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Abstract We study an optimal investment problem under default risk where related
information such as loss or recovery at default is considered as an exogenous ran-
dom mark added at default time. Two types of agents who have different levels of
information are considered. We first make precise the insider’s information flow
by using the theory of enlargement of filtrations and then obtain explicit logarith-
mic utility maximization results to compare optimal wealth for the insider and the
ordinary agent.
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1 Introduction

The optimization problem in presence of uncertainty on a random time is an impor-
tant subject in finance and insurance, notably for risk and asset management when
it concerns a default event or a catastrophic occurrence. Another related source of
risk is the information associated with the random time concerning resulting pay-
ments, the price impact, the loss given default or the recovery rate, etc. Measuring
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these random quantities is, in general, difficult since the relevant information on the
underlying firm is often not accessible to investors on the market. For example, in
the credit risk analysis, modelling the recovery rate is a subtle task (see, e.g. Duffie
and Singleton (2003) Section 6, Bakshi et al. (2006), and Guo et al. (2009)).

In this paper, we study the optimal investment problem with a random time and
consider the information revealed at the random time as an exogenous factor of risk.
We suppose that all investors on the market can observe the arrival of the random
time, such as the occurrence of a default event. However, for the associated infor-
mation, such as the recovery rate, there are two types of investors: the first is an
informed insider and the second is an ordinary investor. For example, the insider has
private information on the loss or recovery value of a distressed firm at the default
time, but the ordinary investor must wait for the legitimate procedure to be finished
to know the result. Both investors aim at maximizing the expected utility from the
terminal wealth and each of them will determine their investment strategy based on
the corresponding information set. Following Amendinger et al. (1998, 2003), we
will compare the optimization results and deduce the additional gain of the insider.

Let the financial market be described by a probability space (�,A,P) equipped
with a reference filtration F = (Ft )t≥0 which satisfies the usual conditions. In the
literature, the theory of enlargements of filtrations provides essential tools for the
modelling of different information flows. In general, the observation of a random
time, in particular a default time, is modelled by the progressive enlargement of fil-
tration, as proposed by Elliott et al. (2000) and Bielecki and Rutkowski (2002). The
knowledge of insider information is usually studied by using the initial enlargement
of filtration as in Amendinger et al. (1998, 2003) and Grorud and Pontier (1998). In
this paper, we suppose that the filtration F represents the market information known
by all investors, including the default information. Let τ be an F-stopping time which
represents the default time. The information flow associated with τ is modelled by
a random variable G on (�,A) valued in a measurable space (E, E). In the classic
setting of insider information, G is added to F at the initial time t = 0, while in our
model, the information is added punctually at the random time τ . Therefore, we need
to specify the corresponding filtration. Let the insider’s filtration G = (Gt )t≥0 be a
punctual enlargement of F by adding the information of G at the random time τ . In
other words, G is the smallest filtration which contains F and such that the random
variable G is Gτ -measurable. This provides a new type of enlargement of filtrations
which is an extension of the classical initial enlargement. In the literature, other gen-
eralizations of enlargement have also been considered such as in Kchia et al. (2013)
and Kchia and Protter (2015) where the authors study extensions of progressive
enlargement.

We shall make precise the adapted and predictable processes in the filtration G

that we define in order to describe investment strategy and wealth processes. As
usual in the asymmetric information literature, we suppose the hypothesis that the
F-conditional law of G is equivalent and hence admits a positive density with respect
to its probability law. By adapting arguments in Föllmer and Imkeller (1993) and
in Grorud and Pontier (1998), we deduce the insider martingale measure Q which
plays an important role in the study of (semi)martingale processes in the filtra-
tion G. Our main mathematical result is to give the decomposition formula of an
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F-martingale as a semimartingale in G, which gives a positive answer to the Jacod’s
(H’)-hypothesis.

In the optimization problem with random default times, it is often supposed that
the random time satisfies the intensity hypothesis (e.g., Lim and Quenez (2011)
and Kharroubi et al. (2013)) or the density hypothesis (e.g., Blanchet-Scalliet et al.
(2008), Jeanblanc et al. (2015), and Jiao et al. (2013)), so that it is a totally inac-
cessible stopping time in the market filtration. In particular, in Jiao et al. (2013), we
consider marked random times where the random mark represents the loss at default
and we suppose that the vector of default time and mark admits a conditional den-
sity. In this paper, the random time τ we consider does not necessarily satisfy the
intensity nor the density hypothesis: it is a general stopping time in F and may also
contain a predictable part. Following the approach of Amendinger et al. (1998), we
obtain the optimal strategy and wealth for the two types of investors with a loga-
rithmic utility function and deduce, thanks to the decomposition we get before, the
additional gain due to the extra information. As a concrete case, we consider a hybrid
default model similar as in Campi et al. (2009) where the filtration F is generated by a
Brownian motion and a Poisson process, the default time is the minimum of two ran-
dom times: the first hitting time of a Brownian diffusion and the first jump time of the
Poisson process. The noticeable fact is that the previous characterization of the opti-
mal expected wealth allows to derive an explicit formula for the additional expected
utility.

The rest of the paper is organized as following. We model in Section 2 the filtra-
tion which represents the default time together with the random mark and study its
theoretical properties. Section 3 focuses on the logarithmic utility optimization prob-
lem for the insider and compares the result with the case for ordinary investor. In
Section 4, we present the optimization results for an explicit hybrid default model.
Section 5 concludes the paper.

2 Model framework

In this section, we present our model setup. In particular, we study the enlarged
filtration including a random mark, which is an extension of the classical initial
enlargement of filtrations. To the best of our knowledge such an enlargement has not
been considered before.

2.1 The enlarged filtration and martingale processes

Let (�,A,P) be a probability space equipped with a filtration F = (Ft )t≥0
which satisfies the usual conditions and τ be an F-stopping time. Let G be
a random variable valued in a measurable space (E, E) and G = (Gt )t≥0 be
the smallest filtration containing F such that G is Gτ -measurable. By definition,
one has

∀ t ∈ R+, Gt = Ft ∨ σ
({

A ∩ {τ ≤ s} |A ∈ σ(G), s ≤ t
})

. (2.1)
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In particular, similarly to Jeulin (1980) (see also Callegaro et al. (2013)), a
stochastic process Z is G-adapted if and only if it can be written in the form

Zt = 1{τ>t}Yt + 1{τ≤t}Yt (G), t ≥ 0, (2.2)

where Y is an F-adapted process and Y (·) is an F ⊗ E-adapted process on � × E,
where F⊗ E denotes the filtration (Ft ⊗ E)t≥0. The following proposition character-
izes the G-predictable processes. The proof combines the techniques from those of
Lemmata 3.13 and 4.4 in Jeulin (1980) and is postponed to Appendix.

Proposition 2.1 Let P(F) be the predictable σ -algebra of the filtration F. A
G-adapted process Z is G-predictable if and only if it can be written in the form

Zt = 1{τ≥t}Yt + 1{τ<t}Yt (G), t > 0, (2.3)

where Y is an F-predictable process and Y (·) is a P(F) ⊗ E-measurable function.

We study the martingale processes in the filtrations F and G. One basic martingale
in F is related to the random time τ . Let D = (1{τ≤t}, t ≥ 0) be the indicator
process of the F-stopping time τ . Recall that the F-compensator process � of τ is the
F-predictable increasing process � such that the process N defined by N := D−� is
an F-martingale. In particular, if τ is a predictable F-stopping time, then � coincides
with D.

