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1 Introduction

In this paper, we study backward stochastic differential equations (BSDEs) of the
form

Yt = ξ +
∫ T

t

f (s, Ys, Zs, Us) ds −
∫ T

t

ZsdWs −
∫

]t,T ]×(R\{0})
Us(x)Ñ(ds, dx),

(1)
whereW denotes a one-dimensional Brownian motion and Ñ a compensated Poisson
random measure belonging to a given Lévy process with Lévy measure ν. In
particular, our focus lies on comparison results and existence and uniqueness of
solutions.

Comparison theorems state that—under certain conditions—if ξ ≤ ξ ′ and f ≤ f ′,
then the process Y of the solution satisfies Yt ≤ Y ′

t for all t ∈ [0, T ]. These types of
theorems in the case of one-dimensional, Brownian BSDEs has been treated by Peng
(1992), El Karoui et al. (1997, 2009), and Cao and Yan (1999).

In (Barles et al. (1997), Remark 2.7) a counterexample was given, which shows
that in the jump case the conditions ξ ≤ ξ ′ and f ≤ f ′ are not sufficient to guarantee
Y ≤ Y ′. They propose an additional sufficient condition which has been generalized
by Kruse and Popier (2016), Royer (2006), Yin and Mao (2008), Becherer et al.
(2018) (allowing more general jump processes), and Cohen et al. (2010) (for BSDEs
driven by martingales). The condition of Kruse and Popier (2016) reads (in our L2-
setting) as follows: for each s, y, z, u, u′ ∈ [0, T ] ×R×R× L2(ν) × L2(ν) there is
a progressively measurable process γ y,z,u,u′ : � × [0, T ] × R \ {0} → R such that

f (s, y, z, u) − f
(
s, y, z, u′) ≤

∫
R\{0}

(
u(x) − u′(x)

)
γ

y,z,u,u′
s (x)ν(dx),

−1 ≤ γ
y,z,u,u′
s (x) and sup

s,ω,y,z,u,u′

∣∣∣γ y,z,u,u′
s

∣∣∣ ∈ L2(ν). (2)

One of the main results in the present paper is Theorem 3.5 which states that (2)
can be replaced by the simpler condition

f (s, y, z, u) − f
(
s, y, z, u′) ≤

∫
R\{0}

(
u′(x) − u(x)

)
ν(dx), P ⊗ λ-a.e.

for all u, u′ ∈ L2(ν) with u ≤ u′. (3)

Notice that the r.h.s. is infinite for u′(x) − u(x) /∈ L1(ν). Clearly, (3) is a weaker
condition than (2), because one only needs to check the inequality for those u, u′ ∈
L2(ν) for which u ≤ u′ holds. Moreover, we do not need any L2(ν) condition for

γ
y,z,u,u′
s but we choose γ

y,z,u,u′
s (x) = −1. Under the constraint −1 ≤ γ

y,z,u,u′
s (x),

the choice γ
y,z,u,u′
s (x) = −1 yields for u′ − u ≥ 0 the largest possible expression on

the r.h.s. of (2), so that (3) can be seen as the weakest possible condition which (2)
could impose on f.

For a finite Lévy measure ν, Theorem 3.5 can be shown using only elementary
means.
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Another main result is a method of how to approximate a BSDE driven by a
Lévy process with an infinite measure ν, by a sequence of BSDEs where the driving
processes have a finite Lévy measure. We apply this result to show the compari-
son theorem for BSDEs driven by a general Lévy process. The proof relies on the
Jankov–von Neumann theorem onmeasurable sections/uniformizations (this theorem
is also important for dynamic programming, see El Karoui and Tan (2013). Under
certain conditions on the generator, the approximating solutions can be interpreted
as nonlinear conditional expectations (in the sense of Peng (2010)), conditioned on a
Lévy process whose jumps are not of arbitrarily small size. (See the comments after
Theorem 3.4.)

Studying the existence, uniqueness, and comparison results by Darling and
Pardoux (1997), Pardoux and Zhang (1996), Pardoux (1997), Fan and Jiang (2012),
Royer (2006), Situ (1997), Yin and Mao (2008), Kruse and Popier (2016, 2017),
Yao (2017), and Sow (2014), one notices that one can unify and generalize the
assumptions on f.

Indeed, and this is our third main result, in the case of L2-solutions, for a pro-
gressively measurable generator f with linear growth, it suffices to assume (cf.
Theorems 3.1 and 3.5) the following growth- and monotonicity conditions with
time-dependent, random coefficients:

• |f (ω, s, y, z, u)| ≤ F(s, ω) + K1(s, ω)|y| + K2(s, ω)(|z| + ‖u‖),
• (

y − y′) (f1(ω, s, y, z, u) − f1
(
ω, s, y′, z′, u′))

≤ α(s)ρ
(∣∣y − y′∣∣2)+ β(s, ω)

∣∣y − y′∣∣ (∣∣z − z′∣∣+ ∥∥u − u′∥∥),
with α ∈ L1([0, T ]) and F being nonnegative and progressively measurable such

that E

[(∫ T

0 F(ω, t)dt
)2]

< ∞. The processes K1, K2, and β are nonnegative and

progressively measurable such that for a constant c > 0,
∫ T

0

(
K1(s) + K2(s)

2 + β(s)2
)

ds < c, P-a.s.

The concave function ρ in the monotonicity condition may grow faster than linear
at zero and satisfies

∫
0+ 1/ρ(x)dx = ∞. This type of function already appeared in

context with BSDEs in Mao (1995) in 1997.
These assumptions also extend the monotonicity condition of Kruse and Popier

(2016, 2017), for the L2-case with linear growth, since the coefficients in our setting
take randomness, the function ρ and time-dependence into account. BSDEs with
time-dependent coefficients appear, for example, in Gobet and Turkedjiev (2016).

The existence and uniqueness result Theorem 3.1 and the comparison result
Theorem 3.5 are basic tools in the forthcoming paper (Geiss and Steinicke 2018) on
Malliavin differentiability and boundedness of solutions to BSDEs. To compute the
Malliavin derivative for the jump part of the Lévy process, more structure from the
generator is required in its dependency on u, usually via an integral w.r.t. ν(dx), for
example,

f (s, u) = h

(
s,

∫
R\{0}

u(x)κ(s, x)ν(dx)

)
,
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where [0, T ]×R 
 (s, v) �→ h(s, v). One can find h and κ such that the assumptions
of Theorem 3.5 are satisfied while conditon (2) does not hold: By the mean value
theorem there exists a ζ ∈]0, 1[ and

vζ :=
∫
R\{0}

(
ζu(x) + (1 − ζ )u′(x)

)
κ(s, x)ν(dx),

such that

f (s, u) − f
(
s, u′) = ∂vh

(
s, vζ

) ∫
R\{0}

(
u(x) − u′(x)

)
κ(s, x)ν(dx).

Assumption (3) holds if γ
u,u′
s (x) := ∂vh

(
s, vζ

)
κ(s, x) ≥ −1 for all

(
s, u, u′, x

)
.

Choosing, for example, a bounded function h such that also sups,v |∂vh(s, v)| < ∞,

but ∂vh(s, v) �= 0 for a.e. s and v, and putting κ(s, x) = s− 1
4 (|x| ∧ 1), then (2) does

not hold since

sup
s,u,u′

∣∣∣γ u,u′
s

∣∣∣ /∈ L2(ν).

However, the Assumptions (A2), (A3) of Section 3 are satisfied for

K2(s) = β(s) = sup
v

|∂vh(s, v)| ‖κ(s, ·)‖L2(ν) ≤ cs− 1
4 .

The paper is structured as follows: Section 2 contains preliminaries and basic def-
initions. In Section 3, we present the main theorems of this paper about existence
and uniqueness of solutions, the approximation using BSDEs based on Lévy pro-
cesses with finite Lévy measure, and the comparison result. The latter we also prove
there. Having stated and proved some auxiliary results in Section 4, including an
a-priori estimate for our type of BSDEs, we are able to prove existence and unique-
ness and the approximation result from Section 3. In the appendix, we recall the
Bihari–LaSalle inequality and the Jankov–von Neumann theorem.

2 Setting

Let X = (Xt )t∈[0,T ] be a càdlàg Lévy process on a complete probability space
(�,F,P) with Lévy measure ν. We will denote the augmented natural filtration of
X by (Ft )t∈[0,T ] and assume that F = FT . For 0 < p ≤ ∞ we use the notation(
Lp, ‖ · ‖p

) := (Lp(�,F,P), ‖ · ‖Lp). Equations or inequalities for objects of these
spaces throughout the paper are considered up to P-null sets.

The Lévy–Itô decomposition of a Lévy process X can be written as

Xt = at + σWt +
∫

]0,t]×{|x|≤1}
xÑ(ds, dx) +

∫
]0,t]×{|x|>1}

xN(ds, dx), (4)

where a ∈ R, σ ≥ 0, W is a Brownian motion and N (Ñ ) is the (compensated)
Poisson random measure corresponding to X, see Applebaum (2004) or Sato (1999).
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Notation

• Let S2 denote the space of all (Ft )-progressively measurable and càdlàg
processes Y : � × [0, T ] → R such that

‖Y‖2S2 := E sup
0≤t≤T

|Yt |2 < ∞.

• We define L2(W) as the space of all (Ft )-progressively measurable processes
Z : � × [0, T ] → R such that

‖Z‖2
L2(W)

:= E

∫ T

0
|Zs |2 ds < ∞.

• Let R0 := R\{0}. We define L2
(
Ñ
)
as the space of all random fields U : � ×

[0, T ] × R0 → R which are measurable with respect to P ⊗ B (R0) (where P
denotes the predictable σ -algebra on �×[0, T ] generated by the left-continuous
(Ft )-adapted processes) such that

‖U‖2
L2
(
Ñ
) := E

∫
[0,T ]×R0

|Us(x)|2 ds ν(dx) < ∞.

• L2(ν) := L2 (R0,B (R0) , ν) , ‖ · ‖ := ‖ · ‖L2(ν).• Lp([0, T ]) := Lp([0, T ],B([0, T ]), λ) for p > 0, where λ is the Lebesgue
measure on [0, T ].

• With a slight abuse of the notation, we define

L2
(
�; L1([0, T ])

)
(5)

:=
{

F ∈ L0(� × [0, T ],F ⊗ B([0, T ]),P ⊗ λ) : E
[∫ T

0
|F(ω, t)|dt

]2
<∞.

