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Abstract In this paper, we study strongly robust optimal control problems under
volatility uncertainty. In the G-framework, we adapt the stochastic maximum princi-
ple to find necessary and sufficient conditions for the existence of a strongly robust
optimal control.
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1 Introduction

One of the motivations for this paper is to study the problem of optimal consumption
and optimal portfolio allocation in finance under model uncertainty. In particular, we
focus on volatility uncertainty, i.e., a situation where the volatility affecting the asset
price dynamics is unknown and we need to consider a family of different volatility
processes instead of just one fixed process (and hence also a family of models related
to them).
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Volatility uncertainty has been investigated in the literature by following two
approaches, i.e., by introducing an abstract sublinear expectation space with a special
process called G-Brownian motion (see (Peng 2007), (Peng 2010)), or by capacity
theory (see (Denis et al. 2011)). In (Denis et al. 2011), it is proven that these two
methods are strongly related. The link between these two approaches is the repre-
sentation of the sublinear expectation Ê associated with the G-Brownian motion as
a supremum of ordinary expectations over a tight family of probability measures P ,
whose elements are mutually singular:

Ê[.] = sup
P∈P

E
P[.],

see (4) and Theorem 1 for more details.
In this paper, we work in a G-Brownian motion setting as in (Peng 2007) and use

the related stochastic calculus, including the Itô formula, G-SDEs, martingale rep-
resentation and G-BSDEs, as developed in (Peng 2007), (Peng 2010), (Soner et al.
2011a), (Song 2011), (Soner et al. 2011b), (Peng et al. 2014), (Hu et al. 2014c),
(Hu et al. 2014a). It is important for understanding the nature of G-Brownian motion
to note that its quadratic variation 〈B〉 is not deterministic, but it is absolutely
continuous with the density taking value in a fixed set (for example, [σ 2, σ̄ 2] for
d = 1). Each P ∈ P can then be seen as a model with a different scenario for the
quadratic variation. That justifies why G-Brownian motion is a good framework for
investigating model uncertainty.

In a G-Brownian motion setting one considers the following stochastic optimal
control problem: to find the control û ∈ A such that

J (û) = sup
u∈A

J (u), (1)

with

J (u) : = Ê[
∫ T

0
f (t, Xu(t), u(t))dt + g(Xu(T ))]

= sup
P∈P

E
P[

∫ T

0
f (t, Xu(t), u(t))dt + g(Xu(T ))] =: sup

P∈P
JP(u),

(2)

where Xu is a controlledG-SDE, see (8). This problem has been studied in (Matoussi
et al. 2013), (Hu et al. 2014b). In (Hu et al. 2014b), they show that the value function
associated with such an optimal control problem satisfies the dynamic programming
principle and is a viscosity solution of some HJB equation.1 (Matoussi et al. 2013)
investigates the robust investment problem for geometric G-Brownian motion, where
2BSDEs (which are closely related toG-BSDEs) are used to find an optimal solution.
In both papers the optimal control is robust in a worst-case scenario sense.

It is interesting to note that in the simplest example of the optimal portfolio prob-
lem, which is the Merton problem with the logarithmic utility, one can easily prove
that there exists a portfolio which is optimal not only in the worst-case scenario,
but also for all probability measures P (with the optimality criterion JP). We call

1To be exact, the authors considered a more general problem of recursive utility.
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this a strongly robust control. This strongly robust control is thus optimal in a much
more robust sense than the worst-case scenario optimality. The new strongly robust
optimality uses the fact that probability measures P are mutually singular. Informally
speaking, one can therefore modify the P-optimal control ûP outside the support of
a probability measure P without losing the P-optimality. As a consequence, if the
family {ûP}P∈P satisfies some consistency conditions, under a suitable choice of the
underlying filtration the controls can be aggregated into a unique control û, which is
optimal under every probability measure P. See (Soner et al. 2011b) for more details
on aggregation.

In this paper, we study strongly robust optimal control problems. However, instead
of checking the consistency condition for the family of controls and using the aggre-
gation theory established in (Soner et al. 2011b), we adapt the stochastic maximum
principle to the G-framework to find necessary and sufficient conditions for the exis-
tence of a strongly robust optimal control. We stress that this method has the clear
advantage that we solve only one G-BSDE to produce the strongly robust optimal
control instead of considering the optimal control problem for all P ∈ P (which
are usually not Markovian laws) and checking the consistency condition. Another
advantage is that we work with the raw filtration instead of enlarging it.

In the recent paper (Hu and Ji 2016), they also study a stochastic maximum princi-
ple for stochastic recursive optimal control problems in the G-setting, but still using
the worst-case approach. They use the Minimax Theorem to obtain the variational
inequality under a reference probability P∗: the stochastic maximum principle holds
then under such a P∗-a.s, which is the main difference with respect to our approach.
They prove that this stochastic maximum principle is also a sufficient condition under
some convex assumptions, but our control problem is different from the one in (Hu
and Ji 2016) and considers delayed information.

The notion of the strongly robust optimal control also has a better financial inter-
pretation than the standard robust optimality mentioned above. The main drawback
of the classical robust optimal control is that it is a differential game from a mathe-
matical point of view, where one player chooses the optimal control û and the other
chooses the optimal volatility represented by the law P̂:

sup
u∈A

sup
P∈P

JP(u) = J P̂(û).

Therefore, the optimal pair (û, P̂) has the Nash equilibrium interpretation2. The prob-
lem is that in real life there is no reason to why we should assume that the worst case
is true, as there are no players who try to maximize gains from choosing P.

However, this is not the only problem with the standard robust optimality. Since
the optimal probability measure P̂ is mutually singular to any other measure Q ∈ P ,
we can modify the control û outside the support of P̂ without losing the (classical)
robust optimality. Since, as we noted above, usually the true probability will be differ-
ent than P̂, the classical robust optimal control may have little sense forQ. Moreover,
in the standard robust optimality, the measure P̂ is chosen to be static and does not

2This is even more visible for minimization problems, where one has a saddle point.
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change with time. As a result, not all available information is taken into consideration,
as shown for the Merton problem with logarithmic utility in Section 5.

The paper is structured in the following way. In Section 2, we give a quick
overview of theG-framework. Section 3 is devoted to a sufficient maximum principle
in the partial-information case. In Section 4, we investigate the necessary maxi-
mum principle for the full-information case. In Section 5, we give four examples,
including the Merton problem with logarithmic utility, mentioned earlier and an LQ-
problem. In Section 6, we provide a counter-example and show that it is not possible
to relax the crucial assumption of the sufficient maximum principle without losing
the strongly robust sense of optimality.

2 Preliminaries

Let � be a given set and H be a vector lattice of real functions defined on �, i.e. a
linear space containing 1 such that X ∈ H implies |X | ∈ H. We will treat elements
of H as random variables.

