W) := sup{s ≤ t, Ws = f (s)} .
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Let h(W) be a progressively measurable process with respect to the natural fil-

tration of W and such that E
[∫ t

0 h2u(W)du
]

< +∞ a.s. for any t ≥ 0. Assume that

there exists a deterministic function ψ such that:
∫ g

f
t (W)

0
hu(W)dWu = ψ

(
g

f
t (W)

)
.

Then, the process Z =
(∫ g

f
t (W)

0 hu(W)dBu − ρψ
(
g

f
t (W)

)
, t ≥ 0

)
is a lazy

martingale in its natural filtration.

Proof Let β be a Brownian motion independent from W such that B = ρW +√
1 − ρ2 β. We first write:

Zt =
∫ g

f
t (W)

0
hu(W)dBu − ρψ

(
g

f
t (W)

)
=
∫ g

f
t (W)

0
hu(W)dBu − ρ

∫ g
f
t (W)

0
hu(W)dWu

=
√
1 − ρ2

∫ g
f
t (W)

0
hu(W)dβu .

Observe now that Z is integrable, since from Itô’s isometry :

E [|Zt |]2 ≤ E

[
|Zt |2

]
= (1−ρ2)E

[∫ g
f
t (W)

0
h2u(W)du

]
≤ (1−ρ2)E

[∫ t

0
h2u(W)du

]
< +∞ .

Define next the larger filtration G = (Gt )t≥0 defined as Gt = σ((Wu, u ≥ 0), (βu, u ≤
g

f
t (W)). Using the tower property of conditional expectations :

E [Zt |Fs ]=
√
1 − ρ2

∫ g
f
s (W)

0
hu(W)dβu +

√
1−ρ2E

[
E

[∫ g
f
t (W)

g
f
s (W)

hu(W)dβu|Gs

]∣∣∣∣∣Fs

]
= Zs

since, conditionally to some scenario ω (hence with t 
→ Wt(ω) some fixed continuous path),

the random variable
∫ g

f
t (W(ω))

g
f
s (W(ω))

hu(W(ω))dβu is a centered Gaussian random variable with

variance
∫ g

f
t (W(ω))

g
f
s (W(ω))

h2u(W(ω))du independent from
(
βu, u ≤ g

f
s (W(ω))

)
, hence

E

[∫ g
f
t (W)

g
f
s (W)

hu(W)dβu|Gs

]
= 0 .

It is interesting to point out here that the latent process Z̃t =∫ t

0 hu(W)dBu − ρψ(t) is, in general, not a martingale (not even
a local martingale). One obtains a martingale thanks to the lazy
time-change.

Example 6 We give below several examples of application of this proposition.

1. Take hu = 1. Then, ψ = f and
(
B

g
f
t (W)

− ρf
(
g

f
t (W)

)
, t ≥ 0

)
is a PWC

martingale.
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More generally, we may observe from the proof above that if H is a space-
time harmonic function (i.e. (t, z) → H(t, z) is C1,2 and such that ∂H

∂t
+

1
2

∂2H

∂z2
= 0), then the process

(
H
(
B

g
f
t (W)

− ρf
(
g

f
t (W)

)
,
(
1 − ρ2

)
g

f
t (W)

)
, t ≥ 0

)

is a PWC martingale. Notice in particular that the latent process here is not,
in itself, a martingale.

2. Following the same idea, take hu(W) = ∂H
∂z

(Wu, u) for some harmonic
function H. Then

∫ g
f
t (W)

0

∂H

∂z
(Wu, u)dWu =H

(
W

g
f
t (W)

, g
f
t (W)

)
−H(0, 0)=H

(
f
(
g

f
t (W)

)
, g

f
t (W)

)
−H(0, 0)

and the process

(∫ g
f
t (W)

0

∂H

∂z
(Wu, u)dBu − ρH

(
f
(
g

f
t (W)

)
, g

f
t (W)

)
, t ≥ 0

)

is a PWC martingale.