}

For F ∈ L2
(
�; L1([0, T ])) , put

IF (ω) :=
∫ T

0
F(ω, t)dt and KF (ω, s) := F(ω, s)

IF (ω)
. (6)

• A solution to a BSDE with terminal condition ξ and generator f is a triplet

(Y, Z, U) ∈ S2 × L2(W) × L2
(
Ñ
)
which satisfies for all t ∈ [0, T ]:

Yt = ξ+
∫ T

t

f (s, Ys, Zs, Us)ds−
∫ T

t

ZsdWs−
∫

]t,T ]×R0

Us(x)Ñ(ds, dx). (7)

The BSDE (7) itself will be denoted by (ξ, f ).

3 Main results

We start with a result about existence and uniqueness which is proved in Section 5.

Theorem 3.1 There exists a unique solution to the BSDE (ξ, f ) with ξ ∈ L2 and
generator f : � × [0, T ] × R × R × L2(ν) → R satisfying the properties
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(A1) For all (y, z, u) : (ω, s) �→ f (ω, s, y, z, u) is progressively measurable.
(A2) There are nonnegative, progressively measurable processes K1, K2, and F

with

CK :=
∥∥∥∥
∫ T

0

(
K1(·, s) + K2(·, s)2

)
ds

∥∥∥∥∞
< ∞ (8)

and F ∈ L2
(
�; L1([0, T ])) (see (5)) such that for all (y, z, u),

|f (s, y, z, u)| ≤ F(s) + K1(s)|y| + K2(s)(|z| + ‖u‖), P ⊗ λ-a.e.

(A3) For λ-almost all s, the mapping (y, z, u) �→ f (s, y, z, u) is P-a.s. continuous.
Moreover, there is a nonnegative function α ∈ L1([0, T ]), c > 0 and a pro-
gressively measurable process β with

∫ T

0 β(ω, s)2ds < c, P-a.s. such that for
all (y, z, u),

(
y′, z′, u′),
(
y − y′) (f (s, y, z, u) − f

(
s, y′, z′, u′))

≤ α(s)ρ
(|y − y′|2)+ β(s)

∣∣y − y′∣∣ (∣∣z − z′∣∣+ ∥∥u − u′∥∥) ,P ⊗ λ-a.e.,

where ρ is a nondecreasing, continuous and concave function from [0, ∞[ to
itself, satisfying ρ(0) = 0, and

∫
0+ 1

ρ(x)
dx = ∞.

(A4) The function ρ in (A3) satisfies lim supx↓0
ρ(x2)

x
= 0.

If f satisfies only (A1)–(A3), then there exists at most one solution.

For ρ(x) = x, we are in the case of the ordinary monotonicity condition. Another
example for a function ρ is given by

ρ(x) = 1 − min
(
x, 1

e

)min
(
x,

1
e

)
, x ≥ 0.

Remark 3.2 .

1. Condition (A2) implies that f (s, y, z, u) is integrable for a.e. s ∈ [0, T ] since,
by Fubini’s theorem,

∫ T

0
E|f (s, y, z, u)|ds

≤ E

∫ T

0
[F(s) + K1(s)|y| + K2(s)(|z| + ‖u‖))]ds < ∞. (9)

2. If lim supx↓0
ρ(x2)

x
= 0 is satisfied one can derive Lipschitz continuity of

f (s, y, z, u) in z and u from the monotonicity condition in (A3). We require (A4)
since we later want to apply (Yin and Mao (2008), Theorem 2.1), where Lipschitz
continuity in u is used to show uniqueness of solutions. If only (A1)–(A3) are
satisfied but not (A4), and a Lipschitz condition in z, u holds nevertheless, all
of the article’s theorems remain valid. One can show that (A4) does not follow
from the other conditions imposed on ρ in (A3): Assume a decreasing sequence
(xn)

∞
n=0 with x0 = 1 and limn→∞ xn = 0. Define
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ρ(x) :=
{√

xn if x = xn, n = 0, 1, 2, ...√
x if x > 1 orx = 0.

and let ρ be continuous and piecewise linear on ]0, 1]. The so defined ρ is
a concave function with lim supx↓0

ρ(x)√
x

= 1. The sequence (xn)
∞
n=0 can be

constructed such that
∫ 1
0

1
ρ(x)

dx = ∞. For example, choose x1 such that∫ 1
x1

1
ρ(x)

dx ≥ 1, and if xn has been chosen find xn+1 such that
∫ xn

xn+1

1

ρ(x)
dx = 1

2
(log(xn) − log(xn+1))

(√
xn + √

xn+1
) ≥ 1.

The next result shows how a solution to a BSDE can be approximated by a
sequence of solutions of BSDEs which are driven by Lévy processes with a finite
Lévy measure. We do this by approximating the underlying Lévy process defined
through

Xt = at + σWt +
∫

]0,t]×{|x|>1}
xN(ds, dx) +

∫
]0,t]×{|x|≤1}

xÑ(ds, dx)

for n ≥ 1 by

Xn
t = at + σWt +

∫
]0,t]×{|x|>1}

xN(ds, dx) +
∫

]0,t]×{1/n≤|x|≤1}
xÑ(ds, dx).

The process Xn has a finite Lévy measure νn. Furthermore, note that the
compensated Poisson random measure associated with Xn can be expressed as
Ñn = χ{1/n≤|x|}Ñ . Let

J 0 := {�, ∅} ∨ N ,

J n := σ
(
Xn
) ∨ N , n ≥ 1, (10)

where N stands for the null sets of F . Note that (J n)∞n=0 forms a filtration. The
notation (J n)∞n=0 was chosen to indicate that this filtration describes the inclusion of
smaller and smaller jumps of the Lévy process. We will use

En· := E
[ · ∣∣J n

]
for the conditional expectation.

The intuitive idea now would be to work with a BSDE driven by Xn where one
uses the data (Enξ,Enf ) . The problem is that the generator f needs to be progres-
sively, and also jointly measurable w.r.t. (ω, t, y, z, u), but it is not obvious whether
the conditional expectation Enf preserves this property from f. For BSDEs driven
by a Brownian motion, this problem has been solved in (Ylinen (2017), Proposition
7.3), but this proposition does not apply to our situtation. Therefore, we next pro-
pose a method for the construction of a unique progressively measurable and jointly
measurable w.r.t. (ω, t, y, z, u) version of Enf.

Definition 3.3 (Definition of fn) Assume that f satisfies (A1), (A2) and that J :=(
J [s])

s∈[0,∞[ is built using (10), where [·] denotes the floor function. Let o,Jf be the
optional projection of the process
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[0, ∞[ × � × [0, T ] × R
2 × L2(ν) →R,

(s, ω, t, y, z, u) �→ f (ω, t, y, z, u)

in the variables (s, ω) with respect to J, and with parameters (t, y, z, u). For each
n ≥ 0, assume that the filtration F

n := (
Fn

t

)
t∈[0,T ] is given by Fn

t := Ft ∩ J n. Let
fn be the optional projection of

(ω, t, y, z, u) �→ o,Jf (n, ω, t, y, z, u)

with respect to Fn with parameters (y, z, u).

The reason for using the filtration
(
J [s])

s∈[0,∞[ instead of the (J n)∞n=0 from (10)
is that one can apply known measurability results w.r.t. right continuous filtrations
instead of proving measurability here directly. Indeed, the optional projection o,Jf

defined above is jointly measurable in (s, ω, t, y, z, u). For this we refer to Meyer
(1979), where optional and predictable projections of random processes depending
on parameters were considered, and their uniqueness up to indistinguishability was
shown.

It follows that for all (t, y, z, u),

o,Jf (n, t, y, z, u) = Enf (t, y, z, u), P-a.s.

Then, since f is (Ft )t∈[0,T ]-progressively measurable, for all n ≥ 0, t ∈ [0, T ] and
all (y, z, u), it holds that

fn(t, y, z, u) = Enf (t, y, z, u), P-a.s. (11)

Hence, fn(t, y, z, u) is a jointly measurable version of Enf (t, y, z, u) which is(
Fn

t

)
t∈[0,T ]-optional, so especially it is progressively measurable.

We comment on the compatibility of the solutions (Y n, Zn, Un) from the BSDE
corresponding to (Enξ, fn) ,

Y n
t = Enξ +

∫ T

t

fn

(
s, Y n

s , Zn
s , Un

s

)
ds −

∫ T

t

Zn
s dWs

−
∫

]t,T ]×R0

Un
s (x)Ñn(ds, dx)

with the space S2 × L2(W) × L2
(
Ñ
)
:

The triplet (Y n, Zn, Un) ∈ S2 ×L2(W)×L2
(
Ñn
)
can be canonically embedded

in the space S2×L2(W)×L2
(
Ñ
)
, basically by extendingUn

s (x) ontoR0 by defining

Un
s (x) := 0 for |x| < 1

n
. Moreover, recall that Ñn = χ{1/n≤|x|}Ñ, so that

∫
]t,T ]×R0

Un
s (x)Ñn(ds, dx) =

∫
]t,T ]×R0

Un
s (x)χ{1/n≤|x|}Ñ(ds, dx).

Therefore,
(
Yn, Zn, UnχR\]−1/n,1/n[

)
solves (Enξ, fn) in S2×L2(W)×L2

(
Ñ
)
.
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Theorem 3.4 Let ξ ∈ L2 and let f satisfy (A1)–(A3). Assume that the BSDE driven
by Xn with data (Enξ, fn) (where fn is given by Definition 3.3) has a unique solution
denoted by (Y n, Zn, Un) . If the solution (Y, Z, U) to (ξ, f ) exists as well, then,(

Yn, Zn, Un
)→ (Y, Z, U)

in L2(W)×L2(W)×L2
(
Ñ
)
on (�,F,P). Moreover, if f additionally satisfies (A4),

then the mentioned solution triplets exist.

The benefit of this approximation becomes clear in the proof of the compari-
son theorem which we state next. There, we only need to prove the comparison
result assuming a finite Lévy measure, since the general case then follows by
approximation.

Another consequence of this approximation result concerns nonlinear expecta-
tions. (For a survey article on nonlinear expectations the reader is referred to Peng
(2010)). In the case of Lévy processes, provided that f (s, y, 0, 0) = 0 for all s and
y, the process Yt has been described by Royer (2006) as a conditional nonlinear
expectation, denoted by Ef

t ξ := Yt . Hence, our theorem implies that(
E

fn
t Enξ

)
t∈[0,T ] →

(
E

f
t ξ
)

t∈[0,T ] inL2(W).

Theorem 3.5 Let f, f ′ be two generators satisfying the conditions (A1)–(A3) of
Theorem 3.1 (f and f ′ may have different coefficients). We assume ξ ≤ ξ ′, P-a.s. and
for all (y, z, u), f (s, y, z, u) ≤ f ′(s, y, z, u), for P ⊗ λ-a.a. (ω, s) ∈ � × [0, T ].
Moreover, assume that f or f ′ satisfy the condition (here formulated for f)

(Aγ ) f (s, y, z, u)−f (s, y, z, u′) ≤ ∫
R0

(
u′(x) − u(x)

)
ν(dx), P⊗λ-a.e.

for all u, u′ ∈ L2(ν) withu ≤ u′.