Definition 1 A sublinear expectation E is a functional E : H → R satisfying the
following properties

1. Monotonicity: If X, Y ∈ H and X ≥ Y , then E[X ] ≥ E[Y ].
2. Constant preserving: For all c ∈ R, we have E[c] = c.
3. Sub-additivity: For all X, Y ∈ H, we have E[X ] − E[Y ] ≤ E[X − Y ].
4. Positive homogeneity: For all X ∈ H, we have E[λX ] = λE[X ] for all λ ≥ 0.

The triple (�,H,E) is called a sublinear expectation space.

We will consider a space H of random variables having the following property: if
Xi ∈ H, i = 1, . . . n, then

φ(X1, . . . , Xn) ∈ H ∀φ ∈ Cb,Lip(R
n),

where Cb,Lip(R
n) is the space of all bounded Lipschitz continuous functions on Rn .

Definition 2 An m-dimensional random vector Y = (Y1, . . . , Ym) is said to be
independent of an n-dimensional random vector X = (X1, . . . , Xn) if for every φ ∈
Cb,Lip(Rn × Rm)

E[φ(X, Y )] = E[E[φ(x, Y )]x=X ].
Let X1 and X2 be n-dimensional random vectors defined on sublinear random spaces
(�1,H1,E1) and (�2,H2,E2), respectively. We say that X1 and X2 are identically
distributed and denote it by X1 ∼ X2, if for each φ ∈ Cb,Lip(R

n) one has

E1[φ(X1)] = E2[φ(X2)].

Definition 3 A d-dimensional random vector X = (X1, . . . , Xd) on a sublinear
expectation space (�,H,E) is said to be G-normally distributed if for each a, b ≥ 0



Probability, Uncertainty and Quantitative Risk             (2018) 3:8 Page 5 of 24

and each Y ∈ H such that X ∼ Y and Y is independent of X, one has

aX + bY ∼
√
a2 + b2X.

The letter G denotes a function defined as

G(A) := 1

2
E[(AX, X)] : §d → R,

where §d is the space of all d × d symmetric matrices. We assume that G is non-
degenerate, i.e., G(A) − G(B) ≥ βtr[A − B] for some β > 0.

It can be checked that G might be represented as

G(A) = 1

2
sup
γ∈�

tr (γ γ T A), (3)

where � is a non-empty bounded and closed subset of Rd×d .

Definition 4 Let G : §d → R be a given monotonic and sublinear function. A
stochastic process B = (Bt )t≥0 on a sublinear expectation space (�,H,E) is called
a G-Brownian motion if it satisfies the following conditions:

1. B0 = 0;
2. Bt ∈ H for each t ≥ 0;
3. For each t, s ≥ 0 the increment Bt+s − Bt is independent of (Bt1 , . . . , Btn )

for each n ∈ N and 0 ≤ t1 < . . . < tn ≤ t . Moreover, (Bt+s − Bt )s−1/2 is
G-normally distributed.

Definition 5 Let � = C0(R+,Rd), i.e., the space of all Rd-valued continuous
functions starting at 0. We equip this space with the uniform convergence on compact
intervals topology and denote by B(�) the Borel σ -algebra of �. Let

H=Lip(�):=
{
φ(ωt1 , . . . , ωtn ) : ∀n∈N, t1, . . . , tn ∈[0, ∞) and φ∈Cb,Lip

(
R
d×n

)}
.

A G-expectation Ê is a sublinear expectation on (�,H) defined as follows: for X ∈
Lip(�) of the form

X = φ(ωt1 − ωt0 , . . . , ωtn − ωtn−1), 0 ≤ t0 < t1 < . . . < tn,

we set
Ê[X ] := E

[
φ

(
ξ1

√
t1 − t0, . . . , ξn

√
tn − tn−1

)]
,

where ξ1, . . . ξn are d-dimensional random variables on sublinear expectation space
(�̃, H̃,E) such that for each i = 1, . . . , n, ξi is G-normally distributed and inde-
pendent of (ξ1, . . . , ξi−1). We denote by L p

G(�) the completion of Lip(�) under the

norm ‖X‖p := Ê[|X |p]1/p, p ≥ 1. Then it is easy to check that Ê is also a sublinear
expectation on the space (�, L p

G(�)), L p
G(�) is a Banach space, and the canonical

process Bt (ω) := ωt is a G-Brownian motion.

Following (Peng 2010) and (Denis et al. 2011), we introduce the notation: for each
t ∈ [0, ∞)



Page 6 of 24 F. Biagini et al.

1. �t := {w.∧t : ω ∈ �}, Ft := B(�t ),
2. L0(�) : the space of all B(�)-measurable real functions,
3. L0(�t ) : the space of all B(�t )-measurable real functions,
4. Lip(�t ) := Lip(�) ∩ L0(�t ), L

p
G(�t ) := L p

G(�) ∩ L0(�t ),
5. M2

G(0, T ) is the completion of the set of elementary processes of the form

η(t) =
n−1∑
i=1

ξi1[ti ,ti+1)(s),

where 0 ≤ t1 < t2 < . . . < tn ≤ T, n ≥ 1 and ξi ∈ Lip(�ti ). The completion
is taken under the norm

‖η‖2
M2

G (0,T )
:= Ê

[∫ T

0
|η(t)|2ds

]
.

Definition 6 Let X ∈ Lip(�) have the representation

X =φ
(
Bt1 , Bt2−Bt1, . . . , Btn −Btn−1

)
, φ ∈ Cb,Lip

(
R
d×n

)
, 0 ≤ t1<. . . < tn < ∞.

We define the conditional G-expectation under Ft j as

Ê[X |Ft j ] := ψ
(
Bt1, Bt2 − Bt1, . . . , Bt j − Bt j−1

)
,

where

ψ(x) := Ê
[
φ

(
x, Bt j+1 − Bt j , . . . , Btn − Btn−1

)]
.

Similarly to the G-expectation, the conditional G-expectation might also be extended
to the sublinear operator Ê[.|Ft ] : L p

G(�) → L p
G(�t ) using the continuity argument.

For more properties of the conditional G-expectation, see (Peng 2010).
G-(conditional) expectation plays a crucial role in the stochastic calculus for G-

Brownian motion. In (Denis et al. 2011), it was shown that the analysis of the G-
expectation might be embedded in the theory of upper-expectations and capacities.

Theorem 1 ((Denis et al. 2011), Theorem 52 and 54) Let (�̃,G,P0) be a proba-
bility space carrying a standard d-dimensional Brownian motion W with respect to
its natural filtration G. Let � be a representation set defined as in (3) and denote by
A�

0,∞ the set of all �-valued G-adapted processes on an interval [0, ∞). For each

θ ∈ A�
0,∞ define P

θ as the law of a stochastic integral
∫ .