To study G-martingales, we assume the following hypothesis for the random vari-
able G with respect to the filtration F (c.f. Grorud and Pontier (1998) in the initial
enlargement setting, see also Jacod (1985) for comparison).

Assumption 2.2 For any t ≥ 0, the Ft -conditional law of G is equivalent to the
probability law η of G, i.e., P(G ∈ ·|Ft ) ∼ η(·), a.s. Moreover, we denote by pt (·)
the conditional density

P(G ∈ dx|Ft ) = pt (x)η(dx), a.s. (2.4)

As pointed out in Lemma 1.8 of Jacod (1985), we can choose a version of the
conditional probability density p(·), such that pt (·) is Ft ⊗ E-measurable for any
t ≥ 0 and that (pt (x), t ≥ 0) is a positive càdlàg (F,P)-martingale for any x ∈ E.
In the following, we will fix such a version of the conditional density.

Remark 2.3 We assume the hypothesis of Jacod which is widely adopted in the
study of initial and progressive enlargements of filtrations. Compared to the standard
initial enlargement of F by G, the information of the random variable G is added at
a random time τ but not at the initial time; compared to the progressive enlargement,
the random variable added here is the associated information G instead of the ran-
dom time τ . In particular, the behavior of G-martingales is quite different from the
classic setting, and worth it to be examined in detail.
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Similarly to Föllmer and Imkeller (1993) and Grorud and Pontier (1998), we intro-
duce the insider martingale measure Q which will be useful in the remainder of
the paper.

Proposition 2.4 For any t ≥ 0, there exists a unique probability measure Q on
Ft ∨ σ(G) which verifies the following conditions:

(1) the probability measures Q and P are equivalent;
(2) Q coincides with P on F and on σ(G);
(3) G is independent of F under the probability Q.

Moreover, the Radon-Nikodym density Lt of Q with respect to P on Gt is given by

Lt := dQ

dP

∣∣∣
Gt

= 1{τ>t} + 1{τ≤t}pt (G)−1. (2.5)

Proof Let Q be defined by

dQ

dP

∣∣∣
Ft∨σ(G)

= pt (G)−1, t ≥ 0.

Since (Ft ∨ σ(G))t≥0 is the initial enlargement of F by G, we obtain by Föllmer
and Imkeller (1993) and Grorud and Pontier (1998) that Q is the unique equivalent
probability measure on Ft ∨ σ(G) which satisfies conditions (1)–(3). Moreover, the
Radon-Nikodym density dQ/dP on Gt is given by

E
P

[
pt (G)−1|Gt

]
= E

P

[
1{τ>t}pt (G)−1|Gt

]
+ 1{τ≤t}pt (G)−1.

Let Zt be a bounded Gt -measurable random variable. By the decomposed form
(2.2), we obtain that 1{τ>t}Zt is Ft -measurable. Hence,

E
P

[
1{τ>t}pt (G)−1Zt

]
= E

P

[
1{τ>t}ZtE

P

[
pt (G)−1|Ft

]]
,

which leads to

E
P

[
1{τ>t}pt (G)−1|Gt

]
= 1{τ>t}EP

[
pt (G)−1|Ft

]
.

Moreover, we have

E
P

[
pt (G)−1|Ft

]
= dQ

dP

∣∣∣∣
Ft

= 1 a.s.

since P and Q coincide on F. Therefore, we obtain (2.5).

In the above Proposition, the probability measure Q depends on the time t since
it is defined on the σ -algebra Ft ∨ σ(G). However, the unicity of the equivalent
probability measure shows that, if for any t ≥ 0 we denote by Qt the probability
measure on Ft ∨ σ(G) which satisfies the conditions (1)-(3) of the proposition, then
for 0 ≤ s ≤ t the restriction of Qt on Fs ∨σ(G) coincides with Qs . This observation
allows us to use just Q to denote the probability on

⋃
t≥0(Ft ∨σ(G)) which coincides

with Qt on Ft ∨ σ(G).
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The following proposition shows that the filtration G also satisfies the usual con-
ditions under the F-density hypothesis on the random variable G. The idea follows
Amendinger (2000, Proposition 3.3).

Proposition 2.5 Under Assumption 2.2, the enlarged filtrationG is right continuous.

Proof The statement does not involve the underlying probability measure. Hence,
we may assume without loss of generality (by Proposition 2.4) that G is independent
of F under the probability P. Let t � 0 and ε > 0. Let Xt+ε be a bounded Gt+ε-
measurable random variable. We write it in the form

Xt+ε = Yt+ε1{τ>t+ε} + Yt+ε(G)1{τ≤t+ε},
where Yt+ε and Yt+ε(·) are, respectively, bounded Ft+ε-measurable and Ft+ε ⊗ E-
measurable functions. Then for δ ∈ (0, ε), by the independence between G and F

one has

E
P

[
Xt+ε |Gt+δ

] = 1{τ>t+δ}EP
[
Yt+ε1{τ>t+ε} + Yt+ε(G)1{t+δ<τ≤t+ε} |Ft+δ

]

+ 1{τ≤t+δ}EP
[
Yt+ε(x) |Ft+δ

]
x=G

= 1{τ>t+δ}
(
E
P

[
Yt+ε1{τ>t+ε} |Ft+δ

]

+
∫

E

E
P

[
Yt+ε(x)1{t+δ<τ≤t+ε} |Ft+δ

]
η(dx)

)

+ 1{τ≤t+δ}EP
[
Yt+ε(x) |Ft+δ

]
x=G

,

where η is the probability law of G. Since the filtration F satisfies the usual con-
ditions, any F-martingale admits a càdlàg version. Therefore, by taking a suitable
version of the expectations EP

[
Xt+ε |Ft+δ

]
, we have

lim
δ→0

E
P

[
Xt+ε |Gt+δ

] = 1{τ>t}
(
E
P

[
Yt+ε1{τ>t+ε} |Ft

]

+
∫

E

E
P

[
Yt+ε(x)1{t<τ≤t+ε} |Ft

]
η(dx)

)

+ 1{τ≤t}EP
[
Yt+ε(x) |Ft

]
x=G

= E
P

[
Xt+ε |Gt

]
.

In particular, if X is a bounded Gt+ := ⋂
ε>0 Gt+ε-measurable random variable,

then one has EP[X |Gt ] = X almost surely. Hence Gt+ = Gt .

Under the probability measure Q, the random variable G is independent of F. This
observation leads to the following characterization of (G,Q)-(local)-martingales. In
the particular case where τ = 0, we recover the classic result on initial enlargement
of filtrations. In the sequel, we denote by 〈., .〉F,P

t the angle bracket with respect to F

under P and we define the process I (Y (.)) by

It (Y (.)) =
∫

E

(∫

]0,t]
Yu−(x) d�u + 〈N, Y (x)〉F,P

t

)
η(dx), t ≥ 0 (2.6)

for a càdlàg F ⊗ E-adapted process Y (·).
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Proposition 2.6 Let Z = (
1{τ>t}Yt + 1{τ≤t}Yt (G), t ≥ 0

)
be a G-adapted

process. We assume that

(1) Y (·) is an F⊗ E-adapted process such that Y (x) is an (F,P)-square-integrable
martingale for any x ∈ E (resp., an (F,P)-locally square-integrable martingale
with a common localizing stopping time sequence independent of x),

(2) the process

Ỹt := 1{τ>t}Yt + It (Y ), t ≥ 0

is well defined and is an (F,P)-martingale (resp., an (F,P)-local martingale).