Let (Y, Z, U) and (Y ′, Z′, U ′) be the solutions to (ξ, f ) and (ξ ′, f ′), respectively.
Then, Yt ≤ Y ′

t , P-a.s.

Proof The basic idea for this proof was inspired by the one of Theorem 8.3 in
El Karoui et al. (2009).

Step 1:
In this step we assume that the Lévy measure ν is finite. We use Tanaka–Meyer’s

formula (cf. Protter (2004), Theorem 70) to see that for η(s) := 2β(s)2 + ν(R0),

e
∫ t
0 η(s)ds

(
Yt − Y ′

t

)2
+ = e

∫ T
0 η(s)ds

(
ξ − ξ ′)2

+ + M(t)

+
∫ T

t

e
∫ s
0 η(τ)dτ χ{Ys−Y ′

s≥0}
[
2
(
Ys − Y ′

s

)
+ (f (s, Ys, Zs, Us)

−f ′ (s, Y ′
s , Z

′
s , U

′
s

))
− ∣∣Zs − Z′

s

∣∣2 − η(s)
∣∣Ys − Y ′

s

∣∣2

−
∫
R0

((
Ys − Y ′

s + Us(x) − U ′
s (x)

)2
+ − (Ys − Y ′

s

)2
+

−2
(
Us(x) − U ′

s (x)
) (

Ys − Y ′
s

)
+
)

ν(dx)
]
ds.
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Here, M(t) is a stochastic integral term having zero expectation which follows
from Y, Y ′ ∈ S2 (this holds according to Theorem 3.1). Moreover, we used that on
the set {�Ys ≥ 0} (where �Y := Y − Y ′) we have

(
Ys − Y ′

s

)
+ = ∣∣Ys − Y ′

s

∣∣. Taking
means and denoting the differences by�ξ := ξ −ξ ′, �Z := Z−Z′, �U := U −U ′
and �f := f − f ′ leads us to

Ee
∫ t
0 η(s)ds (�Yt )

2+ = Ee
∫ T
0 η(s)ds(�ξ)2+

+ E

{∫ T

t

e
∫ s
0 η(τ)dτ χ{�Ys≥0}

[
2 (�Ys)+ (f (s, Ys, Zs, Us)

−f ′ (s, Y ′
s , Z

′
s , U

′
s

))− |�Zs |2 − η(s) |�Ys |2

−
∫
R0

(
(�Ys + �Us(x))2+ − (�Ys)

2+

− 2 (�Us(x)) (�Ys)+
)
ν(dx)

]
ds

}
,

(12)
We split up the set R0 into

B(ω, s) = B = {�Us(x) ≥ −�Ys} andBc.

Taking into account that ξ ≤ ξ ′, we estimate

Ee
∫ t
0 η(s)ds (�Yt )

2+ ≤ E

{∫ T

t

e
∫ s
0 η(τ)dτ χ{�Ys≥0}

[
2 (�Ys)+ (f (s, Ys, Zs, Us)

−f ′ (s, Y ′
s , Z

′
s , U

′
s

))−|�Zs |2−η(s) |�Ys |2−
∫

B

|�Us(x)|2 ν(dx)

+
∫

Bc

(
(�Ys)

2+ + 2(�Us(x))(�Ys)+
)

ν(dx)

]
ds

}
.

(13)
We focus on the term (�Ys)+

(
f (s, Ys, Zs, Us) − f ′ (s, Y ′

s , Z
′
s , U

′
s

))
, and denot-

ing
(
(Y, Z),

(
Y ′, Z′)) by (�, �′), we derive from f ≤ f ′ that

(�Ys)+
(
f (s, �s, Us) − f ′ (s, �′

s , U
′
s

)) = (�Ys)+
(
f (s, �s, Us) − f

(
s, �′

s , U
′
s

)
+f

(
s, �′

s , U
′
s

)− f ′ (s, �′
s , U

′
s

))
≤(�Ys)+

(
f (s, �s, Us)−f

(
s, �′

s , U
′
s

))
.

We continue with the observation that on {ω : �Ys > 0} we have

Bc = {�Us(x) < −�Ys} ⊆ {U ′
s(x) > Us(x)

}
,

so that

U ′
sχB + UsχBc ≤ U ′

sχB + U ′
sχBc on {ω : �Ys > 0} .
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Therefore, we split (�Ys)+
(
f (s, �s, Us) − f

(
s, �′

s , U
′
s

))
into two terms; one

we estimate with (A3) and the first inequality of (14), while for the other we use (Aγ):

(�Ys)+
(
f (s, �s, Us) − f

(
s, �′

s , U
′
s

)) = (�Ys)+ (f (s, �s, UsχB + UsχBc)

−f
(
s, �′

s , U
′
sχB + UsχBc

))
+ (�Ys)+

(
f
(
s, �′

s , U
′
sχB + UsχBc

)
−f

(
s, �′

s , U
′
sχB + U ′

sχBc

))
≤ α(s)ρ

(
(�Ys)

2+
)

+ β(s)2(�Ys)
2+

+ |�Zs |2
2

+ ‖�UsχB‖2
2

−
∫
R0

(�Ys)+�Us(x)χBcν(dx).

Thus, by the last two inequalities, (13) evolves to

Ee
∫ t
0 η(s)ds(�Yt )

2+ ≤ E

{∫ T

t

e
∫ s
0 η(τ)dτ χ{�Ys≥0}

[
2α(s)ρ

(
(�Ys)

2+
)
+2β(s)2(�Ys)

2+

+ |�Zs |2 + ‖�UsχB‖2 −
∫

Bc

2(�Ys)+(�Us(x))ν(dx)

− |�Zs |2 − η(s)|�Ys |2 −
∫

B

|�Us(x)|2 ν(dx)

+
∫

Bc

(
(�Ys)

2+ + 2(�Ys)+ (�Us(x))
)

ν(dx)
]
ds
}

.

Because of ‖�UsχB‖2 = ∫
B
|�Us(x)|2ν(dx), we cancel out terms and get

Ee
∫ t
0 η(s)ds(�Yt )

2+ ≤E

{∫ T

t

e
∫ s
0 η(τ)dτ χ{�Ys≥0}

[
2α(s)ρ

(
(�Ys)

2+
)

+ 2β(s)2(�Ys)
2+

−η(s)|�Ys |2 +
∫

Bc

(�Ys)
2+ν(dx)

]
ds

}
.

Bounding
∫
Bc(�Ys)

2+ν(dx) by ν(R0)(�Ys)
2+, leads us to

Ee
∫ t
0 η(s)ds(�Yt )

2+ ≤ E

{∫ T

t

e
∫ s
0 η(τ)dτ χ{�Ys≥0}

[
2α(s)ρ((�Ys)

2+)

+(2β(s)2 + ν(R0))(�Ys)
2+ − η(s)|�Ys |2

]
ds
}

.

It remains, also using the definition of η,

Ee
∫ t
0 η(s)ds(�Yt )

2+ ≤ E
∫ T

t
e
∫ s
0 η(τ)dτ2α(s)ρ

(
(�Ys)

2+
)
ds.

The term e
∫ T
0 η(τ)dτ is P-a.s. bounded by a constant C > 0. Thus, by the concavity

of ρ, we arrive at

E(�Yt )
2+ ≤ E

[
e
∫ t
0 η(s)ds(�Yt )

2+
]

≤ ∫ T

t
2Cα(s)ρ

(
E(�Ys)

2+
)
ds.
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Then, the Bihari–LaSalle inequality (Proposition 5.2)—a generalization of Gron-
wall’s inequality—shows that E(�Yt )

2+ = 0 for all t ∈ [0, T ], which is the desired
result for ν(R0) < ∞.

Step 2:
The goal of this step is to extend the result of the first step to general Lévy

measures. We adapt the notation of Theorem 3.4 for Yn, Y n′, fn, and f ′
n. Now, we

claim that for solutions Yn and Yn′ of (Enξ, fn) and
(
Enξ

′, f ′
n

)
, Step 1 granted that

Yn ≤ Yn′ : Indeed, fn ≤ f ′
n holds by the monotonicity of En, and also (Aγ) holds

for fn if it did for f. One notes that the process Xn which is related to (Enξ, fn) and
(Enξ

′, f ′
n) has a finite Lévy measure νn satisfying νn(|x| < 1

n
) = 0, while in (Aγ)

we still have ν. However, the solution processes Un and Un′ are zero for |x| < 1
n

(see the comment before Theorem 3.4).
Hence, we need (Aγ) only for u and u′ which are zero for |x| < 1

n
, and for those

u and u′ we may replace ν by νn and then apply Step 1. Finally, the convergence of
the sequences to the solutions Y and Y ′ of (ξ, f ) and (ξ ′, f ′), respectively, in L2(W)

shows Y ≤ Y ′, and our theorem is proven.

4 Auxiliary results

We will frequently use the following basic algebraic inequalities (special cases of
Young’s inequality) which hold for all R > 0:

ab ≤ a2

2R
+ Rb2

2
and ab ≤ Ra

2
+ ab2

2R
. (14)

The following proposition states, roughly speaking, that for the BSDEs considered
here it is sufficient to find solution processes of a BSDE in the (larger) spaceL2(W)×
L2(W) × L2(Ñ).

Proposition 4.1 If (Y, Z, U) ∈ L2(W)×L2(W)×L2
(
Ñ
)
is a triplet of processes

that satisfies the BSDE (ξ, f ) with ξ ∈ L2 and (A1), (A2), then (Y, Z, U) is a

solution to (7), i.e., (Y, Z, U) ∈ S2 × L2(W) × L2
(
Ñ
)
. In particular, there exists a

constant C1 > 0 such that

‖Y‖2S2 + ‖Z‖2
L2(W)

+ ‖U‖2
L2
(
Ñ
) ≤ eC1(1+CK)2

(
E|ξ |2 + EI 2F

)
,

where CK was defined in (8) and IF in (6).

Proof Since (Y, Z, U) satisfies (7), it holds that

|Yt |2 = Ytξ + Yt

∫ T

t
f (s, Ys, Zs, Us)ds − Yt

∫ T

t
ZsdWs

−Yt

∫
]t,T ]×R0

Us(x)Ñ(ds, dx).
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We apply the first inequality of (14), where Yt takes the role of a, to get for an
arbitrary R > 0:

|Yt |2 ≤ 3|Yt |2
2R + R|ξ |2

2 + R
2

(∣∣∣∫ T

t
ZsdWs

∣∣∣2 +
∣∣∣∫]t,T ]×R0

Us(x)Ñ(ds, dx)

∣∣∣2
)

+|Yt |
∫ T

t
|f (s, Ys, Zs, Us)|ds.