0 θsdWs on the canonical

space � = C0(R+,Rd). We introduce the sets

P1 := {
P

θ : θ ∈ A�
0,∞

}
, and P := P1, (4)

where the closure is taken in the weak topology. P1 is tight, so P is weakly compact.
Moreover, one has the representation

Ê[X ] = sup
P∈P1

E
P[X ] = sup

P∈P
E
P[X ], for each X ∈ L1

G(�). (5)
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For convenience, we always consider only a Brownian motion on the canonical
space � with the Wiener measure P0.
Similarly, an analogous representation holds for the G-conditional expectation.

Proposition 1 ((Soner et al. 2011a), Proposition 3.4) Let Q(t, P) :={
P

′ ∈ Q : P = P
′ on Ft

}
, whereQ = P orP1. Then, for any X ∈ L1

G(�) and P ∈ Q,
Q = P or P1, one has

Ê[X |Ft ] = ess sup
P′∈Q(t,P)

P
E
P

′ [X |Ft ], P − a.s. (6)

We now introduce the Choquet capacity (see (Denis et al. 2011)) related to P

c(A) := sup
P∈P

P(A), A ∈ B(�).

Definition 7 1. A set A is said to be polar, if c(A) = 0. Let N be a collection
of all polar sets. A property is said to hold quasi-surely (abbreviated to q.s.) if it
holds outside a polar set.

2. We say that a random variable Y is a version of X if X = Y q.s.
3. A random variable X is said to be quasi-continuous (q.c. in short), if for every

ε > 0 there exists an open set O such that c(O) < ε and X |Oc is continuous.

We have the following characterization of spaces L p
G(�). This characterization

shows that L p
G(�) is a rather small space.

Theorem 2 (Theorem 18 and 25 in (Denis et al. 2011)) For each p ≥ 1 one has

L p
G(�) = {X ∈ L0(�) : X has a q.c. version and lim

n→∞ Ê
[|X |p1{|X |>n}

] = 0}.

G-expectation turns out to be a good framework to develop stochastic calculus of
the Itô type. We can also use G-SDEs and a version of the backward SDEs. As back-
ward equations are a key tool to consider the maximum principle, we now give a short
introduction to G-BSDEs and their properties (for simplicity in a one-dimensional
case).

Fix two functions f, g : � × [0, T ] × R × R → R and ξ ∈ L p
G(�T ), p > 2.

We say that the triple
(
pG , qG, K

)
is a solution of the G-BSDE with drivers f, g and

terminal condition ξ if

dpG(t)=−f
(
t, pG(t), qG(t)

)
dt−g

(
t, pG(t), qG(t)

)
d〈B〉(t)+qG(t)dB(t)+dK (t),

pG(T ) = ξ,

(7)
where K is a non-increasing G-martingale starting at 0. In (Hu et al. 2014c), the
existence and uniqueness of such a G-BSDE are proved under some Lipschitz and
regularity conditions on the driver.

Furthermore, under any P ∈ P1, the process pG is a supersolution of a classi-
cal BSDE with drivers f and g and terminal condition ξ on the probability space
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(�,F,P) (we will call such a BSDE a P-BSDE). Hence, by the comparison theorem
for supersolutions and solutions, we get

pG(t) ≥ pP(t) P − a.s.,

where pP is a solution of a P-BSDE. It can also be checked that pG is minimal in the
sense that

pG(t) = ess sup
Q∈P1(t,P)

P pQ(t) P − a.s.,

see (Soner et al. 2011c) for this representation. From now on we drop the superscript
G in the notation for G-BSDEs whenever this doesn’t lead to confusion.

3 A sufficient maximum principle

Let B(t) be a G-Brownian motion with associated sublinear expectation operator Ê.
We consider controls u taking values in a closed convex setU ⊂ R. Let X (t) = Xu(t)
be a controlled process of the form

dX (t)=b(t,X (t), u(t))dt+μ(t,X (t), u(t))d〈B〉t+σ(t,X (t), u(t))dB(t);0≤ t≤T,

X (0) = x ∈ R.

(8)
We assume that the coefficients b, μ, σ are Lipschitz continuous w.r.t. the space
variable uniformly in (t, u). Moreover, if the coefficients are not deterministic, they
must belong to the space M2

G(0, T ) for each (x, u) ∈ R ×U .
Let f : [0, T ] × R × U → R and g : R → R be two measurable functions such

that f is C1 w.r.t. the second variable and g is a lower-bounded, differentiable function
with quadratic growth such that there exists a constant C > 0 and ε > 0 s.t.

|g′(x)| < C(1 + |x |) 1
1+ε/2 .

We letA denote the set of all admissible controls. For u to be inAwe require that u(t)
is quasi-continuous for all t ∈ [0, T ] and adapted to (F(t−δ)+)t≥δ , where δ ≥ 0 is a
given constant. This means that our control u has access only to a delayed information
flow. Moreover, we assume that for each u ∈ A the following integrability condition
is satisfied

Ê

[∫ T

0
f (t, X (t), u(t))dt

]
< ∞.

Then, for each P ∈ P , the performance functional associated with u ∈ A is assumed
to be of the form

JP(u) = E
P

[∫ T

0
f (t, X (t), u(t))dt + g(X (T ))

]
. (9)

We study the following strongly robust optimal control problem: find û ∈ A such that

sup
u∈A

JP(u) = JP(û) ∀ P ∈ P, (10)
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where the set P is introduced in (4). To this end we define the Hamiltonian

H(t, x, u, p, q)= f (t, x, u)+
[
b(t, x, u) + μ(t, x, u)

d〈B〉t
dt

]
p+σ(t, x, u)

d〈B〉t
dt

q,

(11)
and the associated G-BSDE with adjoint processes p(t), q(t), K (t) by

dp(t) = −∂H

∂x
(t, X (t), u(t), p(t), q(t))dt + q(t)dB(t) + dK (t); 0 ≤ t ≤ T,

p(T ) = g′(X (T )).

(12)
Note that the solution of such a G-BSDE exists thanks to the assumption on the
functions f and g and on the definition of the admissible control (see (Hu et al. 2014c)
for details).

Theorem 3 Let û ∈ A with corresponding solution X̂(t), p̂(t), q̂(t), K̂ (t) of (8)
And (12) such that K̂ ≡ 0. Assume that:

(x, u) → H(t, x, u, p̂(t), q̂(t)) and x → g(x) are concave for all t q.s., (13)

and

Ê

[
± ∂

∂u
H(t, X̂(t), u, p̂(t), q̂(t))|u=û(t)|F(t−δ)+

]
= 0 (14)

for all t q.s. Then û = u is a strongly robust optimal control for the problem (10).