Then, the process Z is a (G,Q)-martingale (resp., a (G,Q)-local martingale).

Proof We can reduce the local martingale case to the martingale case by taking a
sequence of F-stopping times which localizes the processes appearing in conditions
(1) and (2). Therefore, we only treat the martingale case. Note that since N and Y (x)

are square integrable (c.f. Chapitre VII (15.1) in Dellacherie and Meyer (1980) for the
square integrability of N), NY(x)−〈N, Y (x)〉F,P is an (F,P)-martingale by Chapter I,
Theorem 4.2 in Jacod and Shiryaev (2003).

For t ≥ s ≥ 0, one has

E
Q[Zt |Gs] = E

Q
[
1{τ>t}Yt |Gs

] + E
Q

[
1{τ≤t}Yt (G)|Gs

]

= 1{τ>s}
(
E
Q

[
1{τ>t}Yt |Fs

] +
∫

E

E
Q

[
1{s<τ≤t}Yt (x)|Fs

]
η(dx)

)

+ 1{τ≤s}EQ[Yt (x)|Fs]|x=G

= 1{τ>s}
(
E
P

[
1{τ>t}Yt |Fs

] +
∫

E

E
P

[
1{s<τ≤t}Yt (x)|Fs

]
η(dx)

)

+ 1{τ≤s}EP[Yt (x)|Fs]|x=G

= 1{τ>s}
(
E
P

[
1{τ>t}Yt |Fs

] +
∫

E

E
P

[
1{s<τ≤t}Yt (x)|Fs

]
η(dx)

)

+ 1{τ≤s}Ys(G),

(2.7)
where the second equality comes from the fact that G is independent of F under the
probability Q and that η coincides with the Q-probability law of G, and the third
equality comes from the fact that the probability measures P and Q coincide on the
filtration F.

Since Y (x) is an (F,P)-martingale, one has

E
P

[
1{s<τ≤t}Yt (x) |Fs

] = E
P [DtYt (x)|Fs] − DsYs(x)

= E
P [NtYt (x) − NsYs(x)|Fs]

+ E
P [�tYt (x) − �sYs(x)|Fs]

= E
P

[
〈N, Y (x)〉F,P

t − 〈N, Y (x)〉F,P
s |Fs

]

+ E
P [�tYt (x) − �sYs(x)|Fs] ,

(2.8)
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where the last equality comes from the fact that NY(x) − 〈N, Y (x)〉F,P is an (F,P)-
martingale. Moreover, since Y (x) is an (F,P)-martingale, its predictable projection
is Y−(x) (see Chapter I, Corollary 2.31 in Jacod and Shiryaev (2003)), and hence

E
P[�tYt (x) − �sYs(x) |Fs] = E

[ ∫

(s,t]
Yu−(x) d�u

∣∣∣∣Fs

]
(2.9)

since � is an integrable increasing process which is F-predictable (see Chapter VI,
61 in Dellacherie and Meyer (1980)). Therefore, by (2.7) we obtain

E
Q[Zt |Gs] − Zs = 1{τ>s}

(
E
P

[
1{τ>t}Yt − 1{τ>s}Ys |Fs

]

+
∫

E

E
P

[
〈N, Y (x)〉F,P

t − 〈N, Y (x)〉F,P
s

+
∫

(s,t]
Yu−(x)d�u

∣∣∣∣Fs

]
η(dx)

)

= 1{τ>s}EP
[
Ỹt − Ỹs |Fs

] = 0.

The proposition is thus proved.

Corollary 2.7 Let Z = (
1{τ>t}Yt + 1{τ≤t}Yt (G), t ≥ 0

)
be a G-adapted pro-

cess. Then Z is a (G,P)-martingale (resp., local (G,P)-martingale) if the following
conditions are fulfilled:

1. for any x ∈ E, (Yt (x)pt (x), t ≥ 0) is an (F,P)-square integrable martingale
(resp., a (F,P)-locally square integrable martingale with a common localizing
stopping time sequence);

2. the process
1{τ>t}Yt + It (Y (.)), t ≥ 0

is a (F,P)-martingale (resp., a local (F,P)-martingale).

Proof By Proposition 2.4, Z is a (G,P)-(local)-martingale if and only if the
process Z

(
1[[0,τ [[ + 1[[τ,+∞[[ p(G)

)
is a (G,Q)-(local)-martingale. Therefore, the

assertion results from Proposition 2.6.

Proposition 2.8 Let Z be a (G,P)-martingale on [0, T ] such that the process
1[[τ,+∞[[Zp(G) is bounded. Then there exists an F-adapted process Y and an F⊗ E-
adapted process Y (·) such that Zt = 1{τ>t}Yt + 1{τ≤t}Yt (G) and that the following
conditions are fulfilled:

(1) for any x ∈ E, (Yt (x)pt (x), t ≥ 0) is a bounded (F,P)-martingale;
(2) the process

1{τ>t}Yt + It (Y (.)), t ≥ 0

is well defined and is an (F,P)-martingale.

Proof Since ZT is a GT -measurable random variable, we can write it in the form

ZT = 1{τ>T }YT + 1{τ≤T }YT (G), (2.10)
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where YT is an FT -measurable random variable, and YT (·) is an FT ⊗ E-measurable
function such that YT (·)pT (·) is bounded. Similarly to Lemma 1.8 in Jacod (1985),
we can construct an F ⊗ E-adapted process Y (·) on [0, T ] such that Y (x)p(x) is a
càdlàg (F,P)-martingale for any x ∈ E. In particular, for t ∈ [0, T ] one has

Yt (x) = E
P

[
YT (x)pT (x)

pt (x)

∣∣∣∣Ft

]
. (2.11)

We then let, for t ∈ [0, T ]

Ỹt :=E
P

[
YT 1{τ>T }+

∫

E

(∫

]0,T ]
Yu−(x)pu−(x) d�u+〈N, Y (x)p(x)〉F,P

T

)
η(dx)

∣∣∣∣Ft

]
.

(2.12)
Then Ỹ is an (F,P)-martingale. For any t ∈ [0, T ], we let Yt be an Ft -measurable

random variable such that

1{τ>t}Yt = Ỹt −
∫

E

(∫

]0,t]
Yu−(x)pu−(x) d�u + 〈N, Y (x)p(x)〉F,P

t

)
η(dx).

This is always possible since

1{τ≤t}
(

Ỹt −
∫

E

(∫

]0,t]
Yu−(x)pu−(x) d�u + 〈N, Y (x)p(x)〉F,P

t

)
η(dx)

)

= 1{τ≤t}EP

[∫

E

(∫

]t,T ]
Yu−(x)pu−(x) d�u + d〈N, Y (x)p(x)〉F,P

u

)
η(dx)

∣∣∣∣Ft

]

= 1{τ≤t}
∫

E

E
P

[
1{t<τ≤T }YT (x)pT (x) |Ft

]
η(dx) = 0,

where the second equality is obtained by an argument similar to (2.8) and (2.9). We
finally show that Zt = 1{τ>t}Yt + 1{τ≤t}Yt (G) P-a.s. for any t ∈ [0, T ]. Note that
we already have ZT = 1{τ>t}YT + 1{τ≤T }YT (G). Therefore it remains to prove that
the G-adapted process (1{τ>t}Yt + 1{τ≤t}Yt (G))t∈[0,T ] is a (G,P)-martingale. This
follows from the construction of the processes Y , Y (·) and Corollary 2.7.