Condition (A2) implies

|Yt |2 ≤ 3|Yt |2
2R + R|ξ |2

2 + R
2

(∣∣∣∫ T

t
ZsdWs

∣∣∣2 +
∣∣∣∫]t,T ]×R0

Us(x)Ñ(ds, dx)

∣∣∣2
)

+|Yt |
∫ T

t (F (s) + K1(s)|Ys | + K2(s) (|Zs | + ‖Us‖)) ds.

We estimate with the help of the inequalities (14),

|Yt |F(s) ≤ KF (s)

(
|Yt |2
2R

+ RI 2F

2

)
,

K1(s)|Yt ||Ys | ≤ K1(s)

( |Yt |2
2R

+ R|Ys |2
2

)
,

|Yt |K2(s) (|Zs | + ‖Us‖) ≤ K2(s)
2|Yt |2

2R
+ R

(
|Zs |2 + ‖Us‖2

)
.

Hence,

|Yt |2 ≤ |Yt |2
2R

(
4 +

∫ T

t

(
KF (s) + K1(s) + K2(s)

2
)

ds

)
+ R|ξ |2

2

+ R

2

(∣∣∣∣
∫ T

t

ZsdWs

∣∣∣∣
2

+
∣∣∣∣
∫

]t,T ]×R0

Us(x)Ñ(ds, dx)

∣∣∣∣
2
)

+ R

2
I 2F

∫ T

t

KF (s)ds + R

∫ T

t

(
|Zs |2 + ‖Us‖2

)
ds +

∫ T

t

RK1(s)|Ys |2
2

ds.

Note that
∫ T

0 KF (s)ds = 1 and choose R = R0 := 5 + ∫ T

0

(
K1(s) + K2(s)

2
)
ds

so that

|Yt |2 ≤ R0

[
|ξ |2+supt∈[0,T ]

(∣∣∣∫ T

t
ZsdWs

∣∣∣2+
∣∣∣∫]t,T ]×R0

Us(x)Ñ(ds, dx)

∣∣∣2
)

+I 2F + 2
∫ T

0 |Zs |2 + ‖Us‖2ds + ∫ T

t
K1(s)|Ys |2ds

]
.

Since Y is a càdlàg process, we may apply (46) from the appendix which leads to

|Yt |2 ≤R0e
R0
∫ T
0 K1(s)ds

[
|ξ |2 + I 2F + 2

∫ T

0
|Zs |2 + ‖Us‖2ds

+ sup
t∈[0,T ]

(∣∣∣∣
∫ T

t

ZsdWs

∣∣∣∣
2

+
∣∣∣∣
∫

]t,T ]×R0

Us(x)Ñ(ds, dx)

∣∣∣∣
2
)]

.
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The inequality (a + b)2 ≤ 2a2 + 2b2 and then Doob’s martingale inequality
used on

sup
t∈[0,T ]

(∣∣∣∣
∫ T

0
ZsdWs −

∫ t

0
ZsdWs

∣∣∣∣
2

+
∣∣∣∣
∫

]0,T ]×R0

Us(x)Ñ(ds, dx) −
∫

]0,t]×R0

Us(x)Ñ(ds, dx)

∣∣∣∣
2
)

yield, since a.s. R0 ≤ 5 + CK and
∫ T

0 K1(s)ds ≤ CK,

E sup
t∈[0,T ]

|Yt |2 ≤ c1

[
E|ξ |2 + EI 2F + 12E

∫ T

0

(
|Zs |2 + ‖Us‖2

)
ds

]
(15)

with

c1 = (5 + CK)e(5+CK)CK . (16)

For a progressively measurable process η, which we will determine later, Itô’s
formula implies that

|Y0|2 + ∫ T

0 e
∫ s
0 η(τ)dτ

(
η(s)|Ys |2 + |Zs |2 + ‖Us‖2

)
ds

= M(0) + e
∫ T
0 η(s)ds |ξ |2 + ∫ T

0 2e
∫ s
0 η(τ)dτ Ysf (s, Ys, Zs, Us)ds, (17)

where

M(t) = −
∫ T

t

2e
∫ s
0 η(τ)dτ YsZsdWs

−
∫

]t,T ]×R0

2e
∫ s
0 η(τ)dτ

(
(Ys− + Us(x))2 − Y 2

s−
)

Ñ(ds, dx).

(18)

Provided that
∥∥∥∫ T

0 η(τ)dτ

∥∥∥
L∞(P)

< ∞, one gets EM(t) = 0 as a consequence

of (15) and the Burkholder–Davis–Gundy inequality (see, for instance, (He et al.

(1992), Theorem 10.36)), where the term
(
(Ys− + Us(x))2 − Y 2

s−
)2

appearing in the
integrand can be estimated by

(|Ys− + Us(x)| + |Ys−|)2 (|Ys− + Us(x)| − |Ys−|)2 ≤ 4 sup
r∈[0,T ]

|Yr |2 |Us(x)|2.

By (A2) and (14), we have

|Ys ||f (s, Ys, Zs, Us)| ≤ |Ys |[F(s) + K1(s)|Ys | + K2(s)(|Zs | + ‖Us‖)]
≤ F(s)|Ys | + K1(s)|Ys |2 + 2R

K2(s)
2|Ys |2
2

+|Zs |2 + ‖Us‖2
2R

.
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We use this estimate for R = 2, and taking the expectation in (17), we have

E

∫ T

0
e
∫ s
0 η(τ)dτ

(
η(s)|Ys |2+|Zs |2+‖Us‖2

)
ds ≤Ee

∫ T
0 η(s)ds |ξ |2+E

∫ T

0
e
∫ s
0 η(τ)dτ

( |Zs |2 + ‖Us‖2
2

)
ds

+ 2E
∫ T

0
e
∫ s
0 η(τ)dτ F (s)ds sup

t∈[0,T ]
|Yt |

+ E

∫ T

0
e
∫ s
0 η(τ)dτ 2

(
K1(s) + 2K2(s)

2
)

Y 2
s ds.

(19)
Then, we choose η(s) = 2

(
K1(s) + 2K2(s)

2
)
and subtract the terms containing

Y, Z, and U from the left hand side of (19). Moreover, we apply the first inequality
of (14) to the term containing the supremum. It follows that

E

∫ T

0
e
∫ s
0 η(τ)dτ

(
|Zs |2 + ‖Us‖2

)
ds ≤ 2E

[
e
∫ T
0 η(s)ds |ξ |2

]
+ 2RE

[∫ T

0
e
∫ s
0 η(τ)dτF (s)ds

]2

+ 2

R
E sup

t∈[0,T ]
|Yt |2.

(20)
Note that

E

∫ T

0

(
|Zs |2 + ‖Us‖2

)
ds ≤ E

∫ T

0
e
∫ s
0 η(τ)dτ

(
|Zs |2 + ‖Us‖2

)
ds.

Hence, by (20) and
∫ T

0 η(τ)dτ ≤ 4CK a.s., we have

E

∫ T

0

(
|Zs |2 + ‖Us‖2

)
ds ≤ 2e4CKE|ξ |2 + 2Re8CKEI 2F + 2

R
E sup

t∈[0,T ]
|Yt |2. (21)

Now, we can plug in (21) into (15) and vice versa which yields for R := 48c1 that

E sup
t∈[0,T ]

|Yt |2 ≤ (
2c1 + 48c1e4CK

)
E|ξ |2 + (2c1 + (48c1)2e8CK

)
EI 2F ,

and

E

∫ T

0

(
|Zs |2 + ‖Us‖2

)
ds ≤

(
1

12
+ 4e4CK

)
E|ξ |2+

(
1

12
+ 192c1e

8CK

)
EI 2F .

Using (16) it is easy to see that there exists a constant C1 > 0 such that each factor
in front of the expectations on the right side of the previous two inequalities is less
than eC1(1+CK)2 .

Our next proposition will be anL2 a-priori estimate for BSDEs of our type. For the
Brownian case, Lp a-priori estimates are done for p ∈ [1, ∞[ in Briand et al. (2003),
and for quadratic BSDEs, for p ∈ [2, ∞[ in Geiss and Ylinen (2018). For BSDEs
with jumps, for p ∈]1, ∞[, see Kruse and Popier (2016, 2017); while Becherer et al.
(2018) contains an a-priori estimate w.r.t. L∞. The following assertion is similar to
(Barles et al. (1997), Proposition 2.2), but fits our extended setting.
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Proposition 4.2 Let ξ, ξ ′ ∈ L2 and let f, f ′ be two generator functions satisfy-
ing (A1)–(A3), where the bounds in (A2) and the coefficients in (A3) may differ for
f and f ′. The coefficients of f ′ in (A3) will be referred to as α′ and β ′. Moreover,

let the triplets (Y, Z, U) and (Y ′, Z′, U ′) ∈ L2(W) × L2(W) × L2
(
Ñ
)
, satisfy the

BSDEs (ξ, f ) and (ξ ′, f ′), respectively.
Then,

‖Y − Y ′‖2
L2(W)

+ ∥∥Z − Z′∥∥2
L2(W)

+ ∥∥U − U ′∥∥2
L2(Ñ)

≤ h
(
a, b,E|ξ − ξ ′|2 + 2E

∫ T

0 |Yt − Y ′
t |
∣∣f (t, Yt , Zt , Ut ) − f ′(t, Yt , Zt , Ut )

∣∣ dt
)
,

where a = ∫ T

0 α′(s)ds, b =
∥∥∥∫ T

0 β ′(s)2ds

∥∥∥∞ , and

h :]0, ∞[×]0, ∞[×[0, ∞[→ [0, ∞[

is a function such that h(a, b, x) → 0 = h(a, b, 0) if x → 0.

Proof We start with the following observation gained by Itô’s formula for the dif-
ference of the BSDEs (ξ, f ) and (ξ ′, f ′). We denote differences of expressions by
�. If η = 4β ′(s)2, we have analogously to (17)

e
∫ t
0 η(s)ds |�Yt |2 + ∫ T

t
e
∫ s
0 η(τ)dτ

(
η(s)|�Ys |2 + |�Zs |2 + ‖�Us‖2

)
ds

= e
∫ T
0 η(s)ds |�ξ |2 + M(t)

+ ∫ T

t
2e
∫ s
0 η(τ)dτ�Ys (f (s, Ys, Zs, Us) − f ′(s, Y ′

s , Z
′
s , U

′
s))ds, (22)

where

M(t) = −
∫ T

t

2e
∫ s
0 η(τ)dτ�Ys�ZsdWs

−
∫

]t,T ]×R0

2e
∫ s
0 η(τ)dτ

(
(�Ys− + �Us(x))2 − �Y 2

s−
)

Ñ(ds, dx).