3. Consider the stochastic process Z̃ which time-t value is defined as the stochastic inte-
gral of any C1-function of the local time of W at 0 with respect to B up to time t. Then,
the time-changed integral (Zt )t≥0, Zt := Z̃g0t (W), is a PWC martingale in its natural

filtration. To see this, take f = 0 and hu = r
(
L0

u

)
where r is a C1 function and L0

denotes the local time of W at 0. Then, integrating by parts :

∫ g
f
t (W)

0
r
(
L0

u

)
dWu = r

(
L

g
f
t (W)

)
W

g
f
t (W)

−
∫ g

f
t (W)

0
Wur

′ (L0
u

)
dL0

u = 0

since the support of dL is included in {u, Wu = 0}. Therefore, the process (Zt , t ≥ 0),

Zt := ∫ g
f
t (W)

0 r
(
L0

u

)
dBu is a PWC martingale.

4 Numerical simulations

In this section, we briefly sketch the construction schemes to sample paths of the
lazy clocks discussed above. These procedures have been used to generate Fig. 1.
Finally, we illustrate sample paths and distributions of a specific martingale in [0, 1]
time-changed with a Poisson lazy clock.

4.1 Sampling of lazy clock and lazy martingales

By definition, the number of jumps of a lazy clock θ on [0, T ] is countable, but
may be infinite. Therefore, except in some specific cases (such as the Poisson lazy
clock), an exact simulation is impossible. Using a discretization grid, the simulated
trajectories of a lazy clock θ on [0, T ] will take the form
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θt := sup{τi, τi ≤ t}
where τ0 := 0 and τ1, τ2, . . . are (some of) the synchronization times of the lazy
clock up to time T. We can thus focus on the sampling times τ1, τ2 . . . whose values
are no greater than T.

4.1.1 Poisson lazy clock

Trajectories of a Poisson lazy clock θt (ω) = gt (N(ω)) on a fixed interval [0, T ] are
very easy to obtain thanks to the properties of Poisson jump times.

Algorithm 1 (Sampling of a Poisson lazy clock)

1. Draw a sample n = NT (ω) for the number of jump times of N up to T:
NT ∼ Poi(λT ).

2. Draw n i.i.d. samples from a standard uniform (0, 1) random variable
ui = Ui(ω), i ∈ {1, 2, . . . , n} sorted in increasing order u(1) ≤ u(2) ≤
. . . ≤ u(n).

3. Set τi := T u(i) for i ∈ {1, 2, . . . , n}.

4.1.2 Brownian lazy clock

Sampling a trajectory for a Brownian lazy clock requires the last zero of a Brownian
bridge. This is the purpose of the following lemma.

Lemma 1 LetWx,y,t beaBrownian bridge on [0, t] , t ≤ T , starting atWx,y,t

0 = x

and ending W
x,y,t
t = y, and define its last passage time at 0 :

gt

(
Wx,y,t

) := sup
{
s ≤ t, W

x,y,t
s = 0

}
.

Then, the CDF F(x, y, t; s) of gt

(
Wx,y,t

)
is given, for s ∈ [0, t] by :

P
(
gt

(
Wx,y,t

)≤ s
)=F(x, y, t; s) :=1−e− xy

t (d+(x, y, t; s)+d−(x, y, t; s)) , (12)

where d±(x, y, t; s) := e
±|xy|

t �
(
∓|x|

√
t−s
st

− |y|
√

s
t (t−s)

)
. (13)

In particular, the probability that Wx,y,t does not hit 0 during [0, t] equals:
P
(
gt

(
Wx,y,t

) = 0
) = F(x, y, t; 0) = 1 − e− xy+|xy|

t .

Note also the special case when y = 0 :

P

(
gt

(
Wx,0,t

)
= t

)
= 1 .