Remark 2.9 (1) We observe from the proof of the previous proposition that, if
Z is a (G,P)-martingale on [0, T ] (without boundedness hypothesis) such that
ZT can be written into the form (2.10) with YT (x)pT (x) ∈ L2(�,FT ,P) for
any x ∈ E, then we can construct the F ⊗ E-adapted process Y (·) by using
the relation (2.11). Note that for any x ∈ E, the process Y (x)p(x) is a square-
integrable (F,P)-martingale. Therefore, the result of Proposition 2.8 remains
true provided that the conditional expectation in (2.12) is well defined.

(2) Let Z be a (G,P)-martingale on [0, T ]. In general, the decomposition of Z into
the form Z = 1[[0,τ [[Y +1[[τ,+∞[[Y (G) with Y being F-adapted and Y (·) being
F ⊗ E-adapted is not unique. Namely, there may exist an F-adapted process Ỹ

and an F⊗E-adapted process Ỹ (·) such that Ỹ is not a version of Y , Ỹ (·) is not
a version of Y (·), but we still have Z = 1[[0,τ [[Ỹ + 1[[τ,+∞[[Ỹ (G). Moreover,
although the proof of Proposition 2.8 provides an explicit way to construct the
decomposition of the (G,P)-martingale Z which satisfies the two conditions, in
general such decomposition is not unique either.
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(3) Concerning the local martingale analogue of Proposition 2.8, the main diffi-
culty is that a local (G,P)-martingale need not be localized by a sequence
of F-stopping times. To solve this problem, it is crucial to understand the
G-stopping times and their relation with F-stopping times.

2.2 (H’)-hypothesis and semimartingale decomposition

In this subsection, we prove that under Assumption 2.2, the (H’)-hypothesis, i.e. any
F-local martingale is a G-semimartigale, is satisfied and we give the semimartingale
decomposition of an F-martingale in G.

Theorem 2.10 We suppose that Assumption 2.2 holds. Let M be an (F,P)-locally
square integrable martingale, then it is a (G,P)-semimartingale. Let

M̃t = Mt − 1{τ≤t}
∫

]0,t]
d〈M − Mτ, p(x)〉F,P

s

ps−(x)

∣∣∣∣
x=G

, t ≥ 0

and suppose in addition that the process M̃ − Mτ is positive or integrable where
Mτ = (

Mτ
t , t ≥ 0

)
is the stopped process with Mτ

t = Mt∧τ . Then the process
M̃ = (

M̃t , t ≥ 0
)
is a (G,P)-local martingale.

Proof Let I = F ∨ σ(G) be the initial enlargement of the filtration F by σ(G).
Clearly, the filtration I is larger than G. More precisely, using Lemma 2.4 and 2.5 in
Kchia et al. (2013), we get that the filtration G coincides with F before the stopping
time τ , and coincides with I after the stopping time τ . We first observe that the
stopped process at τ of an (F,P)-martingale L is a (G,P)-martingale. In fact, for
t ≥ s ≥ 0 one has

E
[
Lτ

t |Gs

] = 1{τ>s}E [Lτ∧t |Fs]+1{τ≤s}E [Lτ |Gs] = 1{τ>s}Ls+1{τ≤s}Lτ = Lτ∧s .

We remark that, as shown by Jeulin’s formula, this result holds more generally for
any enlargement G which coincides with F before a random time τ .

We now consider the decomposition of M as M = Mτ + (M − Mτ), where Mτ

is the stopped process of M at τ . Since G coincides with F before τ , we obtain by
the above argument that Mτ is an (G,P)-local martingale. Now consider the process
Y := M − Mτ , which begins at τ . It is also an (F,P)-local martingale. By Jacod’s
decomposition formula (see Theorem 2.1 in Jacod 1985), the process

Ỹt = Yt −
∫

]0,t]
d〈Y, p(x)〉F,P

s

ps−(x)

∣∣∣
x=G

, t ≥ 0 (2.13)

is an (I,P)-local martingale. Note that the predictable quadratic variation process
〈Y, p(x)〉F,P

s vanishes on [[0, τ ]] since the process Y begins at τ . Hence,

∫

]0,t]
d〈Y, p(x)〉F,P

s

ps−(x)
= 1{τ≤t}

∫

]0,t]
d〈Y, p(x)〉F,P

s

ps−(x)
.

This observation also shows that the process (2.13) is G-adapted. From Proposition
1.29 (c) in Aksamit and Jeanblanc (2017) it is a (G,P)-local martingale.
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Remark 2.11 (1) In the above theorem, we can weaken Assumption 2.2. Indeed,
to apply Jacod’s decomposition formula we only need to assume that the con-
ditional law P(G ∈ .|Ft ) is absolutely continuous w.r.t. P(G ∈ .). However,
the equivalence assumption is important in the literature on asymmetric infor-
mation (e.g. Amendinger et al. (1998, 2003); Grorud and Pontier (1998)) since
it ensures the existence of the decoupling measure (see Proposition 2.4) under
which the information variable and the reference filtration are independent.

(2) We present in “Second proof of Theorem 2.10” section which is more computa-
tional and longer. However, it provides an explicit way for the construction of
the G-martingale part and has its own interest. In addition, it allows to remove
the positivity or integrability condition on the process M̃ − Mτ .

3 Logarithmic utility maximization

In this section, we study the optimization problem for two types of investors: an
insider and an ordinary agent. We consider a financial market composed of d stocks

with discounted prices given by the d-dimensional process X = (
X1, . . . , Xd

)�
.

This process is observed by both agents and is F-adapted. We suppose that
each Xi , i = 1, . . . , d , evolves according to the following stochastic differential
equation

Xi
t = Xi

0 +
∫ t

0
Xi

s−

⎛
⎝dMi

s +
d∑

j=1

α
j
s d

〈
Mi, Mj

〉
s

⎞
⎠ , t ≥ 0 ,

with Xi
0 a positive constant, Mi an F-locally square integrable martingale, and α a

P(F)–measurable process valued in R
d such that

E

[∫ T

0
α�

s d〈M〉sαs

]
< +∞ . (3.1)

The ordinary agent has access to the information flow given by the filtra-
tion F, while the information flow of the insider is represented by the filtra-
tion G. From the practical point of view, when a random event (which can be
more general than a default time) arrives, there will often be some extra accom-
panying information revealed at the random time. Our intuition is to use the
random variable G to represent such information. From the mathematical point
of view, the filtration G can be viewed as an extension of the classical ini-
tial enlargement of filtration where the information is added only at the initial
time 0.

The optimization for the ordinary agent is standard (see for example Lim and
Quenez (2011)). For the insider, we follow Amendinger et al. (1998, 2003) to
solve the problem. We first describe the insider’s portfolio in the enlarged filtration
G. Recall that under Assumption 2.2, the process M is a G-semimartingale with
canonical decomposition given by Theorem 2.10:
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Mt = M̃t + 1{τ≤t}
∫ t

0

d〈M − Mτ, p(x)〉s
ps−(x)

∣∣∣∣
x=G

, t ≥ 0 , (3.2)

where M̃ is a G-local martingale and Mτ is the stopped process (Mt∧τ )t≥0.
Applying Theorem 2.5 of Jacod (1985) to the F-locally square integrable martin-

gale M − Mτ , we have the following result.