Proof For the sake of simplicity, in the following we adopt the concise notation
f (t) := f (t, Xu(t), u(t)), f̂ (t) = f (t, Xû(t), û(t)), X (T ) = Xu(T ), X̂(T ) =
Xû(T ). Let u ∈ A be arbitrary and consider

sup
P∈P

{JP(u) − JP(û)} = sup
P∈P

E
P

[∫ T

0

(
f (t) − f̂ (t)

)
dt + g(X (T )) − g

(
X̂(T )

)]

= Ê

[∫ T

0

(
f (t) − f̂ (t)

)
dt + g(X (T )) − g

(
X̂(T )

)]

= Ê[I1 + I2],
(15)

where J is introduced in (2) and

I1 :=
∫ T

0

(
f (t) − f̂ (t)

)
dt, I2 := g(X (T )) − g

(
X̂(T )

)
.

By the definition of H, we can write

I1 =
∫ T

0

{
H(t) − Ĥ(t) −

[
b(t) − b̂(t) + (μ(t) − μ̂(t))

d〈B〉t
dt

]

p̂(t) − [σ(t) − σ̂ (t)]d〈B〉t
dt

q̂(t)

}
dt.

(16)

By the concavity of g, (12), and the Itô formula, we have
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I2 ≤ g′ (X̂(T )
) (

X (T ) − X̂(T )
)

= p̂(T )
(
X (T ) − X̂(T )

)

=
∫ T

0
p̂(t)d

(
X (t) − X̂(t)

)
+

∫ T

0

(
X (t)− X̂(t)

)
d p̂(t) +

∫ T

0
d

〈
p̂, X − X̂

〉
(t)

=
∫ T

0
p̂(t)

[
b(t) − b̂(t) + (

μ(t) − μ̂(t)
) d〈B〉t

dt

]
dt

+
∫ T

0

(
X (t) − X̂(t)

) (
−∂ Ĥ

∂x
(t)

)
dt +

∫ T

0

[
σ(t) − σ̂ (t)

] d〈B〉t
dt

q̂(t)dt

+
∫ T

0
p̂

[
σ(t) − σ̂ (t)

]
dB(t) +

∫ T

0

[
X (t) − X̂(t)

]
q̂(t)dB(t) .

(17)
Adding (16) and (17) and using the concavity of H we get, by the sublinearity of the
G-expectation and by (15), that

sup
P∈P

{JP(u) − JP(û)} ≤ Ê

[∫ T

0

(
p̂(t)

[
σ(t) − σ̂ (t)

]+[
X (t) − X̂(t)

]
q̂(t)

)
dB(t)

]

+ Ê

[∫ T

0

[
H(t) − Ĥ(t) − ∂ Ĥ

∂x
(t)

(
X (t) − X̂(t)

)]
dt

]

≤ Ê

[∫ T

0

∂ Ĥ

∂u
(t)(u(t) − û(t))dt

]

≤
∫ T

0
Ê

[
∂ Ĥ

∂u
(t)(u(t) − û(t))

]
dt

≤
∫ T

0
Ê

[
Ê

[
∂ Ĥ

∂u
(t)(u(t) − û(t))|F(t−δ)+

]]
dt

≤
∫ T

0
Ê

[
Ê

[
∂ Ĥ

∂u
(t)|F(t−δ)+

]
(u(t) − û(t))+

+ Ê

[
−∂ Ĥ

∂u
(t)|F(t−δ)+

]
(u(t) − û(t))−

]
dt = 0,

since u = û is a critical point of the Hamiltonian. This proves that û := û is optimal.

Remark 1 Note that if δ = 0, we can slightly relax the assumption in Eq. (14) by
only requiring that

max
v∈U H(t, X̂(t), v, p̂(t), q̂(t))] = H(t, X̂(t), û(t), p̂(t), q̂(t)).
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4 A necessary maximum principle for the full-information case

A drawback of the previous result is that the concavity conditions are not satisfied in
many applications. Therefore, it is of interest to have a maximum principle, which
does not need this condition. Moreover, the requirement that the non-increasing G-
martingale K̂ disappears from the adjoint equation for the optimal control û is a very
strong assumption, which, however, is crucial in the proof. In this section, we prove
a result which doesn’t depend on the concavity of the Hamiltonian. Moreover, in the
Merton problem we show that the necessary maximum principle might be obtained
without the assumption on the process K̂ . We make the following assumptions.

A1. For all u, β ∈ A with β bounded, there exists δ > 0 such that

u + aβ ∈ A for all a ∈ (−δ, δ).

A2. For all t, h such that 0 ≤ t < t + h ≤ T and all bounded random variables
α ∈ L1

G(�t )
3, the control

β(s) := α1[t,t+h](s)
belongs to A.

Remark 2 Note that given u, β ∈ A with β bounded, the derivative process

Y (t) := d

da
Xu+αβ(t)

exists, Y (0) = 0, and

dY (t) =
{

∂b

∂x
(t)Y (t) + ∂b

∂u
(t)β(t)

}
dt

+
{

∂μ

∂x
(t)Y (t) + ∂μ

∂u
(t)β(t)

}
d〈B〉t+

{
∂σ

∂x
(t)Y (t) + ∂σ

∂u
(t)β(t)

}
dB(t) .

This follows by the smoothness (C1) assumptions on the coefficients b, μ, σ and the
Itô formula.

Before we give the necessary maximum principle for this problem, we will state
the following remark showing that it is sufficient to consider just a control which is
optimal for all P ∈ P1.

Remark 3 Note that if û ∈ A is a strongly robust optimal control, it is of course
the optimal control for the following problem:

sup
u∈A

JP(u) = JP(û) ∀ P ∈ P1. (18)

However, we have also the opposite, thanks to the conditions on the set of admissible

3It is easy to see that for a fixed P ∈ P the set of all bounded random variables from space L1
G(�) is dense

in the space L p
P
(�t ) under the norm (EP[|.|p])1/p for any p ≥ 1.
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controlsA. Namely, if û satisfies (18), then we have that for any fixed u ∈ A and any
P ∈ P1

0 ≥ E
P

[∫ T

0
f
(
t, Xu(t), u(t)

)
dt −

∫ T

0
f
(
t, Xû(t), û(t)

)
dt

+g(Xu(T )) − g
(
Xû(T )

)]
.

We use again the shortened notation f̂ (t) := f
(
t, Xû(t), û(t)

)
and f (t) :=

f (t, Xu(t), u(t)) and conclude that

0 ≥ sup
P∈P1

E
P

[∫ T

0
f (t)dt −

∫ T

0
f̂ (t)dt + g(Xu(T )) − g

(
Xû(T )

)]
.