By the same reasoning as for (18), we have EM(t) = 0. We now proceed with
the (standard) arguments similar to those used for (17)–(19). By (A3) and the first
inequality from (14),

�Ys(f
′(s, Ys, Zs, Us) − f ′(s, Y ′

s , Z
′
s , U

′
s)) ≤ α′(s)ρ

(
|�Ys |2

)
+ β ′(s)|�Ys |(|�Zs |

+ ‖�Us‖) ≤α′(s)ρ
(
|�Ys |2

)

+ β ′(s)2|�Ys |2
R

+ R
(|�Zs |2 + ‖�Us‖2

)
2

.

(23)
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Taking the expectation in (22) and then using (23) with R = 1 (such that we can
cancel out the terms with Z and U on the left side), leads to

Ee
∫ t
0 η(s)ds |�Yt |2 + E

∫ T

t

e
∫ s
0 η(τ)dτ η(s)|�Ys |2ds ≤ Ee

∫ T
0 η(s)ds |�ξ |2

+ E

∫ T

t

2e
∫ s
0 η(τ)dτ�Ys · (�f )(s, Ys, Zs, Us)ds

+ E

∫ T

t

e
∫ s
0 η(τ)dτ

(
2α′(s)ρ

(
|�Ys |2

)
+ β ′(s)2|�Ys |2

)
ds.

The choice η(s) = 4β ′(s)2 and the fact that
∫ T

0 β ′(s)2ds ≤ b a.s. leads to

E|�Yt |2 ≤ e4b
(
E|�ξ |2 + E

∫ T

t

2|�Ys ||(�f )(s, Ys, Zs, Us)|ds

)

+ e4b
∫ T

t

2α′(s)ρ
(
E|�Ys |2

)
ds,

since ρ is a concave function.
By Proposition 5.2, a backward version of the Bihari–LaSalle inequality, shows

sup
t∈[0,T ]

E|�Yt |2 ≤

G−1
{
G

[
e4b
(
E|�ξ |2+E

∫ T

0
2|�Ys ||(�f )(s, Ys, Zs, Us)|ds

)]
+2e4b

∫ T

0
α′(s)ds

}
,

(24)
where G(x) = ∫ x

1
1

ρ(h)
dh.

If we take the expectation in (22) but choose this time (23) with R = 1
2 and omit

Ee
∫ t
0 η(s)ds |�Yt |2, then

E

∫ T

t

e
∫ s
0 η(τ)dτ

(
η(s)|�Ys |2 + |�Zs |2 + ‖�Us‖2

)
ds

≤ Ee
∫ T
0 η(s)ds |�ξ |2 + E

∫ T

t

2e
∫ s
0 η(τ)dτ�Ys · (�f )(s, Ys, Zs, Us)ds

+ E

{∫ T

t

e
∫ s
0 η(τ)dτ

(
2α′(s)ρ

(
|�Ys |2

)
+ 4β ′(s)2|�Ys |2 + |�Zs |2 + ‖�Us‖2

2

)
ds

}
.

We subtract the quadratic terms with �Y, �Z, and �U which appear on the right
hand side. This results in the inequality

E
∫ T

t
e
∫ s
0 η(τ)dτ

(|�Zs |2 + ‖�Us‖2
)
ds

≤ 2
(
Ee
∫ T
0 η(s)ds |�ξ |2 + E

∫ T

t
2e
∫ s
0 η(τ)dτ |�Ys | · |(�f )(s, Ys, Zs, Us)|ds

+E
∫ T

t
e
∫ s
0 η(τ)dτ2α′(s)ρ

(|�Ys |2
)
)ds
)

.
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We continue our estimate by

E
∫ T

t
e
∫ s
0 η(τ)dτ

(|�Zs |2 + ‖�Us‖2
)
ds

≤ 2e4b
(
E|�ξ |2 + E

∫ T

t
2|�Ys | · |(�f )(s, Ys, Zs, Us)|ds (25)

+2
∫ T

t
α′(s)ds ρ

(
sup

s∈[0,T ]
E|�Ys |2

))
,

since η(s) = 4β ′(s)2. We put

H := G−1
{
G
[
e4b
(
E|�ξ |2 + E

∫ T

0 2|�Ys ||(�f )(s, Ys, Zs, Us)|ds
)]

+ 2e4b
∫ T

0 α′(s)ds
}

so that (24) reads now as supt∈[0,T ] E|�Yt |2 ≤ H. If we add this inequality to (25)
and note that ρ

(
supt∈[0,T ] E|�Ys |2

) ≤ ρ(H), we have

sup
s∈[0,T ]

E|�Yt |2 + E
∫ T

0 |�Zs |2ds + E
∫ T

0 ‖�Us‖2ds

≤ 2e4b
(
E|�ξ |2 + E

∫ T

0 2|�Ys | · |(�f )(s, Ys, Zs, Us)|ds
)

+
(
2e4b

∫ T

0 α′(s)ds + 1
)

· (id + ρ)(H).

Note that the integral condition on ρ implies that, if the argument of G approaches
zero, then the right hand side vanishes.

The following Lemma will be used to estimate the expectation of integrals which
contain |Ys |2.

Lemma 4.3 Let ξ ∈ L2 and assume that (A1) and (A2) hold. If (Y, Z, U) is a
solution to (ξ, f ) and H is a nonnegative, progressively measurable process with∥∥∥∫ T

0 H(s)ds

∥∥∥∞ < ∞, then

E

∫ T

0
H(s)|Ys |2ds ≤ e2CKE

∫ T

0
H(s)ds|ξ |2

+ 2e2CK

∥∥∥∥
∫ T

0
H(s)ds · IF

∥∥∥∥
2
‖Y‖S2 .

(26)

Proof From the relations (17), (18) and integration by parts applied to the term∫ T

0 H(s)ds · e
∫ T
0 η(s)ds |YT |2, we get

∫ T

0
H(s)ds · e

∫ T
0 η(r)dr |YT |2 =

∫ T

0
H(s)e

∫ s
0 η(τ)dτ |Ys |2ds −

∫ T

0

(∫ s

0
H(τ)dτ

)
dM(s)

+
∫ T

0

(∫ s

0
H(r)dr

)
e
∫ s
0 η(τ)dτ

(
η(s)|Ys |2 + |Zs |2 + ‖Us‖2

−2Ysf (s, Ys, Zs, Us)) ds.
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We take expectations and rearrange the equation so that

E

∫ T

0
H(s)e

∫ s
0 η(τ)dτ |Ys |2ds ≤ E

[∫ T

0
H(s)ds · e

∫ T
0 η(s)ds |ξ |2

]

+ E

[∫ T

0

(∫ s

0
H(τ)dτ

)
e
∫ s
0 η(τ)dτ (2Ysf (s, Ys, Zs, Us)

−η(s)|Ys |2 − |Zs |2 − ‖Us‖2
)

ds

]
.

By Assumption (A2) and (14), we have

2Ysf (s, Ys, Zs, Us) ≤ 2|Ys |F(s) + 2K1(s)|Ys |2
+ 2K2(s)|Ys |(|Zs | + ‖Us‖) ≤ 2|Ys |F(s)

+ 2K1(s)|Ys |2 + 2K2(s)
2|Ys |2 + |Zs |2 + ‖Us‖2,

so that for η(s) = 2K1(s) + 2K2(s)
2 it follows

E

∫ T

0
H(s)|Ys |2ds ≤ E

[∫ T

0
H(s)ds · e

∫ T
0 η(s)ds |ξ |2

]

+ 2E

[∫ T

0

(∫ s

0
H(τ)dτ

)
e
∫ s
0 η(τ)dτF (s)|Ys |ds

]

≤ e2CKE

[∫ T

0
H(s)ds · |ξ |2

]

+ 2e2CK

∥∥∥∥
∫ T

0
H(s)ds · IF

∥∥∥∥
2
‖Y‖S2 .

(27)

5 Proofs of Theorems 3.1 and 3.4

5.1 Proof of Theorem 3.1

Step 1: Uniqueness
Uniqueness of the solution is a consequence of Proposition 4.2, since the terms |ξ −
ξ ′| and |f (s, Ys, Zs, Us) − f ′(s, Ys, Zs, Us)| are zero.

The proof of existence will be split up in further steps.
Step 2:

In this step, we construct an approximating sequence of generators f (n) for f
and show several estimates for the solution processes (Y n, Zn, Un) to the BSDEs(
ξ, f (n)

)
.

For n ≥ 1, define cn(z) := min(max(−n, z), n) and c̃n(u) ∈ L2(ν) to be the
projection of u onto {v ∈ L2(ν) : ‖v‖ ≤ n}. Let (Y n, Zn, Un) be the unique solution
of the BSDE

(
ξ, f (n)

)
, with the definitions

f̂ (n)(ω, s, y, z, u) := f (ω, s, y, cn(z), c̃n(u)),
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and

f (n)(ω, s, y, z, u) := sign
(
f̂ (n)(ω, s, y, z, u)

)

× [F(ω, s) ∧ n + (K1(ω, s) ∧ n)|y| + (K2(ω, s) ∧ n)(|cn(z)| + ‖c̃n(u)‖)]

if |f̂ (n)(ω, s, y, z, u)| > F(ω, s) ∧ n + (K1(ω, s) ∧ n)|y|
+(K2(ω, s) ∧ n)(|cn(z)| + ‖c̃n(u)‖),

and

f (n)(ω, s, y, z, u) := f̂ (n)(ω, s, y, z, u) else.

Note that f (n) satisfies (A1)–(A4), with the same coefficients as f. Moreover,
by (A4), f (n) satisfies a Lipschitz condition with respect to u (see Remark 3.2).
Thus, thanks to (Yin and Mao (2008), Theorem 2.1),

(
ξ, f (n)

)
has a unique solution

(Y n, Zn, Un). Moreover, by Proposition 4.1, we get that

‖Yn‖2S2 + ∥∥Zn
∥∥2

L2(W)
+ ∥∥Un

∥∥2
L2(Ñ)

≤ eC1(1+CK)2
(
E|ξ |2 + EI 2F

)
< ∞, (28)

uniformly in n. This implies that the families(
sup

t∈[0,T ]
|Yn

t |, n ≥ 0

)
,
(|Yn|, n ≥ 0

)
and

(|Zn| + ‖Un‖, n ≥ 0
)

are uniformly integrable with respect to P, P ⊗ λ and P ⊗ λ, respectively.
Step 3:
The goal of this step is to use Proposition 4.2 to get convergence of (Y n, Zn, Un)n

inL2(W)×L2(W)×L2(Ñ) for a subsequence nk ↑ ∞ if δnk,nl
→ 0 for k > l → ∞,

where

δn,m := E

∫ T

0
|Yn

s − Ym
s ||f (n)

(
s, Y n

s , Zn
s , Un

s

)− f (m)
(
s, Y n

s , Zn
s , Un

s

) |ds.