Lemma 3.1 For i = 1, . . . , d , there exists a P(F) ⊗ E-measurable function mi

such that

〈p(x),Mi − (Mi)τ 〉t =
∫ t

0
mi

s(x)ps−(x)d〈Mi − (Mi)τ 〉s

for all x ∈ E and all t ≥ 0.

We now rewrite the integral of m w.r.t. 〈M − Mτ 〉.

Lemma 3.2 Under Assumption 2.2, there exists a P(F) ⊗ E-measurable process
μ valued in Rd such that

∫ t

0
d〈M − Mτ 〉sμs(x) =

⎛
⎜⎝

∫ t

0 m1
s (x)d〈M1 − (M1)τ 〉s

...∫ t

0 md
s (x)d〈Md − (Md)τ 〉s

⎞
⎟⎠

for all t ≥ 0.

Proof The proof is the same as that of Lemma 2.8 in Amendinger et al. (1998).
We therefore omit it.

We can then rewrite the process M in 3.2 in the following way

Mt = M̃t + 1{τ≤t}
∫ t

0
d〈M − Mτ 〉sμs(G) , t ≥ 0 , (3.3)

and the dynamics of the process X can be expressed with the G-local martingale M̃

as follows

dXt = Diag(Xt−)
(
dM̃t + d〈M〉tαt + d〈M − Mτ 〉tμt (G)

)
, t ≥ 0 ,

where Diag(Xt−) stands for the d × d diagonal matrix whose i-th diagonal term is
Xi

t− for i = 1, . . . , d . We then introduce the following integrability assumption.

Assumption 3.3 The process μ(G) is square integrable w.r.t. d〈M − Mτ 〉:

E

[∫ T

0
μt(G)�d〈M − Mτ 〉tμt (G)

]
< ∞ .
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Denote by H ∈ {F,G} the underlying filtration. We define an H-portfolio as a
couple (x, π), where x is a constant representing the initial wealth and π is an R

d -
valued P(H)-measurable process π such that

∫ T

0
π�

t d〈M〉tπt < ∞ , ¶-a.s.

and
d∑

i=1

πi
t

�Xi
t

Xi
t−

> −1 , t ∈ [0, T ] . (3.4)

Here πi
t represents the proportion of discounted wealth invested at time t in the

asset Xi . We notice that condition 3.4 ensures the positivity of the wealth process. For
such an H-portfolio, we define the associated discounted wealth process V (x, π) by

Vt (x, π) = x +
d∑

i=1

∫ t

0
πi

sVs−(x, π)
dXi

s

Xi
s−

, t ≥ 0 .

By the condition (3.4), the wealth process is positive. We suppose that the agents
preferences are described by the logarithmic utility function. For a given initial
capital x, we define the set of admissible H-portfolio processes by

AH(x) = {
π : (x, π)is an H-portfolio satisfying E

[
log− VT (x, π)

]
< ∞}

.

For an initial capital x we then consider the two optimization problems:

• the ordinary agent’s problem consists in computing

VF = sup
π∈AF(x)

E
[
log VT (x, π)

]
,

• the insider’s problem consists in computing

VG = sup
π∈AG(x)

E
[
log VT (x, π)

]
.

To solve these problems, we introduce the minimal martingale density processes
ẐF and ẐG defined by

ẐF

t = E

(
−

∫ ·

0
α�

s dMs

)

t

and

ẐG

t = E

(
−

∫ ·

0

(
αs + 1{τ≤s}μs(G)

)�
s

dM̃s

)

t

for t ∈ [0, T ], where E (·) denotes the Doléans-Dade exponential. We first have the
following result.

Proposition 3.4 (i) The processes ẐFX and ẐFV (x, π) are F-local martingales
for any portfolio (x, π) such that π ∈ AF(x).

(ii) The processes ẐGX and ẐGV (x, π) areG-local martingales for any portfolio
(x, π) such that π ∈ AG(x).
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Proof We only prove assertion (ii). The same arguments can be applied to prove
(i) by taking μ(G) ≡ 0. From Itô’s formula, we have

d
(
ẐGX

)
= X−dẐG + ẐG−dX + d

〈
ZG, X

〉
+ d

([
ZG, X

]
−

〈
ZG, X

〉)
.

From the dynamics of ẐG and X, we have

d
〈
ẐG−, X

〉
= −ẐG−Diag(X−)d

〈∫ ·
0

(
αs + 1{τ≤s}μs(G)

)�
s

dM̃s, M
〉

= −ẐG−Diag(X−)d〈M〉 (
α + 1[[ τ,+∞[[ μ(G)

)
= −ẐG−Diag(X−) (d〈M〉α + d 〈M − Mτ 〉 μ(G)) .

Therefore, we get

d
(
ẐGX

)
= X−dẐG + ẐG−Diag(X−)dM̃ + d

([
ẐG, X

]
−

〈
ẐG, X

〉)

which shows that ẐGX is a G-local martingale.

We are now able to compute VF and VG and provide optimal strategies.

Theorem 3.5 (i) An optimal strategy for the ordinary agent is given by

πord
t = αt , t ∈ [0, T ] ,

and the maximal expected logarithmic utility is given by

VF = E

[
log VT

(
x, πord

)]
= log x + 1

2
E

[∫ T

0
α�

t d〈M〉tαt

]
.

(ii) An optimal strategy for the insider is given by

πins
t = αt + 1{τ≤t}μt(G) , t ∈ [0, T ] ,

and the maximal expected logarithmic utility is given by

V
G

= E
[
log VT

(
x, πins

)]

= log x + 1
2E

[∫ T

0 α�
t d〈M〉tαt

]
+ 1

2E

[∫ T

0 μt(G)�d〈M − Mτ 〉tμt (G)
]

.

(iii) The insider’s additional expected utility is given by

VG − VF = 1

2
E

[∫ T

0
μt(G)�d〈M − Mτ 〉tμt (G)

]
.

Proof We do not prove (i) since it relies on the same arguments as for (ii) with
μ(G) ≡ 0 and ẐF in place of ẐG.

(ii) We recall that for a C1 concave function u such that its derivative u′ admits an
inverse function I , we have

u(a) ≤ u
(
I (b)

) − b
(
I (b) − a

)

for all a, b ∈ R. Applying this inequality with u = log, a = VT (x, π) for π ∈
AG(x), and b = yẐG

T for some constant y > 0, we get
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logVT (x, π) ≤ log 1
yẐG

T

− yẐG

T

(
1

yẐG

T

− VT (x, π)

)

≤ −logy − logẐG

T − 1 + yẐG
T VT (x, π).

Since V (x, π) is a non-negative process and ẐGV (x, π) is a G-local martingale,
it is a G-super-martingale. Therefore, we get

ElogVT (x, π) ≤ −1 − logy − ElogẐG

T + xy .

Since this inequality holds for any π ∈ AG(x), we obtain by taking y = 1
x

,

VG ≤ logx − ElogẐG

T .