Note that due to the conditions on the admissible controls we know that the random
variables:

∫ T
0 f (t)dt,

∫ T
0 f̂ (t)dt, g(Xu(T )), and g

(
Xû(T )

)
belong to L1

G(�),

hence by the representation of the G-expectation, we have

0 ≥ sup
P∈P

E
P

[∫ T

0
f (t)dt −

∫ T

0
f̂ (t)dt + g(Xu(T )) − g

(
Xû(T )

)]

and that implies by Proposition 1 that û is a strongly robust optimal control.

Lemma 1 Assume that A1, A2 hold and that û is an optimal control for the
performance functional

u → JP(u)

for some probability measure P ∈ P1. Consider the adjoint equation as a BSDE
under the probability measure P:

d p̂P(t) = −∂H

∂x

(
t, X̂(t), û(t), p̂P(t), q̂P(t)

)
dt + q̂P(t)dB(t); 0 ≤ t ≤ T,

p̂P(T ) = g′ (X̂(T )
)

P − a.s.
(19)

Then

∂ ĤP

∂u
(t) := ∂

∂u
H

(
t, X̂(t), u, p̂P(t), q̂P(t)

)
|u=û(t) = 0.
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Proof Consider
d

da
JP(u + aβ) = d

da
E
P

[∫ T

0
f
(
t, Xu+aβ(t), u(t)

)
dt + g

(
Xu+aβ(T )

)]

= lim
a→0

1

a
E
P

[∫ T

0
f
(
t, Xu+aβ(t), u(t))dt + g(Xu+aβ(T )

)]

− E
P

[∫ T

0
f (t, X (t), u(t))dt + g(X (T ))

]

= lim
a→0

E
P

[∫ T

0

1

a

{
f (t, Xu+aβ(t), u(t)) − f (t, X (t), u(t))

}

dt + 1

a

{
g(Xu+aβ(T )) − g(X (T ))

}]

= E
P

[∫ T

0

(
∂ f

∂x
(t, X (t), u(t))Y (t) + ∂ f

∂u
(t, X (t), u(t))β(t)

)

dt + g′(X (T ))Y (T )

]
.

(20)

By the Itô formula,

E
P

[
g′(X (T ))Y (T )

] = E
P [p(T )Y (T )]

= E
P

[∫ T

0
pP(t)dY (t) +

∫ T

0
Y (t)dpP(t) +

∫ T

0
qP(t)

{
∂σ

∂x
(t)Y (t) + ∂σ

∂u
(t)β(t)

}
d〈B〉t

]

≤ E
P

[∫ T

0
pP(t)

{
∂b

∂x
(t)Y (t)+ ∂b

∂u
(t)β(t)

}
dt+

∫ T

0
pP(t)

{
∂μ

∂x
(t)Y (t)+ ∂μ

∂u
(t)β(t)

}
d〈B〉t

+
∫ T

0
Y (t)(−∂ ĤP

∂x
(t))dt +

∫ T

0
qP(t)

{
Y (t)

∂σ

∂x
(t) + ∂σ

∂u
(t)β(t)

}
d〈B〉t

]

= E
P

[∫ T

0
Y (t)

{
pP(t)

(
∂b

∂x
(t) + ∂μ

∂x
(t)

d〈B〉t
dt

)
+ qP(t)

∂σ

∂x
(t)

d〈B〉t
dt

− ∂HP

∂x
(t)

}
dt

+
∫ T

0
β(t)

{
pP(t)

(
∂b

∂u
(t) + ∂μ

∂u
(t)

d〈B〉t
dt

)
+ qP(t)

∂σ

∂u
(t)

d〈B〉t
dt

}
dt

]
.

(21)
Adding (20) and (21), we get

d

da
JP(u + aβ) ≤ E

P

[∫ T

0
β(t)

∂HP

∂u
(t)dt

]
.

If û is an optimal control, then the above gives

0 = d

da
JP(û + aβ) ≤ E

P

[∫ T

0
β(t)

∂ ĤP

∂u
(t)dt

]

for all bounded β ∈ A. Applying this to both β and −β, we conclude that

E
P

[∫ T

0
β(t)

∂ Ĥ

∂u
(t)dt

]
= 0.

By A2 together with the footnote about the denseness, we can then proceed to deduce that

∂ ĤP

∂u
(t) = 0 P − a.s.
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Using the lemma, we can easily get the following necessary maximum principle.

Theorem 4 Assume that A1, A2 hold and that û is a strongly robust optimal
control for the performance functional

u → JP(u)

for every probability measure P ∈ P1. Consider the adjoint equation as a G-BSDE:

d p̂G(t) = −∂H

∂x
(t, X̂(t), û(t), p̂G(t), q̂G(t))dt+q̂G(t)dB(t)+d K̂ (t); 0 ≤ t ≤ T,

p̂G(T ) = g′(X̂(T )) q.s.
(22)

If K̂ ≡ 0 q.s., then

∂ ĤG

∂u
(t) := ∂

∂u
H(t, X̂(t), u, p̂G(t), q̂G(t)) |u=û(t) = 0, q.s. (23)

Proof We now prove that the relation in (23) holds for every P ∈ P1. Fix P ∈ P1.
If K̂ ≡ 0 q.s., then by the uniqueness of the solution of P-BSDE, we get that p̂G ≡
p̂P P − a.s. and q̂G ≡ q̂P P − a.s. But by Lemma 1, we know that û is a P − a.s.
critical point of ĤP(t) hence also ĤG(t). By the arbitrariness of P ∈ P1, we get

∂

∂u
H(t, X̂(t), u, p̂G(t), q̂G(t)) |u=û(t) = 0 ∀P ∈ P1.

We get the assertion of the theorem by stating a general fact that if ξ, η ∈ L1
G(�) and

ξ = η P − a.s. for all P ∈ P1, then ξ = η q.s.

As we mentioned at the beginning of this section, the assumption on the process
K̂ is a big disadvantage. However, if we limit our considerations to Merton-type
problems, we are able to show the necessary maximum principle without this
assumption.

Theorem 5 Assume that

1. A1, A2 hold,
2. b ≡ 0, μ(t, x, u) = ψ(x)l(u)m(t) and σ(t, x, u) = ψ(x)h(u)s(t) for ψ, l, h ∈

C1(R) and some bounded processes m and s such that for each t ∈ [0, T ] m(t)
and s(t) are quasi-continuous. Moreover, let c(s(t) = 0) = 0 for all t ∈ [0, T ],

3. f ≡ 0,
4. X (0) = x �= 0.