We observe that the difference of the generators is zero if two conditions are sat-
isfied at the same time: First, if |Zn|, ‖Un

s ‖ < n, and additionally, by the cut-off
procedure for F, K1, K2, if

n > max (F (ω, s), K1(ω, s), K2(ω, s)) =: k(ω, s).

Thus, putting

χn(s) := χ{|Zn
s |>n}∪{‖Un

s ‖>n}∪{k(s)>n}, (29)

we have

δn,m = E

∫ T

0
|Yn

s − Ym
s ||f (n)

(
s, Y n

s , Zn
s , Un

s

)− f (m)
(
s, Y n

s , Zn
s , Un

s

) |χn(s)ds

≤ E

{∫ T

0
2|Yn

s −Ym
s | χn(s)×

(
F(s) + K1(s)|Yn

s |+K2(s)
(|Zn

s | + ‖Un
s ‖)) ds

}
,
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due to the linear growth condition (A2). We estimate this further by

δn,m ≤ E

∫ T

0
χn(s) F (s)ds

(
sup

r∈[0,T ]
|Yn

r | + sup
r∈[0,T ]

|Ym
r |
)

+ E

∫ T

0
χn(s)K2(s)

(|Yn
s | + |Ym

s |) (|Zn
s | + ‖Un

s ‖) ds

+ E

∫ T

0
2|Yn

s − Ym
s | |Yn

s |χn(s)K1(s)ds

=: δ(1)
n,m + δ(2)

n,m + δ(3)
n,m.

(30)

For δ
(1)
n,m, we use the Cauchy–Schwarz inequality,

δ(1)
n,m ≤ 2

(
E

∣∣∣∣
∫ T

0
χn(s) F (s)ds

∣∣∣∣
2) 1

2 (‖Yn‖S2 + ‖Ym‖S2

)
.

Since supn ‖Yn‖S2 < ∞ according to (28), it remains to show that the integral
term converges to 0 for a subsequence.

Since |Zn
s | and ‖Un

s ‖ are uniformly integrable w.r.t. P ⊗ λ, we imply from (29)
that χn → 0 in L1(P ⊗ λ). Hence, there exists a subsequence (nk)k≥1 such that

χnk
→ 0 k → ∞, P ⊗ λ-a.e. (31)

By dominated convergence, we have E

∣∣∣∫ T

0 χnk
(s)F (s)ds

∣∣∣2 → 0 for k → ∞
since F ∈ L2

(
�; L1([0, T ])) .

For δ
(2)
n,m, we start with the Cauchy–Schwarz inequality and get

δ(2)
n,m ≤ 2 sup

k

[∥∥∥Zk
∥∥∥

L2(W)
+
∥∥∥Uk

∥∥∥
L2(Ñ)

]

×
[
E

∫ T

0
χn(s)K2(s)

2
(
|Yn

s |2 + |Ym
s |2
)

ds

] 1
2

.

By Lemma 4.3,

E

∫ T

0
χn(s)K2(s)

2
(
|Yn

s |2 + |Ym
s |2
)

ds

≤ 2e2CKE

∫ T

0
χn(s)K2(s)

2ds|ξ |2

+ 2e2CK

∥∥∥∥
∫ T

0
χn(s)K2(s)

2ds · IF

∥∥∥∥
2

(‖Yn‖S2 + ‖Ym‖S2

)
.

(32)

Hence, (31) implies δ
(2)
nk,m → 0 for k → ∞.

Finally,

δ(3)
n,m ≤ 2E

∫ T

0

(
2|Yn

s |2 + |Ym
s |2
)

χn(s)K1(s)ds,
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so that we can argue like in (32) to get that δ(3)
nk,m → 0 for k → ∞.

Thus (Y nk , Znk , Unk )k≥1 converges to an object (Y, Z, U) in L2(W) × L2(W) ×
L2
(
Ñ
)
.

Step 4:
In the final step, we want to show that (Y, Z, U) solves (ξ, f ). For the approximat-

ing sequence (Y nk , Znk , Unk )k≥1 , the stochastic integrals and the left hand side of
the BSDEs

(
ξ, f (nk)

)
obviously converge in L2 to the corresponding terms of (ξ, f ).

Therefore, this subsequence of
(∫ T

t
f (n)

(
s, Y n

s , Zn
s , Un

s

)
ds
)∞

n=1
converges to a ran-

dom variable Vt . We need to show that Vt = ∫ T

t
f (s, Ys, Zs, Us)ds. To achieve this,

consider

δn := E
∫ T

t
|f (n)

(
s, Y n

s , Zn
s , Un

s

)− f
(
s, Y n

s , Zn
s , Un

s

) |ds

+E
∫ T

t
|f (s, Y n

s , Zn
s , Un

s

)− f (s, Ys, Zs, Us) |ds. (33)

We start with the first integrand where, by the definition of fn and (29), and the
growth condition (A2),

|f (n)
(
s, Y n

s , Zn
s , Un

s

)− f
(
s, Y n

s , Zn
s , Un

s

) |
= |f (n)

(
s, Y n

s , Zn
s , Un

s

)− f
(
s, Y n

s , Zn
s , Un

s

) |χn

≤ 2
(
F(s)χn(s) + K1(s)|Yn

s |χn(s) + K2(s)χn(s)
(|Zn

s | + ‖Un
s ‖))

=: 2
(
κ(1)
n (s) + κ(2)

n (s) + κ(3)
n (s)

)
.

The estimates are similar as in the previous step. Thanks to (31), we have
E
∫ T

t
κ

(1)
nk

(s)ds → 0. For the next term, the Cauchy–Schwarz inequality yields

E

∫ T

t

κ(2)
nk

(s)ds ≤
∥∥∥∥
∫ T

0
χn(s)K1(s)ds

∥∥∥∥
2
sup

l

‖Y l‖S2 ,

so that by (31) the first factor converges to zero along the subsequence (nk). The last
term we estimate using the Cauchy–Schwarz inequality w.r.t. P ⊗ λ,

E

∫ T

t

κ(3)
nk

(s)ds ≤
[
E

∫ T

0
K2(s)

2χn(s)ds

] 1
2

sup
l

[∥∥∥Zl
∥∥∥

L2(W)
+
∥∥∥Ul

∥∥∥
L2
(
Ñ
)
]

,

and again by (31), we have convergence to zero along the subsequence (nk).

We continue showing the convergence of the second term in (33). We extract a
sub-subsequence of (nk)k≥1, which we call—slightly abusing the notation—again
(nk)k≥1 such that (Y nk , Znk , Unk ), regarded as a triplet of measurable functions with
values in R × R × L2(ν), converges to (Y, Z, U) for P ⊗ λ-a.a. (ω, s) . Then, for an
arbitrary K > 0, we have

E
∫ T

t

∣∣f (s, Y nk
s , Z

nk
s , U

nk
s

)− f (s, Ys, Zs, Us)
∣∣ ds

≤ E

{∫ T

t

∣∣f (s, Y nk
s , Z

nk
s , U

nk
s

)− f (s, Ys, Zs, Us)
∣∣ (34)

×
(

χ{|Ynk
s |≤K,|Znk

s |+‖Unk
s ‖≤K

} + χ{|Ynk
s |>K

} + χ{|Znk
s |+‖Unk

s ‖>K
}
)

ds

}
.
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By dominated convergence and the continuity of f,

E

∫ T

t

∣∣f (s, Y nk
s , Znk

s , Unk
s

)− f (s, Ys, Zs, Us)
∣∣χ{|Ynk

s |≤K,|Znk
s |+‖Unk

s ‖≤K
}ds → 0,

since by (A2) we can bound the integrand by

2F(s) + K1(s)(K + |Ys |) + K2(s)(2K + |Zs | + ‖Us‖),
which is integrable. We let

χK(nk, s) := χ{|Ynk
s |>K

} + χ{|Znk
s |+‖Unk

s ‖>K
}.

Then, the remaining terms of (34) are bounded by

E

∫ T

0
(2F(s) + K1(s)|Ys | + K2(s)(|Zs | + ‖Us‖))χK(nk, s)ds

+ E

∫ T

0
K1(s)|Ynk

s |χK(nk, s)ds

+ E

∫ T

0
K2(s)

(|Znk
s | + ‖Unk

s ‖)χK(nk, s)ds

=: δ(1)
nk

+ δ(2)
nk

+ δ(3)
nk

.

If we choose a K large enough, then δ
(1)
nk

can be made arbitrarily small since
the families

(|Yn
s |, n ≥ 0

)
and

(|Zn
s | + ‖Un

s ‖, n ≥ 0
)
are uniformly integrable with

respect to P ⊗ λ. The same holds for

(
δ(2)
nk

)2 ≤ E

∣∣∣∣
∫ T

0
K1(s)χK(nk, s)ds

∣∣∣∣
2

sup
l

‖Ynl‖2S2

≤
∥∥∥∥
∫ T

0
K1(s)ds

∥∥∥∥∞
E

[∫ T

0
K1(s)χK(nk, s)ds

]
sup

l

‖Ynl‖2S2 ,

and
(
δ(3)
nk

)2 ≤ 2E

[∫ T

0
K2(s)

2χK(nk, s)ds

]
sup

l

E

∫ T

0

(∣∣Znl
s

∣∣2 + ∥∥Unl
s

∥∥2) ds.

Hence, for δn defined in (33), we have that limk→∞ δnk
= 0, which implies

lim
k→∞E

∣∣∣∣
∫ T

t

f (nk)
(
s, Y nk

s , Znk
s , Unk

s

)
ds −

∫ T

t

f (s, Ys, Zs, Us)ds

∣∣∣∣ = 0.

We infer that for a sub-subsequence (nkl
, l ≥ 0) we get the a.s. convergence

∫ T

t

f (nkl
)
(
s, Y

nkl
s , Z

nkl
s , U

nkl
s

)
ds →

∫ T

t

f (s, Ys, Zs, Us)ds.

Thus, for the original sequence, a.s.∫ T

t

f (nk)
(
s, Y nk

s , Znk
s , Unk

s

)
ds → Vt =

∫ T

t

f (s, Ys, Zs, Us)ds,

and therefore the triplet (Y, Z, U) satisfies the BSDE (ξ, f ).
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5.2 Proof of Theorem 3.4

We start with a preparatory lemma:

Lemma 5.1 If f satisfies (A1)–(A4), then for all n ≥ 0, fn constructed in
Definition 3.3 also satisfies (A1)–(A4) (with different coefficients).