Moreover, we have

logVT

(
x, πins

)
= log x +

∫ T

0
πins

t

�
dM̃t +

∫ T

0
πins

t

�
d〈M〉tαt

+
∫ T

0
πins

t

�
d〈M − Mτ 〉tμt (G)

= log x +
∫ T

0
πins

t

�
dM̃t +

∫ T

0
πins

t

�
d〈M〉tαt

+
∫ T

0
πins

t

�
d〈M〉tμt (G)1{τ≤t}

= log x +
∫ T

0

(
αt + μt(G)

)�
dM̃t

+
∫ T

0

(
αt + μt(G)1{τ≤t}

)�
d〈M〉t

(
αt + μt(G)1{τ≤t}

)

= log x + logẐG

T .

From 3.1 and Assumption 3.3, we get πins ∈ A
G
(x). Therefore, πins is an optimal

strategy for the insider’s problem.
Using 3.1, we get that

∫ .

0 α�dM and
∫ .

0 α�dM̃ are, respectively, F and G

martingales. Therefore, we have

0 = E

[∫ T

0
α�dM̃

]
− E

[∫ T

0
α�dM

]
= E

[∫ T

0
α�d〈M〉μ(G)1[τ,+∞)

]
,

which gives

E

[
logVT

(
x, πins

)]
= log x + 1

2
E

[∫ T

0
α�

t d〈M〉tαt

]

+ 1

2
E

[∫ T

0
μt(G)�d

〈
M − Mτ

〉
t
μt (G)

]
.

(iii) The result is a consequence of (i) and (ii).
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4 Example of a hybrid model

In this section, we consider an explicit example where the random default time τ is
given by a hybrid model as in Campi et al. (2009) and Carr and Linetsky (2006) and
the information flow G is supposed to depend on the asset values at a horizon time
which is similar to Guo et al. (2009).

Let B = (Bt , t ≥ 0) be a standard Brownian motion and NP = (
NP

t , t ≥ 0
)

be a Poisson process with intensity λ ∈ R+. We suppose that B and NP are inde-
pendent. Let F = (Ft )t≥0 be the complete and right-continuous filtration generated
by the processes B and NP , where Ft = ∩s>tσ

{
Bu, N

P
u ; u ≤ s

}
. We define the

default time τ by a hybrid model. More precisely, consider a first asset process

S1
t = exp

(
σBt − 1

2σ 2t
)

, where σ > 0, and let τ1 = inf
{
t > 0, S1

t ≤ l
}
, where l

is a given constant threshold such that l < S1
0 . In a similar way, consider a second

asset process S2
t = exp

(
λt − NP

t

)
and define τ2 = inf

{
t > 0, NP

t = 1
}
. Let the

default time be given by τ = τ1 ∧ τ2 which is an F-stopping time with a predictable
component τ1 and a totally inaccessible component τ2 (this construction is borrowed
from literature such as in Campi et al. (2009) and Carr and Linetsky (2006)). Let the
information flow G be given by the vector G = (

S1
T ′ , S2

T ′
)
, where T ′ is a horizon

time. We suppose T ′ > T since, in practice, the settlement procedure of a default
event can usually be complicated and take longer time than the investment maturity.
We also note that, for such a random variable G, the density assumption holds only
on the interval [0, T ′). This explains why mathematically we impose T ′ to be greater
than the time horizon T .

We first give the density of G which is defined in (2.4). By direct computations,

pt (x1, x2) =
√

T ′
T ′ − t

φ

(
ln(x1)+ 1

2 σ 2T ′−σBt

σ
√

T ′−t

)

φ

(
ln(x1)+ 1

2 σ 2T ′
σ
√

T ′

)

× eλt (λ(T ′ − t))λT ′−ln(x2)−NP
t

(λT ′)λT ′−ln(x2)

(
λT ′ − ln(x2)

)!(
λT ′ − ln(x2) − NP

t

)!1N

×
(
λT ′ − ln(x2) − NP

t

)
,

where φ is the density function of the standard normal distribution N(0, 1), i.e.,

φ(x) = 1√
2π

e− x2
2 . Denote by ÑP the compensated Poisson process defined by

ÑP
t = NP

t − λt , t ≥ 0 .

The dynamics of the assets processes are then given by

dS1
t = S1

t σdBt ,

dS2
t = S2

t−
((

e−1 − 1
)

dÑP
t + e−1λdt

)
.
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This leads us to consider the driving martingale M defined by M =(
σB,

(
e−1 − 1

)
ÑP

)�
. The oblique bracket of M is then given by

〈M〉t =
(

σ 2t 0
0 (e−1 − 1)2λt

)
, t ≥ 0 .

Then, we can write the dynamics of the asset processes using the notations of the
previous section:

dSi
t = Si

t−
(
dMi

t + α1
t d

〈
Mi, M1

〉
t
+ α2

t d
〈
Mi, M2

〉
t

)

with

α1
t = 0

α2
t = e−1

(
e−1 − 1

)2

for all t ≥ 0. We can then compute the terms m1 and m2 appearing in Lemma 3.1
and we get

m1
t (x) = − 1

σ
√

T ′ − t

φ′

φ

(
ln(x1) + 1

2σ 2T ′ − σBt

σ
√

T ′ − t

)

= ln(x1) + 1
2σ 2T ′ − σBt

σ 2(T ′ − t)

and

m2
t (x) = 1(

e−1 − 1
)

(
λT ′ − ln(x2) − NP

t−
λ(T ′ − t)

− 1

)

for t ≥ 0. Since the matrix 〈M〉 is diagonal, the process μ given by Lemma 3.2 can
be taken such that μ = (m1, m2)�. We easily check that Assumption 3.3 is satisfied.
We can then apply Theorem 3.5 to the optimization problem with maturity T and we
get

• an optimal strategy for the ordinary agent given by

πord
t = αt , t ∈ [0, T ] ,

and the maximal expected utility

VF = logx + 1

2
E

[∫ T

0
α�

t d〈M〉tαt

]
= log x + e−1

(
e−1 − 1

)2

λT

4
,

• an optimal strategy for the insider given by

πins
t = αt + 1{τ≤t}μt(G) , t ∈ [0, T ] ,
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and the maximal expected logarithmic utility

VG = log x + 1

2
E

[∫ T

0
α�

t d〈M〉tαt

]
+ 1

2
E

[∫ T

0
μt(G)�d〈M − Mτ 〉tμt (G)

]

= log x + e−1

(
e−1 − 1

)2

λT

4
+ 1

2
E

⎡
⎢⎣

∫ T

0
1{t≥τ }

(
ln

(
S1

T ′
) + 1

2σ 2T ′ − σBt

)2

σ 2(T ′ − t)2
dt

⎤
⎥⎦

+ 1

2
E

⎡
⎣

∫ T

0
1{t≥τ }

(
λT ′ − ln

(
S2

T ′
) − NP

t

λ(T ′ − t)
− 1

)2

λdt

⎤
⎦ ,

• the insider’s additional expected utility

VG − VF = 1

2
E

⎡
⎢⎣

∫ T

0
1{t≥τ }

(
ln

(
S1

T ′
) + 1

2σ 2T ′ − σBt

)2

σ 2(T ′ − t)2
dt

⎤
⎥⎦

+ 1

2
E

⎡
⎣

∫ T

0
1{t≥τ }

(
λT ′ − ln

(
S2

T ′
) − NP

t

λ(T ′ − t)
− 1

)2

λdt

⎤
⎦ ,

where

E

⎡
⎢⎣

∫ T

0
1{t≥τ }

(
ln

(
S1

T ′
) + 1

2σ 2T ′ − σBt

)2

σ 2(T ′ − t)2
dt

⎤
⎥⎦=E

[∫ T

0
1{t≥τ }

(BT ′ − Bt)
2

(T ′ − t)2
dt

]

= E

[∫ T

τ∧T

1

(T ′ − t)
dt

]

= E

[
ln

(
T ′ − τ ∧ T

T ′ − T

)]

and

E

⎡
⎣

∫ T

0
1{t≥τ }

(
λT ′ − ln

(
S2

T ′
)−NP

t

λ(T ′−t)
−1

)2

λdt

⎤
⎦=E

⎡
⎣

∫ T

0
1{t≥τ }

(
NP

T ′ − NP
t

λ(T ′ − t)
− 1

)2

λdt

⎤
⎦

=E

[∫ T

τ∧T

dt

T ′ − t

]
=E

[
ln

(
T ′ − τ ∧ T

T ′ − T

)]
.