Proof Using time reversion and the absolute continuity formula of the Brownian
bridge with respect to the free Brownian motion (see Salminen (1997)), the PDF of
gt

(
Wx,y,t

)
is given, for y �= 0, by :

P
(
gt

(
Wx,y,t

) ∈ ds
) = |y|√t√

2π
e

(y−x)2

2t
1√

s(t − s)3/2
e− x2

2s e
− y2

2(t−s) ds .
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Integrating over [0, t], we first deduce that

|y|√t√
2π

∫ t

0

e− x2
2s√
s

e
− y2

2(t−s)

(t − s)3/2
ds = exp

(
(|y| + |x|)2

2t

)
. (14)

We shall now compute a modified Laplace transform of F, and then invert it.
Integrating by parts and using (14), we deduce that :

λ

∫ t

0

e− λ
2s

2s2
F(x, y, t; s)ds = e− λ

2t − e− λ
2t exp

(
−xy

t
− |y|√λ + x2

t

)
.

Observe next that by a change of variable :

λ

∫ t

0

e− λ
2s

2s2
F(x, y, t; s)ds = λe− λ

2t

∫ +∞

0
e−λvF

(
x, y, t; 1

2v + 1/t

)
dv

hence

∫ +∞

0
e−λvF

(
x, y, t; 1

2v + 1/t

)
dv = 1

λ
− 1

λ
exp

(
−xy

t
− |y|√λ + x2

t

)

and the result follows by inverting this Laplace transform thanks to the formulae, for
a > 0 and b > 0 :

1

λ
exp

(
−a

√
λ + x2

)
= a

2
√

π

∫ +∞

0
e−λv

∫ v

0
e−ux2 1

u3/2
e− a2

4u du dv

and

∫ z

0
e−au−b/u du

u3/2
=

√
π

2
√

b

(
e2

√
abErfc

(√
b

z
−√

az

)
+e−2

√
abErfc

(√
b

z
+√

az

))
.

Simulating a continuous trajectory of a Brownian lazy clock θ in a perfect way is
an impossible task. The reason is that (Wt )t≥s hits infinitely many times the level Ws

during an arbitrary future period starting from s. In particular, the path t 
→ Wt(ω)

crosses 0 infinitely many times in the time interval [0, ε] for every ε > 0. See e.g.
Baldi (2017, p. 58-59, Remark 4) or Karatzas and Shreve (2005, p. 94, Problem 7.18).
Consequently, it is impossible to depict such trajectories in a perfect way. Just like for
the Brownian motion, one could only hope to sample trajectories on a discrete time
grid, where the maximum stepsize provides some control about the approximation,
and corresponds to a basic unit of time. By doing so, we disregard the specific jump
times of θ , but focus on the supremum of the zeroes of a Brownian motion in these
intervals. To do this, we proceed as follows.
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Algorithm 2 (Sampling of a Brownian lazy clock)

1. Fix a number of steps n such that time step δ = T/n corresponds to the
desired time unit.

2. Sample a Brownian motion w = W(ω) on the discrete grid
[0, δ, 2δ, . . . , nδ].

3. In each interval ((i − 1)δ, iδ], i ∈ {1, 2, . . . , n}, draw a uniform (0, 1)
random variable ui = Ui(ω)

• If ui < F
(
w(i−1)δ, wiδ, δ; 0

)
then w does not reach 0 on the interval

• Otherwise, set the supremum gi of the last zero of w as the s-root of
F
(
w(i−1)δ, wiδ, δ; s

) − ui

4. Identify the k intervals (1 ≤ k ≤ n) in which w has a zero, and set
τj := ij δ+gij , j ∈ {1, . . . , k} where ij δ is the left bound of the interval.

Example 7 (PWC martingale on (0, 1)) Let N be a Poisson process with intensity
λ and Z̃ be the �-martingale (Jeanblanc and Vrins 2018) with constant diffusion
coefficient η,

Z̃t := �

(
�−1(Z0)e

η2/2t + η

∫ t

0
e

η2

2 (t−s)dWs

)
. (15)

Then, the stochastic process Z defined as Zt := Z̃gt (N), t ≥ 0, is a pure jump
martingale on (0, 1) with CDF

FZt (z) = e−λt

(
1{Z0≤z} + λ

∫ t

0
�

(
�−1(z) − �−1(Z0)e

η2/2u

√
eη2u − 1

)
eλudu

)
. (16)