Proof By definition, (ω, t) �→ fn(t, y, z, u) is progressively measurable for all
(y, z, u), thus (A1) is satisfied. The inequalities in (A2) and (A3) are a.s. satis-
fied, with coefficients EnF,EnK1,EnK2,Enβ. To ensure that these coefficients
have a

(
Fn

t

)
t∈[0,T ]-progressively measurable version, one applies the procedure from

Definition 3.3 to the inequalities in (A2) and (A3) and notes that an equation
analogous to (11) holds true.

It remains to show a.s. continuity of fn in the (y, z, u)-variables required in (A3)
for a.e. t. In (Ylinen (2017), Proposition 7.3), this was shown by the fact that the
approximation of the generators appearing there can be done using spaces of contin-
uous functions. However, since our situation involves L2(ν), a non-locally compact
space, we can not easily adapt the proof from Ylinen (2017) and therefore we will
use different means.

Let D[0, T ] be the space of càdlàg functions endowed by the Skorohod metric
(which makes this space a Polish space). The Borel σ -algebra B(D[0, T ]) is gener-
ated by the coordinate projections pt : D[0, T ] → R, x �→ x(s) (see Theorem 12.5
of Billingsley (1968), for instance). On this σ -algebra, let PX be the image measure
induced by the Lévy process X: � → D[0, T ], ω �→ X(ω). We denote by G the
completion with respect to PX. For t ∈ [0, T ], the notation

xt (s) := x(t ∧ s), for alls ∈ [0, T ]
induces the natural identification

D[0, t] = {x ∈ D[0, T ] : xt = x
}
.

By this identification, we define a filtration on this space through

Gt = σ (B (D[0, t]) ∪ NX[0, T ]) , 0 ≤ t ≤ T ,

where NX[0, T ] denotes the null sets of B (D[0, T ]) with respect to the image mea-
sure PX of the Lévy process X. The same procedure applied to the Lévy process Xn

yields a filtration (Gn
t )t∈[0,T ] defined in the same way.

According to (Steinicke (2016), Theorem 3.4), which is a generalization of Doob’s
factorization lemma to random variables depending on parameters, there is a Gt ⊗
B([0, t] × R

2 × L2(ν))-measurable functional

gf : D[0, t] × [0, t] × R
2 × L2(ν) → R

and a Gn
t ⊗ B([0, t] × R

2 × L2(ν))-measurable functional

gfn : D[0, t] × [0, t] × R
2 × L2(ν) → R

such that P-a.s.,

gf (X(ω), ·) = f (ω, ·) and gfn(X
n(ω), ·) = fn(ω, ·). (35)
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Note also, that if PX(M) = 0 for M ∈ G, then also P(X−1(M)) = 0. Thus,
without loss of generality, we may assume that (�,F,P) = (D[0, T ],G,PX) and
(�,Fn

t ,P) = (D([0, t]),Gn
t ,PX), which are standard Borel spaces. For more details

on D[0, T ], see Billingsley (1968) and (Delzeith (2004), Section 4).
Now, fix N ∈ N and let c0 := {(an)n ∈ (R2 × L2(ν))N : an → 0}. For a ∈ c0,

let ‖a‖c0 = supn∈N(|an(1)| + |an(2)| + ‖an(3)‖), where a(k), k = 1, 2, 3 are the
components of a in R, R and L2(ν). The space c0 is a Polish space. Let BN be the
ball with radius N ∈ N in c0 and let B ′

N be the ball of radius N in R
2 × L2(ν). The

balls BN, B ′
N are again Polish spaces.

We consider a Borel set MT of t ∈ [0, T ] for which f is continuous in (y, z, u)

and for which it holds that f has an integrable bound:

E|f (t, y, z, u)| ≤ EF(t) + EK1(t)|y| + EK2(t)(|z| + ‖u‖) < ∞. (36)

From (A3) and (9) it follows that one can choose MT such that λ(MT ) = T .

For a fixed t ∈ MT we define the function

Hm : � × BN × B ′
N → R, (ω, a, ϕ) �→ fn(ω, t, am + ϕ),

where ϕ denotes a triplet (y, z, u) ∈ R
2 × L2(ν). This function is measurable since

fn(·, t, ·) is measurable, πm : BN × B ′
N → R

2 × L2(ν), (a, ϕ) �→ (am + ϕ) is
continuous and id × πm : � × BN × B ′

N → � × R
2 × L2(ν) is measurable.

Next, we consider the map

H : � × BN × B ′
N → R, (ω, a, ϕ) �→ limm→∞ fn(ω, t, am + ϕ), if it exists

0, else.

The set, where the limit exists is measurable, since it can be written as

⋂
k≥1

⋃
M≥0

⋂
m1,m2≥M

{
|Hm1 − Hm2 | <

1

k

}
.

Therefore, H can be written as the pointwise limit of measurable functions and is
thus measurable.

We now know that, for a fixed pair (a, ϕ) ∈ BN × B ′
N ,

fn(t, am + ϕ) = Enf (t, am + ϕ), P-a.s.

Thus, by (36)

|fn(t, am + ϕ)| ≤ EnF (t) + 2NEnK1(t) + 4NEnK2(t) < ∞.

By the continuity of f and the dominated convergence theorem for conditional
expectations, we infer that up to a null set M(a, ϕ) ∈ Fn

t , we have the relation

limm→∞ fn(t, am + ϕ) = limm→∞ Enf (t, am + ϕ) = En limm→∞ f (t, am + ϕ)

= Enf (t, ϕ) = fn(t, ϕ).

In other words, on the complement of M(a, ϕ), we have H(ω, a, ϕ) =
fn(ω, t, ϕ). This means that H and fn(·, t, ·) are ”versions” of each other. What we
need is ”indistinguishability” of the processes.
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For this purpose, let (A, �) : � → BN ×B ′
N be an arbitrary Fn

t -measurable func-
tion. Like above, by the definition of the optional projection, (A2), and the continuity
of f, we get the equation

limm→∞ fn(t, Am + �) = fn(t, �),

which is also satisfied P-a.s. This equality means, that

H(ω, A(ω), �(ω)) = fn(ω, t, �(ω)), a.s.

All Fn
t were complete σ -algebras (in fact they contain all null sets of F) and

the spaces BN, B ′
N were Polish. Thus we may use a generalized version of the

section theorem, the Jankov–von Neumann theorem (Theorem 5.3), by choosing a

uniformizing function
(
Â, �̂

)
for the set

P = {(ω, a, ϕ) : H(ω, a, ϕ) �= fn(ω, t, ϕ)}.
Note that P is a Borel set and therefore especially analytic, since H and fn(·, t, ·)

(interpreted as a constant map w.r.t. a) are measurable functions in (ω, a, ϕ). Since

for this choice of
(
Â, �̂

)
it holds, as seen above, that

H(ω, Â(ω), �̂(ω)) = fn(ω, t, �̂(ω)), a.s.

it follows that the projection of P to � is a null set. Therefore, H and fn are indistin-
guishable. Hence, we find a null set MN ∈ Fn

t , such that for ω outside this set and
for all (a, ϕ) ∈ BN × B ′

N :

lim
m→∞ fn(ω, t, am + ϕ) = fn(ω, t, ϕ).

But this means continuity in all points of B ′
N a.s. It remains to unite the sets MN

for all N ∈ N, to obtain a set such that on its complement the function is continuous
in all points of R2 × L2(ν).

Proof Step 1:
If f satisfies (A1)–(A4), by Lemma 5.1 all fn do so as well. In this case, for all

n ≥ 0, the equations (Enξ, fn) have unique solutions by Theorem 3.1. In general, the
coefficients in (A2) and β differ dependent on n since F, K1, K2, β will be replaced
by the coefficients EnF,EnK1,EnK2,Enβ.

Let us compare the solutions (Y n, Zn, Un) and (Y, Z, U). We start comparing
(Y n, Zn, Un) and (EnY,EnZ,EnU). Here, for instance, the process ((EnY )t )t∈[0,T ]
is defined as an optional projection with respect to the filtration

(
Fn

t

)
t∈[0,T ], sim-

ilar to Definition 3.3. The so defined processes are versions of the processes
(EnYt ,EnZt ,EnUt )t∈[0,T ].

Using the BSDE for (Y, Z, U), we get P-a.s.

EnYt = Enξ + ∫ T

t
Enf (s, Ys, Zs, Us)ds − ∫ T

t
EnZsdWs

− ∫]t,T ]×{1/n≤|x|} EnUs(x)Ñ(ds, dx), (37)

since

En

∫
]t,T ]×{1/n>|x|}

Us(x)Ñ(ds, dx) = 0.
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Now, to estimate ‖Yn − EnY‖L2(W) + ‖Zn − EnZ‖L2(W) + ‖Un − EnU‖
L2(Ñ)

,
we apply Itô’s formula to the difference of the BSDE (Enξ, fn) and (37). Similar to
the proof of Proposition 4.2, we get, denoting differences by �n and η := 4β(s)2,

E

{
e
∫ t
0 η(s)ds |�nYt |2 + ∫ T

t
e
∫ s
0 η(τ)dτ

(
η(s)|�nYs |2 + |�nZs |2 + ‖�nUs‖2

)
ds
}

= E
∫ T

t
2e
∫ s
0 η(τ)dτ (�nYs)

(
fn

(
s, Y n

s , Zn
s , Un

s

)− Enf (s, Ys, Zs, Us)
)
ds.

By the measurability of (Y n, Zn, Un), the equality

fn

(
s, Y n

s , Zn
s , Un

s

) = Enf
(
s, Y n

s , Zn
s , Un

s

)

holds P-a.s. for all s. We now estimate

E
[
(�nYs)

(
fn

(
s, Y n

s , Zn
s , Un

s

)− Enf (s, Ys, Zs, Us)
)]

= E
[
(�nYs)

(
Enf

(
s, Y n

s , Zn
s , Un

s

)− Enf (s, Ys, Zs, Us)
)]

= E
[
(�nYs)

(
f
(
s, Y n

s , Zn
s , Un

s

)− f (s, Ys, Zs, Us)
)]

= E
[
(�nYs)

(
f
(
s, Y n

s , Zn
s , Un

s

)− f (s,EnYs,EnZs,EnUs)
)]

+E
[
(�nYs) (f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us))

]
≤ E

[
α(s)ρ

(|�nYs |2
)+ β(s)|�nYs | (|�nZs | + ‖�nUs‖)

]
+E

[∣∣�Yn
s

∣∣ |(f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us)|
]
.

Now, we can conduct exactly the same steps as in the standard procedure used
in the proof of Proposition 4.2. This means that ‖�nY‖L2(W) + ‖�nZ‖L2(W)

+‖�nU‖
L2(Ñ)

converges to zero if

E

∫ T

0
|�Yn

s ||(f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us)|ds (38)

does, which we will show in the following steps.
Step 2:
In this step, we show that the solution processes (Y n, Zn, Un) satisfy the estimate

sup
n≥0

(
‖Yn‖S2 + ∥∥Zn

∥∥2
L2(W)

+ ∥∥Un
∥∥2

L2(Ñ)

)
< ∞. (39)

This, as in the proof of Theorem 3.1, leads to the uniform integrability of the
processes (|Yn|, n ≥ 0) and (|Zn| + ‖Un‖, n ≥ 0) with respect to P ⊗ λ.