Hence, we get

VG − VF = 2E

[
ln

(
T ′ − τ ∧ T

T ′ − T

)]
.

We note that the gain of the insider is nonegative. In the particular case where
τ ≥ T , the insider has no additional information on time horizon compared
to the ordinary agent. Hence their gains should be the same. This indeed holds
by the previous formula since T ∧ τ = T . In the limit case where T ′ → T ,
the insider may achieve a terminal wealth that is not bounded due to possible
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arbitrage strategies. This is also related to the condition T ′ > T to ensure the
existence of a density on [0, T ] since pT explode as T ′ → T .

Concerning the optimal strategies we notice that πord is not affected by the
default event, contrary to the strategy πins . The reason is the following: even the
ordinary agent observes the default time which is an F-stopping time, the lack of
knowledge on the additional information G leads that his/her strategy remains to
evolve as a strategy in the filtration F and happens to be constant over time in
our simple example.

5 Conclusion

We study in this paper an optimal investment problem under default risk where
related information is considered as an exogenous risk added at the default time. The
framework we present can also be easily adapted to information risk modelling for
other sources of risks. The main contributions are twofold. First, the information flow
is added at a random stopping time rather than at the initial time. Second, we con-
sider in the optimization problem a random time which does not necessarily satisfy
the standard intensity nor density hypothesis in the credit risk. From the theoreti-
cal point of view, we study the associated enlargement of filtrations and prove that
Jacod’s (H’)-hypothesis holds in this setting. From the financial point of view, we
obtain explicit logarithmic utility maximization results and compute the gain of the
insider due to additional information.

Appendix

Proof of Proposition 2.1

Proof We begin with the proof of the “if” part. Assume that Z can be written in
the form (2.3) such that Y is F-predictable and Y (·) is P(F)⊗E-measurable. Since τ

is an F-stopping time, the stochastic interval [[0, τ ]] is a P(F)-measurable set. Hence,
the process 1[[0,τ ]]Y is F-predictable and hence is G-predictable. It remains to prove
that the process 1]]τ,+∞[[Y (G) is G-predictable. By a monotone class argument (see,
e.g., Dellacherie and Meyer 1975 Chapter I.19-24), we may assume that Y (G) is of
the form Xf (G), where X is a left-continuous F-adapted process, and f is a Borel
function on E. Thus, 1]]τ,+∞[[Xf (G) is a left-continuous G-adapted process, hence
is G-predictable. Therefore, we obtain that the process Z is G-predictable.

In the following, we proceed with the proof of the “only if” part. Let Z be a
G-predictable process. We first show that the process Z1]]0,τ ]] is an F-predictable
process. Again, by a monotone class argument, we may assume that Z is left contin-
uous. In this case the process Z1]]0,τ ]] is also left continuous. Moreover, by the left
continuity of Z, one has

Zt1{τ≥t} = lim
ε→0+ Zt−ε1{τ>t−ε}, t > 0.
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Since each random variable Zt−ε1{τ>t−ε} is Ft -measurable, we obtain that
Zt1{τ≥t>0} is also Ft -measurable, so that the process Y = Z1]]0,τ ]] is F-adapted
and hence F-predictable (since it is left continuous). Moreover, by definition one has
Zt1{τ≥t>0} = Yt1{τ≥t>0}.

For the study of the process Z on 1]]τ,+∞[[, we use the following characterization of
the predictable σ -algebra P(G). The σ -algebra P(G) is generated by sets of the form
B × [0, +∞) with B ∈ G0 and sets of the form B ′ × [s, s′) with 0 < s < s′ < +∞
and B ′ ∈ Gs− := ⋃

0≤u<s Gu. It suffices to show that, if Z is the indicator function
of such a set, then 1]]τ,+∞[[Z can be written as 1]]τ,+∞[[Y (G) with Y (·) being a
P(F) ⊗ E-measurable function.

By (2.1), G0 is generated by F0 and sets of the form A∩{τ = 0}, where A ∈ σ(G).
Clearly, for any B ∈ F0, the function 1B×[0,+∞) is already an F-predictable process.
Let U be a Borel subset of E and B = G−1(U) ∩ {τ = 0}. Let Y (·) be the P(F)⊗
E-measurable function sending (ω, t, x) ∈ � × R+ × E to 1{τ(ω)=0}1U(x). Then,
one has 1B×[0,+∞) = Y (G). By a monotone class argument, we obtain that, if Z is of
the form 1B×[0,+∞) with B ∈ G0, then there exists a P(F) ⊗ E-measurable function
Y (·) such that 1]]τ,+∞[[Z = 1]]τ,+∞[[Y (G).

In a similar way, let s, s′ ∈ (0, +∞), s < s′. By (2.1), Gs− is generated by Fs−
and sets of the form A ∩ {τ ≤ u} with u < s and A ∈ σ(G). If B ′ ∈ Fs−, then
the function 1B ′×[s,s′) is already an F-predictable process. Let U be a Borel subset
of E and B ′ = G−1(U) ∩ {τ ≤ u}. Let Y (·) be the P(F) ⊗ E-measurable function
sending (ω, t, x) ∈ �×R+×E to 1{τ(ω)≤u}1[s,s′)(t)1U(x), then one has 1B ′×[s,s′) =
Y (G). Therefore, for any process Z of the form 1B×[s,s′) with B ∈ Fs−, there exists
a P(F) ⊗ E-measurable function Y (·) such that 1]]τ,+∞[[Z = 1]]τ,+∞[[Y (G). The
proposition is thus proved.

Second proof of Theorem 2.10

The proof relies on the following Lemma, which computes the (G,Q)-predictable
bracket of an (F,P)-local martingale with a general (F,P)-local martingale. This
approach is more computational, but Lemma A.1 has its own interest, in particular
for the study of G-adapted processes. We recall that the notation I (Y (.)) has been
defined in 2.6.

Lemma A.1 Let Y be an F-adapted process and Y (·) be an F⊗E-adapted process
such that (as in Proposition 2.6)

(1) Y (x) is an (F,P)-locally square integrable martingale for any x ∈ E,
(2) the process H := I (Y (.)) is well defined and of finite variation, and Ỹ =

1[[0,τ [[Y + H is an (F,P)-locally square-integrable martingale.