Let û be a strongly robust optimal control for the performance functional

u → JP(u)

for every probability measure P ∈ P1. If c(l(û(t)) = 0) = 0, c(h(û(t)) = 0) = 0,
c(h′(û(t)) = 0) = 0, c(ψ(X̂(t)) = 0) = 0, c(ψ ′(X̂(t)) = 0) = 0, and
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c(l(û(t))h′(û(t)) − l ′(û(t))h(û(t)) �= 0) = 04 for all t ∈ [0, T ], then
∂ ĤG

∂u
(t) := ∂

∂u
H(t, X̂(t), u, p̂G(t), q̂G(t)) = 0, q.s. (24)

Proof Fix a probability measure P ∈ P1. By Lemma 1, we know that û is a critical
point (P-a.s.) of the Hamiltonian

∂

∂u
H(t, X̂(t), û, p̂P(t), q̂P(t)) = 0, ∀ t ∈ [0, T ].

Using this fact, we get

0 = ∂

∂u
H(t, X̂(t), û, p̂P(t), q̂P(t))

= ψ(X̂(t))
[
l ′(û(t))m(t) p̂P(t) + h′(û(t))s(t)q̂P(t)

] d〈B〉(t)
dt

.

By the assumption on process s and h′, we compute that

q̂P(t) = −m(t)

s(t)

l ′(û(t))

h′(û(t))
p̂P(t).

We have that
∂

∂x
H(t, X̂(t), û(t), p̂P(t), q̂P(t)) = ψ ′(X̂(t))

[
l(û(t))m(t) p̂P(t)

+h(û(t))s(t)q̂P(t)
] d〈B〉(t)

dt
= ψ ′(X̂(t)) p̂P(t)m(t)

[
l(û(t))

−h(û(t))
l ′(û(t))

h′(û(t))

]
d〈B〉(t)

dt

= 0

since c(l(û)h′(û) − l ′(û)h(û) �= 0) = 0 by hypothesis. But then we see that p̂P has
dynamics

d p̂P(t) = − ∂

∂x
H(t, X̂(t), û(t), p̂P(t), q̂P(t))dt + q̂P(t)dB(t)

= −m(t)

s(t)

l ′(û(t))

h′(û(t))
p̂P(t)dB(t).

Hence,
p̂P(t) = E

P[g′(X̂(T ))|Ft ] P − a.s.

We also remember that

p̂G(t) = ess sup
Q∈P1(t,P)

P p̂Q(t) = ess sup
Q∈P1(t,P)

P
E
Q[g′(X̂(T ))|Ft ] P − a.s.

4Note that this condition is satisfied if l(x) = ah(x) for some constant a ∈ R. However, it may also
include other cases, since it could be that the span of û(t), t ∈ [0, T ], is not necessarily the entire R.
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Thus, by the characterization of the conditional G-expectation in (6), we obtain that
p̂G(t) is a G-martingale with representation

p̂G(t) = Ê[g′(X̂(T ))|Ft ] = Ê[g′(X̂(T ))] +
∫ t

0
q̂G(s)dB(s) + K̂ (t) q.s.

and consequently it has dynamics

d p̂G(t) = q̂G(t)dB(t) + d K̂ (t).

But in that case we know that for almost all t ∈ [0, T ], we must have that

0 = ∂

∂x
H

(
t, X̂(t), û(t), p̂G(t), q̂G(t)

)

= ψ ′ (X̂(t)
) [

l(û)m(t) p̂G(t) + h(û)s(t)q̂G(t)
] d〈B〉(t)

dt

(25)

q.s. By assumption on ψ ′(X̂), we conclude that

l(û)m(t) p̂G(t) + h(û)s(t)q̂G(t) = 0 q.s.

Hence,

q̂G(t) = −m(t)

s(t)

l(û(t))

h(û(t))
p̂G(t),

since c(h(û(t)) = 0) = 0 for all t ∈ [0, T ], and we can easily check then that

∂

∂u
H

(
t, X̂(t), û, p̂G(t), q̂G(t)

)
= 0.

5 Examples

We now consider some examples to illustrate the previous results. In the following,
we assume to work with a one-dimensional G-Brownian motion with operator G of
the form

G(a) := 1

2
(a+ − σ 2a−), σ 2 > 0, (26)

i.e., with quadratic variation 〈B〉(t) lying within the bounds σ 2t and t.

5.1 Example I

Consider
dX (t) = dB(t) − c(t)dt, (27)

where c(t), t ∈ [0, T ], is stochastic process such that c(t) ∈ L1
G(�t ) for all t ∈

[0, T ]. We wish to solve the optimal control problem for every P ∈ P under the
performance criterion

JP(c) = E
P

[∫ T

0
ln c(t)dt + X (T )

]
. (28)
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In the notation of Section 3, we have chosen here f (t, x, c) = ln c and g(x) = x ,
i.e., g′(x) = 1. Then, the Hamiltonian is given by

H(t, x, c, p, q) = ln c + q
d〈B〉t
dt

− cp, (29)

and by (12), we obtain

dp(t) = q(t)dB(t); 0 ≤ t ≤ T,

p(T ) = g′(X (T )) = 1,
(30)

i.e., q = 0, p = 1. Furthermore, by (29), we have

∂H

∂c
= ∂

∂c
[ln c − cp] = 1

c
− p,

i.e., ĉ(t) = 1, t ∈ [0, T ], is a strongly robust optimal control by Theorem 3.
Note that by the proof we could choose a general utility function instead of a

logarithmic utility function without losing the existence of the strongly robust optimal
control.

5.2 Example II

Consider
dX (t) = X (t)[b(t)dt + dB(t)] − c(t)dt, (31)

and problem (28). Here, b(t) is a deterministic measurable function. Then, the
Hamiltonian is given by

H(t, x, c, p, q) = ln c + xq
d〈B〉t
dt

+ (xb(t) − c))p. (32)

Here,

dp(t) = −
(
b(t)p(t) + q(t)

d〈B〉t
dt

)
dt + q(t)dB(t); 0 ≤ t ≤ T,

p(T ) = g′(X (T )) = 1.
(33)

Let q = 0, then
dp(t) = −b(t)p(t)dt,

p(T ) = 1,

i.e., p(t) = exp
∫ T
t b(s)ds and ĉ(t) = 1

p(t) is a strongly robust optimal control by
Theorem 3.

5.3 Example III

Consider the Merton-type problem with the logarithmic utility, i.e., let

dXu(t) = Xu(t) [m(t)u(t)d〈B〉(t) + s(t)u(t)dB(t)] ,

where u(t) ∈ L2
G(�t ) for all t ∈ [0, T ] and m and s are two deterministic functions.

Assume that s(t) �= 0 for all t ∈ [0.T ]. We are interested in finding a strongly
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robust optimal control problem for the family of probability measures P with the
performance criterion given by

JP(u) := E
P[ln Xu(T )].