By Proposition 4.1, we get that

‖Yn‖2S2 + ‖Zn‖2
L2(W)

+ ‖Un‖2
L2(Ñ)

≤ eC1(1+CK,n)2
(
E|Enξ |2 + E(IEnF )2

)
,

where CK,n =
∥∥∥∫ T

0

(
EnK1(s) + (EnK2(s))

2
)
ds

∥∥∥∞. By the monotonicity of En and

Jensen’s inequality, we get that
∫ T

0

(
EnK1(s) + (EnK2(s))

2
)
ds ≤ En

∫ T

0

(
K1(s) + K2(s)

2
)

ds ≤ CK, P-a.s.
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Doob’s martingale inequality applied to n �→ Enξ and n �→ IEnF =
En

∫ T

0 F(s)ds yields that

‖Yn‖2S2 + ‖Zn‖2
L2(W)

+ ‖Un‖2
L2(Ñ)

≤ eC1(1+CK)2
(
E|ξ |2 + E(IF )2

)
.

Furthermore,

sup
n≥0

(
‖EnY‖S2 + ‖EnZ‖2

L2(W)
+ ‖EnU‖2

L2
(
Ñ
)
)

< ∞ (40)

follows from martingale convergence and Jensen’s inequality and implies uniform
integrability of the processes (|EnY |, n ≥ 0) and (|EnZ| + ‖EnU‖, n ≥ 0) with
respect to P ⊗ λ.

Step 3:
In this step, we show the convergence (38). From martingale convergence, we get

that for all t ∈ [0, T ], EnYt → Yt , EnZt → Zt and EnUt → Ut , P-a.s. This implies
that f (s,EnYs,EnZs,EnUs) → f (s, Ys, Zs, Us) in P ⊗ λ. Therefore,

lim
n→∞ E

∫ T

0 |Yn
s − EnYs ||f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us)|

×χ{|Yn
s |+|EnYs |≤K}ds = 0

since the integrals form a uniformly integrable sequence with respect to P⊗λ. Indeed,
we have, using (A2) for f and the first equation of (14), the estimate

|Yn
s − EnYs ||f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us) |χ{|Yn

s |+|EnYs |≤K}
≤ 4K(F(s) + K1(s))

+2K
(
K2(s)

2
)+ |Zs |2 + ‖Us‖2 + |EnZs |2 + ‖EnUs‖2),

where n �→ EnZs, n �→ EnUs converge since they are closable martingales.
Next, we will show that

δn(K) : = E

{∫ T

0 |Yn
s − EnYs ||f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us)|

× χ{|Yn
s |+|EnYs |>K}ds

}
(41)

can be made arbitrarily small by the choice of K > 0, uniformly in n. Again by (A2)
and using the notation χn

K(s) := χ{|Yn
s |+|EnYs |>K}, we estimate like in (30)

|Yn
s − EnYs ||f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us)|χ{|Yn

s |+|EnYs |>K}
≤ |Yn

s − EnYs | (2F(s) + K1(s)(|Ys | + |EnYs |)
+K2(s)(|Zs | + |EnZs | + ‖Us‖ + ‖EnUs‖)) χn

K(s)
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and get

δn(K) ≤ 2E

{∫ T

0
χn

K(s) F (s)ds

(
sup

r∈[0,T ]
|Yn

r | + sup
r∈[0,T ]

|EnYr |
)}

+ E

{∫ T

0
χn

K(s) K2(s)(|Yn
s | + |EnYs |)(|Zs | + |EnZs | + ‖Us‖ + ‖EnUs‖)ds

}

+ E

∫ T

0
|Yn

s − EnYs | (|Ys | + |EnYs |)χn
K(s) K1(s)ds

=: δ
(1)
n,K + δ

(2)
n,K + δ

(3)
n,K .

(42)
For δ

(1)
n,K, we estimate

δ
(1)
n,K ≤ 2

∥∥∥∥
∫ T

0
χn

K(s)F (s)ds

∥∥∥∥
2
sup
l≥0

(
‖Y l‖S2 + ‖ElYs‖S2

)

which tends to zero as K → ∞, since we have χn
K → 0 in P⊗ λ, uniformly in n, as

K → ∞. The latter is implied by the uniform integrability of the families (|Yn|)n≥0
and (|EnY |)n≥0 with respect to P ⊗ λ. We continue with the next summands,

δ
(2)
n,K ≤ 8

(
E
∫ T

0

(|Yn
s |2 + |EnYs |2

)
χn

K(s)K2(s)
2ds
) 1

2

×
(

‖Z‖L2(W) + ‖U‖
L2
(
Ñ
)
)

(43)

and

δ
(3)
n,K ≤ E

∫ T

0

(|Ys |2 + |Yn
s |2 + 2|EnYs |2

)
χn

K(s)K1(s)ds, (44)

where, for E
∫ T

0 χn
K(s)

(|Ys |2 + |Yn
s |2)K1(s)ds and E

∫ T

0 χn
K(s)|Yn

s |2K2(s)
2ds, we

will apply the estimate (27) from the proof of Lemma 4.3. For example (the other
terms can be treated similarly), we get

E

∫ T

0
χn

K(s)|Yn
s |2 K2(s)

2ds ≤ E

∫ T

0
χn

K(s)K2(s)
2ds · e

∫ T
0 ηn(s)ds |Enξ |2

+ 2E
∫ T

0

∫ s

0
χn

K(s)K2(τ )2dτ e
∫ s
0 ηn(τ)dτ

EnF (s)|Yn
s |ds

≤ e2CKE

∫ T

0
χn

K(s)K2(s)
2ds|Enξ |2

+ 2e2CK

∥∥∥∥
∫ T

0
χn

K(s)K2(s)
2ds · IEnF

∥∥∥∥
2
‖Yn‖S2

(45)
with

∫ T

0 ηn(s)ds = ∫ T

0 EnK1(s) + (EnK2(s))
2ds ≤ CK a.s. Now, one gets that

∫ T

0
χn

K(s)K2(s)
2ds

P→ 0, K → ∞.
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Furthermore, using supn≥0 En

∫ T

0 F(s)ds < ∞, P-a.s. (which follows from
martingale convergence),

∫ T

0
χn

K(s)K2(s)
2ds

∫ T

0
EnF (s)ds

P→ 0, K → ∞,

independently of n. Since, by Doob’s maximal inequality,

E

[
supn≥0

∫ T

0 K2(s)
2ds

∫ T

0 EnF (s)ds
]2

≤ E

[
supn≥0 CKEn

∫ T

0 F(s)ds
]2 ≤ 4C2

KEI 2F < ∞,

dominated convergence is applicable to the last expression in (45). The first summand
containing ξ can be treated in the same way.

The terms containing |EnYs | in the inequalities (43) and (44), e.g., the expression
E
∫ T

0 χn
K(s)|EnYs |2K1(s)ds, can be estimated by

E

∫ T

0
χn

K(s)|EnYs |2K1(s)ds ≤ E

∫ T

0
χn

K(s)K1(s)

(
sup
l≥0

|ElYs |
)2

ds

≤ E

⎧⎨
⎩
∫ T

0
χn

K(s)K1(s)ds

(
sup

t∈[0,T ]
sup
l≥0

El |Yt |
)2
⎫⎬
⎭

≤ 2CK‖Y‖2S2 ,

where we used Doob’s maximal inequality again. Since
∫ T

0 χn
K(s)K1(s)ds → 0 in P

as K → ∞, all the terms in (43) and (44) become small, uniformly in n, if K is large.
So the expressions δ

(2)
n,K and δ

(3)
n,K can be made arbitrarily small by the choice of K,

which gives us the desired convergence

E

∫ T

0
|Yn

s − EnYs ||f (s,EnYs,EnZs,EnUs) − f (s, Ys, Zs, Us)|ds → 0.

Step 5:
Since, by the last step,

‖Yn − EnY‖L2(W) + ‖Zn − EnZ‖L2(W) + ‖Un − EnU‖
L2
(
Ñ
) → 0,

and also, by martingale convergence,

‖Y − EnY‖L2(W) + ‖Z − EnZ‖L2(W) + ‖U − EnU‖
L2
(
Ñ
) → 0,

we get

‖Yn − Y‖L2(W) + ‖Zn − Z‖L2(W) + ‖Un − U‖
L2
(
Ñ
) → 0.
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Appendix

The Bihari–LaSalle inequality. For the Bihari–LaSalle inequality we refer to (Mao
(1997), pp. 45-46). Here, we formulate a backward version of it which has been
applied in Yin and Mao (2008). The proof is analogous to that in Mao (1997).

Proposition 5.2 Let c > 0. Assume that ρ : [0, ∞[→ [0, ∞[ is a continuous and
non-decreasing function such that ρ(x) > 0 for all x > 0. Let K be a non-negative,
integrable Borel function on [0, T ], and y a non-negative, bounded Borel function on
[0, T ], such that

y(t) ≤ c + ∫ T

t
K(s)ρ(y(s))ds.

Then, it holds that

y(t) ≤ G−1
(

G(c) +
∫ T

t

K(s)ds

)

for all t ∈ [0, T ] such that G(c) + ∫ T

t
K(s)ds ∈ dom

(
G−1

)
. Here

G(x) :=
∫ x

1

dr

ρ(r)
,

and G−1 is the inverse function of G.

Especially, if ρ(r) = r for r ∈ [0, ∞[, it holds that
y(t) ≤ ce

∫ T
t K(s)ds . (46)

The Jankov–von Neumann theorem. If X and Y are sets and P ⊆ X × Y, then
P ∗ ⊆ P is called a uniformization of P if and only if P ∗ is the graph of a function
f : projX(P ) → Y, i.e., P ∗ = {(x, f (x)) : x ∈ projX(P )}. Such a function f is
called a uniformizing function for P. Let �1

1(X) denote the class of analytic subsets
of X. The following theorem can be found, for example, in (Kechris (1994), Theorem
18.1).

Theorem 5.3 (Jankov–von Neumann theorem) Assume that X and Y are standard
Borel spaces and P ⊆ X × Y is an analytic set. Then, P has a uniformizing function
that is σ

(
�1

1(X)
)
- measurable.
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Barles, G, Buckdahn, R, Pardoux, É: Backward stochastic differential equations and integral-partial

differential equations. Stoch. Stoch. Rep. 60(1-2), 57–83 (1997)
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