Let Z be the process 1[[0,τ [[Y + 1[[τ,+∞[[Y (G). Then one has

〈M, Z〉G,Q
t = 〈

Mτ , Ỹ
〉F,P

t
−

∫

]0,t]
Mτ

s− dHs +
∫

E

(∫

]0,t]
Us−(x)d�s + 〈N, U(x)〉F,P

t

)
η(dx)

+ 〈M − Mτ , Y (x)〉F,P
∣∣∣
x=G

,

(A.1)



Probability, Uncertainty and Quantitative Risk  (2018) 3:3 Page 21 of 24

where

Ut(x) = Mτ
t Yt (x) − 〈Mτ, Y (x)〉F,P

t + E
P

[
1{τ<+∞}〈Mτ, Y (x)〉F,P

τ |Ft

]
, x ∈ E.

Proof It follows from Proposition 2.6 that Z is a (G,Q)-martingale. In the
following, we establish the equality (A.1).

We first treat the case where the martingale M begins at τ with Mτ = 0, namely
Mt1{τ≥t} = 0 for any t ≥ 0. Therefore, W(x) := MY(x) − 〈M, Y(x)〉F,P is a local
(F,P)-martingale which vanishes on [[0, τ ]]. In particular, one has

∫

]0,t]
Wu−(x) d�u = 0 and 〈N, W(x)〉P,F = 0

since both processes N and � are stopped at τ . By Proposition 2.6, we obtain that the
process W(G) = 1[[τ,+∞[[W(G) is actually a local (G,Q)-martingale. Note that

W(G) = MY(G) − 〈M, Y(x)〉F,P
∣∣
x=G

,

and 〈M, Y(x)〉P,F
∣∣
x=G

is G-predictable (by Proposition 2.1, we also use the
fact that 〈M, Y(x)〉P,F vanishes on [[0, τ ]]), therefore we obtain 〈M, Z〉G,Q =
〈M, Y(x)〉P,F

∣∣
x=G

.
In the second step, we assume that M is stopped at τ . In this case, one has

∀ t ≥ 0, Ut (x) = MtYt (x) − 〈M, Y(x)〉F,P
t + E

P

[
1{τ<+∞}〈M, Y(x)〉P,F

τ |Ft

]
,

and U(x) is a local (F,P)-martingale. Moreover, since M is stopped at τ , so is
〈M, Y(x)〉F,P. In particular, since 1{τ≤t}〈M, Y(x)〉F,P

τ is Ft -measurable, one has

∀ t ≥ 0, 1{τ≤t}MtYt (G) = 1{τ≤t}Ut(G).

In addition, by definition Ỹ = 1[[0,τ [[Y + H . Hence, one has

M1[[0,τ [[Y = M
(
Ỹ −H

) =
(
MỸ − 〈

M, Ỹ
〉F,P

)

+ 〈
M, Ỹ

〉F,P− M− · H − H− · M − [M, H ],
where M− · H and H− · M denote, respectively, the integral processes

∫ t

0
Ms− dHs, and

∫ t

0
Hs− dMs, t ≥ 0.

Since H is a predictable process of finite variation and M is an F-martingale, the
process [M, H ] is a local F-martingale (see Chapter I, Proposition 4.49 in Jacod and
Shiryaev (2003)). In particular,

M1[[0,τ [[Y − 〈
M, Ỹ

〉F,P + M− · H

is a local F-martingale. Let

At =
〈
M, Ỹ

〉F,P

t
−

∫

]0,t]
Ms−dHs+

∫

E

( ∫

]0,t]
Us−(x) d�s+〈N, U(x)〉F,P

t

)
η(dx), t ≥0.
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This is an F-predictable process, and hence is G-predictable. Moreover, this
process is stopped at τ . Let V be the (F,P)-martingale defined as

Vt = E
P

[
Aτ1{τ<+∞} |Ft

]
, t ≥ 0. (A.2)

Note that Vt1{τ≤t} = Aτ1{τ≤t} = At1{τ≤t}. Hence,

AD = V D = V−·D+D−·V +[V,D] = V−·N+V−·�+D−·V +[V,N]+[V,�],
where D = (1{τ≤t}, t ≥ 0) = N + �. In particular,

AD − V− · � − 〈V,N〉F,P = V− · N + D− · V +
(
[V,N] − 〈V,N〉P,F

)
+ [V,�]

is a local (F,P)-martingale. Therefore, one has

1{τ>t}(MtYt − At) + ∫
E

( ∫
]0,t](Us−(x) − Vs−)d�s + 〈N, U(x) − V 〉F,P

t

)

η(dx) = 1{τ>t}MtYt − At + 1{τ≤t}At + ∫
E

( ∫
]0,t] Us−(x) d�s + 〈N, U(x)〉F,P

t

)

η(dx) − (V− · �)t − 〈V,N〉F,P
t =

(
1{τ>t}MtYt − 〈M, Ỹ 〉F,P

t + (M− · H)t

)

+
(
1{τ≤t}At − (V− · �)t − 〈V,N〉F,P

t

)
,

which is a local (F,P)-martingale.
We write the process MZ − A in the form

MtZt − At = 1{τ>t}(YtMt − At) + 1{τ≤t}(Ut (G) − At) = 1{τ>t}(YtMt − At)

+ 1{τ≤t}(Ut (G) − Vt ),

where the last equality comes from (A.2). We have seen that U(x) − V is a local
(F,P)-martingale for any x ∈ E. Hence, by Proposition 2.6 we obtain that MZ − A

is a local (G,Q)-martingale.
In the final step, we consider the general case. We decompose the (F,P)-

martingale into the sum of two parts Mτ and M − Mτ , where Mτ is an (F,P)-
martingale stopped at τ , and M − Mτ is an (F,P)-martingale which vanishes on
[[0, τ ]]. Combining the results obtained in the two previous steps, we obtain the
formula (A.1).

Proof of Theorem 2.10. Since P and Q coincide on F, we obtain that M is an (F,Q)-
martingale. Moreover, since G is independent of F under the probability Q, M is also
a (G,Q)-martingale.

We take Z = L where we recall that Lt = dQ
dP

|Gt
and we compute 〈M, Z〉G,Q.

Keeping the notation of A.1 we have

Yt = 1, Yt (x) = pt (x), t ≥ 0, x ∈ E.

Since
∫
E

Yt (x) η(dx) = 1, we have

Ht =
∫

E

(∫

]0,t]
Yu−(x)d�u + 〈N, Y (x)〉F,P

t

)
η(dx) = �t , t ≥ 0,

and
Ỹt = 1{τ>t}Yt + Ht = 1{τ>t} + �t = 1 − Nt , t ≥ 0 .
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Moreover, one has∫

E

Ut(x)η(dx) =
∫

E

(
Mτ

t Yt (x) − 〈Mτ, Y (x)〉F,P
t

+E
P

[
〈Mτ, Y (x)〉F,P

τ 1{τ<+∞}|Ft

])
η(dx) = Mτ .

Therefore, by Lemma A.1 one has

〈M, Z〉G,Q =−〈Mτ,N〉F,P−Mτ−·�+Mτ−·�+〈Mτ,N〉F,P+〈M−Mτ,Y (x)〉F,P
∣∣∣
x=G

= 〈M − Mτ, Y (x)〉F,P
∣∣∣
x=G

.

Finally, since M is a (G,Q)-local martingale, by Girsanov’s theorem (cf. Jacod
and Shiryaev 2003 Chapter III, Theorem 3.11), the process

M̃t = Mt −
∫

]0,t]
1

Zs−
d〈M, Z〉G,Q

s , t ≥ 0

is a local (G,P)-martingale. The theorem is thus proved.
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