The Hamiltonian associated with this problem is given by

H(t, x, u, p, q) = xu[m(t)p + s(t)q]d〈B〉
dt

(t) (34)

and for each admissible control u we consider adjoint G-BSDE of the form

dp(t) = −u(t)[m(t)p(t) + s(t)q(t)]d〈B〉(t) + g(t)dB(t) + dK (t)

p(T ) = X−1(T ).

Note that the adjoint equation is linear, hence by Remark 3.3 in (Hu et al. 2014a), we
obtain the representation formula for the solution

p(t) = X−1(t)Ê
[
X (T )X−1(T )|Ft

]
= X−1(t).

Moreover, by the dynamics of X−1, we deduce that

q(t) = −u(t)s(t)p(t), K ≡ 0.

Plugging this solution into the Hamiltonian (34), we get that

H(t, Xu(t), v, p(t), q(t)) = Xu(t)v
[
m(t) − u(t)s2(t)

]
p(t)

〈B〉
dt

(t),

hence the critical point of the Hamiltonian must satisfy

û(t) = m(t)

s2(t)

and this is our strongly robust optimal control.
Note that we can also solve this problem directly by omega-wise maximization,

without using the maximum principle and G-BSDEs. In fact, we may consider more
general dynamics in X

dXu(t) = Xu(t) [b(t)u(t)dt + m(t)u(t)d〈B〉(t) + s(t)u(t)dB(t)]

and by direct computation it might be checked that the strongly robust optimal control
takes the form

û(t) = b(t) + m(t) d〈B〉
dt (t)

s2(t) d〈B〉
dt (t)

.

However, it is important to note that this control is no longer quasi-continuous (see
(Song 2012)) and it doesn’t make sense to consider G-BSDEs associated with such a
control.

Finally, note that the classical robust optimal control for this problem would be
u∗(t) = m(t)/σ 2 . It is clear that this control ignores the flow of information about
the volatility path and instead it just sticks to its worst-case scenario assumption. It
makes sense to assume the worst-case scenario at time 0, but later one should rather
update its view about the past volatility, which is not done for the classical robust
optimal controls.
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5.4 Example IV

As another example of a problem which admits a strongly robust optimal control,
consider an LQ-problem, in which the state equation has the linear dynamics

dX (t) = (F(t)X (t)+G(t)u(t)+μ(t))dt+σ(t)dB(t); 0≤ t ≤ T ; X (0) = x ∈ R;
(35)

for u ∈ A as described in the beginning of Section 3. The performance functional is
quadratic

JP(u) := 1

2
E
P

[∫ T

0
(Q(t)X2(t) + R(t)u2(t))dt + LX2(T )

]
. (36)

Here, F,G, μ, σ, Q, R are continuous deterministic functions on [0, T ], Q(t) > 0,
R(t) > 0 and L > 0 is a constant.

We want to find û ∈ A (as described in Section 3) which maximizes JP(u) over
all u ∈ A for all P ∈ P .

In this case, the Hamiltonian in (11) gets the form

H(t, x, u, p, q) = 1

2
Q(t)x2+ 1

2
R(t)u2+[F(t)x+G(t)u+μ(t)]p+σ(t)

d〈B〉(t)
dt

q

(37)
and the adjoint BSDE (12) becomes

dp(t) = − [Q(t)X (t)+F(t)] dt+q(t)dB(t)+dK (t), 0≤ t≤T, p(T ) = LX (T ).

(38)
We intend to apply Theorem 3 and note that

∂

∂u
H(t, X̂(t), u, p̂(t), q̂(t))|u=û(t) = R(t)û(t) + G(t) p̂(t), (39)

which is 0 when

û(t) = −G(t) p̂(t)

R(t)
, (40)

where p̂(t) refers to the solution of (38) when u = û is applied to the BSDE.
Let us guess that (38) with u = û admits the solution of the form

p̂(t) = S(t)X̂(t) + Z(t), q̂(t) = S(t)σ (t), dK (t) = 0 (41)

for some deterministic functions S, Z ∈ C1(R+) to be determined.
We apply the Itô formula to the equation for p̂ in (41) and plug in the candidate for

optimal control from (40). By comparison with (38), after some simple computations
we get that

X̂(t)[S′(t) − G2(t)S2(t)/R(t) + S(t)F(t) + Q(t)]
+ Z ′(t) − G2(t)S(t)Z(t)/R(t) + S(t)μ(t) + F(t) = 0,

i.e., (41) is indeed the solution of the adjoint Eq. 38 if S satisfies the Riccati equation

S′(t) − G2(t)

R(t)
S2(t) + F(t)S(t) + Q(t) = 0, 0 ≤ t ≤ T ; S(T ) = L , (42)
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and Z satisfies the linear differential equation

Z ′(t) − G2(t)

R(t)
S(t)Z(t) + S(t)μ(t) + F(t) = 0, 0 ≤ t ≤ T ; Z(T ) = 0. (43)

By Theorem 3, we conclude that

û(t) = −G(t)

R(t)

(
S(t)X̂(t) + Z(t)

)
(44)

is a strongly optimal control with S and Z given by (42) and (43), respectively.

6 Counterexample: the Merton problem with the power utility

In this example, we consider the Merton problem with the power utility and show
that generally we cannot drop the assumption K̂ ≡ 0 without losing the strong sense
of the optimality. First, we solve the classical robust utility maximization problem
and then we prove that the optimal control for that problem is optimal usually only
in a weaker sense, i.e., there exists a probability measure P ∈ P such that the control
is not optimal under P, even though the control satisfies all the conditions of the
sufficient maximum principle with the exception of K̂ ≡ 0.

Consider first the classical robust utility maximization problem

u �→ Ĵ (u) := Ê

[∫ T

0
f (t, X (t), u(t))dt + g(X (T ))

]
,

where X has dynamics for any u ∈ A

dX (t) = m(t)X (t)u(t)d〈B〉(t) + s(t)X (t)u(t)dB(t).

Then,

X (t) = x exp

{∫ t

0
s(r)u(r)dB(r) +

∫ t

0

[
m(r)u(r) − 1

2
s2(r)u2(r)

]
d〈B〉(r)

}
.

We assume that m and s are bounded and deterministic and s �= 0. Put f ≡ 0 and
g(x) = 1

α
xα, α ∈]0, 1[. Hence,

Ĵ (u)= x

α
Ê

[
exp

{
α

∫ T

0
s(r)u(r)dB(r)+α

∫ T

0

[
m(r)u(r)− 1

2
s2(r)u2(r)

]
d〈B〉(r)

}]

= x

α
Ê

[
exp{α

∫ T

0
s(r)u(r)dB(r) − α2

2

∫ T

0
s2(r)u2(r)d〈B〉(r)}·

· exp
{∫ T

0

[
αm(r)u(r) + α2 − α

2
s2(r)u2(r)

]
d〈B〉(r)

}]
.