Some sample paths for Z̃ and Z are drawn on Fig. 2. Notice that all the martingales
Z̃ given above can be simulated without error using the exact solution.

a b

Fig. 2 (Sample paths of Z): four sample paths of Z̃ (circles) and Z (no marker) up to T = 15 years, where
Z̃ is the �-martingale with Z0 = 0.5. a (η = 25%, λ = 20%) and b (η = 15%, λ = 50%)
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Figure 3 gives the CDF of Z and Z̃ where the later is a�-martingale. The main dif-

ferences between these two sets of curves result from the fact that P
(
Z̃t = Z0

)
= 0

for all t > 0 while P (Zt = Z0) = P

(
Z̃gt (N) = Z0

)
= P(Nt = 0) > 0

and that there is a delay resulting from the fact that Zt correspond to some past
value of Z̃.

5 Conclusion and future research

Many applications, like mathematical finance, extensively rely on martingales. In this
context, discrete- or continuous-time processes are commonly considered. However,
in some specific cases like when we work under partial information or when market

a b

c d

Fig. 3
(
CDF of Z̃t

)
: CDF of Z̃t (circles) and Zt (no marker) where Z̃ is the �-martingale with Z0 = 0.5

and t in 0.5 (blue), 5 (red) and 40 (magenta) years. a (Z0 = 50%, η = 25%, λ = 20%), b (Z0 = 50%
η = 15%, λ = 50%), c (Z0 = 35% η = 15%, λ = 50%), and d (Z0 = 35%, η = 25%, λ = 5%)
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quotes arrive in a scarce way, it is more realistic to assume that conditional expec-
tations move in a more piecewise constant fashion. Such type of processes didn’t
receive attention so far, and our paper aims at filling this gap. We focused on the
construction of piecewise constant martingales that is, martingales whose trajecto-
ries are piecewise constant. Such processes are indeed good candidates to model the
dynamics of conditional expectations of random variables under partial (punctual)
information. The time-changed approach proves to be quite powerful: starting with
a martingale in a given range, we obtain a PWC martingale by using a piecewise
constant time-change process. Among those time-change processes, lazy clocks are
specifically appealing: these are time-change processes staying always in arrears to
the real clock, and that synchronizes to the calendar time at some random times. This
ensures that θt ≤ t which is a convenient feature when one needs to sample trajec-
tories of the time-change process. Such random times can typically be characterized
as last passage times, and enjoy appealing tractability properties. The last jump time
of a Poisson process before the current time for instance exhibits a very simple dis-
tribution. Other lazy clocks have been proposed as well, based on Brownian motions
and Bessel processes, some of which rule out the probability mass at zero. We pro-
vided several martingales time-changed with lazy clocks (called lazy martingales)
whose range can be any interval in R (depending on the range of the latent martin-
gale) and showed that the corresponding distributions can be easily obtained in closed
form. Finally, we presented algorithms to sample Poisson and Brownian lazy clocks,
thereby providing the reader with a workable toolbox to efficiently use piecewise
constant martingales in practice.

This paper paves the way for further research, in either fields of probability theory
and mathematical finance. Tractability and even more importantly, the martingale
property results from the independence assumption between the latent martingale and
the time-change process. It might be interesting however to consider cases where the
sample frequency (synchronization rate of the lazy clock θ to the real clock) depends
on the level of the latent martingale Z. Finding a tractable model allowing for this
coupling remains an open question at this stage. On the other hand, it is yet unclear
how dealing with more realistic processes like piecewise constant ones would impact
hedging strategies and model completeness in finance. In fact, investigating this route
is the purpose of a research project that we are about to initiate.
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Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge

University Press, Cambridge.
Boel, R., P. Varaiya, and E. Wong. (1975).Martingales on jump processes. I. Representation results, SIAM

J. Control. 13, no. 5, 999–1021.
Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J.

Control 13, no. 5, 1022–1061.
Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA.
Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel - Processus de

Markov, Hermann, France.
Gaspar, R. and I. Slinko. (2008). On recovery and intensity’s correlation - a new class of credit models, J.

Credit Risk 4, no. 2, 1–33.
Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local
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