We now use the Girsanov theorem for G-expectation and the G-martingale

M(t) := exp{α
∫ t

0
s(r)u(r)dB(r) − α2

2

∫ t

0
s2(r)u2(r)d〈B〉(r)},
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see Section 5.2 in (Hu et al. 2014a). We get the sublinear expectation Êu under which
the process Bu(t) := B(t) − ∫ t

0 s(r)u(r)d〈B〉(r) is a G-Brownian motion. Note that

〈Bu〉(t) = 〈B〉(t) (45)

q.s. Moreover, it is easy to check that the deterministic control

û(r) = m(r)

(1 − α)s2(r)

is a maximizer of the following function

u �→ αm(r)u + α2 − α

2
s2(r)u2.

Hence, we get that

Ĵ (u) = x

α
Ê
u
[
exp

{∫ T

0

[
αm(r)u(r) + α2 − α

2
s2(r)u2(r)

]
d〈B〉(r)

}]

≤ x

α
Ê
u
[
exp

{∫ T

0

[
αm(r)û(r) + α2 − α

2
s2(r)(û)2(r)

]
d〈Bu〉(r)

}]

= x

α
Ê
û
[
exp

{∫ T

0

[
αm(r)û(r) + α2 − α

2
s2(r)(û)2(r)

]
d〈Bû〉(r)

}]
= Ĵ (û).

(46)
The last equalities are a consequence of (45) and of the fact that the integrand is deter-
ministic and that Bu and Bû are G-Brownian motions under Eu and Eû , respectively.
Eq. 46 shows then that û is an optimal control for this weaker optimization problem.

Now, consider the adjoint equation related to û in terms of a G-BSDE. The back-
ward equation is linear due to linearity of the Hamiltonian, hence we may use the
conditional expectation representation of linearG-BSDEs (compare with Remark 3.3
in (Hu et al. 2014a)):

p̂G(t) = 1

X̂(t)
Ê

[
(X̂(T ))α−1 X̂(T )|Ft

]

= (X̂(t))α−1
Ê

[
exp

{
α

∫ T

t
s(r)û(r)dB(r) − α2

2

∫ T

t
s2(r)û2(r)d〈B〉(r)

}
·

· exp
{∫ T

t

[
αm(r)û(r) + α2 − α

2
s2(r)û2(r)

]
d〈B〉(r)

}
|Ft

]
.
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Applying the Girsanov theorem and the same reasoning as in (46), we easily get that

p̂G(t) = 1

X̂(t)
Ê

[
(X̂(T ))α−1 X̂(T )|Ft

]

= (X̂(t))α−1
Ê
û
[
exp

{∫ T

t

[
αm(r)û(r)+ α2 − α

2
s2(r)û2(r)

]
d〈B〉(r)

}
|Ft

]

= (X̂(t))α−1
Ê
û
[
exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
d〈B〉(r)

}
|Ft

]

= (X̂(t))α−1
Ê
û
[
exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
d〈Bû〉(r)

}
|Ft

]

= (X̂(t))α−1
Ê

[
exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
d〈B〉(r)

}
|Ft

]
.

Furthermore, we also know that the integrand is always positive by the assumption
α ∈]0, 1[, hence we get by the representation of the conditional G-expectation (6)
that for every P ∈ P and by (26) that

Ê

[
exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
d〈B〉(r)

}
|Ft

]

= ess sup
P′∈P(t,P)

P
E
P

′
[
exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
d〈B〉(r)

}
|Ft

]

= exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
dr

}
P − a.s.

Hence,

p̂G(t) = (X̂(t))α−1 exp

{∫ T

t

α

2(1 − α)

m2(r)

s2(r)
dr

}
=: (X̂(t))α−1 · Z(t).

By integration by parts for X̂−1 and Z, one can compute that

d p̂G(t) = −m(t)

s(t)
p̂G(t)dB(t) + αm2(t)

2(1 − α)s2(t)
p̂G(t)(d〈B〉(t) − dt). (47)

By comparing Eq. 47 with the adjoint Eq. 12, we first obtain that

q̂G(t) = −m(t)

s(t)
p̂G(t)

and hence that û is a maximizer of the function u �→ H
(
t, X̂(t), u, p̂G(t), q̂G(t)

)
.

Secondly, we get that the process K̂ has the explicit form

K̂ (t) =
∫ t

0

αm2(r)

2(1 − α)s2(r)
p̂G(r)(d〈B〉(r) − dr)

and consequently is a non-trivial process.
To summarize the example so far: we have shown that û is optimal in a weaker

sense. We also showed that it satisfies the assumption for the necessary maximum
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principle for strongly robust optimality and that all assumptions of the sufficient max-
imum principle are satisfied, with the exception of the vanishing of process K̂ . Now,
we prove that û is not optimal in the stronger sense, hence the assumption on the
process K̂ is really crucial for our result and cannot be dropped.

Fix P ∈ P1 and assume that û is optimal under P. By Lemma 1, we know that
û is a critical point of the Hamiltonian evaluated in p̂P and q̂P. Hence, by the same
analysis as in Theorem 5, we see that

d p̂P(t) = −m(t)

s(t)
p̂P(t)dB(t),

therefore

p̂P(T ) = p̂P(0) exp

{
−

∫ T

0

m(t)

s(t)
dB(t) − 1

2

∫ T

0

m2(t)

s2(t)
d〈B〉(t)

}
. (48)

However, we know by the dynamics of X̂ and the terminal condition of P-BSDE
that

p̂P(T ) = (X̂(T ))α−1

= xα−1 exp

{
(α − 1)

[∫ T

0
û(t)s(t)dB(t)

+
∫ T

0

(
û(t)m(t) − 1

2
û2(t)s2(t)

)
d〈B〉(t)

]}

= xα−1 exp

{
−

∫ T

0

m(t)

s(t)
dB(t) − 1

2

∫ T

0

m2(t)(1 − 2α)

s2(t)(1 − α)
d〈B〉(t)

}
.

(49)

Dividing (48) by (49), we get that

1 = p̂P(0)

xα−1
exp

{∫ T

0

αm2(t)

2s2(t)(α − 1)
d〈B〉(t)

}
.

The equalities here are P-a.s. so we get that the integral
∫ T
0

αm2(t)
2s2(t)(α−1)

d〈B〉(t) must
be equal P-a.s. to a constant. However, the quadratic variation of the canonical
process under P is generally a non-deterministic stochastic process, hence also the
integral is a random variable, in general non-constant. This shows that û is optimal
under P only for very specific probability measures such as the Wiener measure.

To conclude, û is not optimal for every probability measure P ∈ P even though
it is a maximizer of the Hamiltonian related to û. This example shows that the new
strong notion of optimality is rather restricted and we may expect it only in very
special cases when the process K̂ vanishes.
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