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Abstract We develop a dynamic optimization framework to assess the impact of
funding costs on credit swap investments. A defaultable investor can purchase CDS
upfronts, borrow at a rate depending on her credit quality, and invest in the money
market account. By viewing the concave drift of the wealth process as a continuous
function of admissible strategies, we characterize the optimal strategy in terms of a
relation between a critical borrowing threshold and two solutions of a suitably cho-
sen system of first order conditions. Contagion effects between risky investor and
reference entity make the optimal strategy coupled with the value function of the con-
trol problem. Using the dynamic programming principle, we show that the latter can
be recovered as the solution of a nonlinear HJB equation whose coeffcients admit
singular growth. By means of a truncation technique relying on the locally Lipschitz-
continuity of the optimal strategy, we establish existence and uniqueness of a global
solution to the HJB equation.

Introduction

The vast majority of literature studying portfolio allocation strategies across fixed-
income securities has focused on a single source of defaults. Kraft and Steffensen
(2005) analyze optimal investment in an asset defaulting when an economic state
process falls below a given threshold. Bielecki and Jang (2006) derive optimal invest-
ment strategies for an investor allocating her wealth among a defaultable bond,
risk-free account and stock, assuming constant default intensity. Bo et al. (2010)
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consider a logarithmic investor maximizing utility from consumption in market
model consisting of a defaultable perpetual bond, default-free stock, and money mar-
ket account. Capponi and Figueroa-López (2014) study an economy consisting of a
stock and of a defaultable bond whose price processes are modulated by an observ-
able Markov chain. Jiao and Pham (2011) decompose a global optimal investment
problem into sub-control problems defined in a progressively enlarged filtration in an
economy consisting of a risk-free bond and a stock subject to counterparty risk. Few
other studies have considered portfolio frameworks consisting of multiple defaultable
securities. Using a static model, Giesecke et al. (2014) study the portfolio selection
problem of an investor who maximizes the mark-to-market value of a fixed income
portfolio of credit default swaps. Bielecki et al. (2008) study how dynamic investment
in credit default swaps may be used to replicate defaultable contingent claims.

When financing investment strategies, the investor is typically charged a higher
rate for borrowing than for lending. In the absence of default risk, the divergence
between borrowing and lending rates has been analyzed both in the context of claim
valuation by Korn (1995), and of hedging in incomplete markets by Cvitanić and
Karatzas (1993). We also refer to El et al. (1997) who study the super-hedging price
of contingent claims under asymmetry of borrowing and lending interest rates via
nonlinear backward stochastic differential equations. When financing credit invest-
ment strategies referencing high-risk names, the investor would need to borrow at her
own refinancing rate rather than at the repo rate. This rate for unsecured borrowing
depends on the credit quality of the investor who will be charged a spread reflect-
ing her default likelihood as perceived by the market. Moreover, contagion effects
generated from the default risk of the credit sensitive security introduce complex
dependence patterns between the borrowing spreads and the mark-to-market price of
the CDS security. We also remark that the recent crisis has underscored the impor-
tance of including funding costs in optimal replication and investment strategies so
to account for liquidity and counterparty risk, see also Crépey (2015) and Bielecki
and Rutkowski (2015).

The main goal of the paper is to rigorously analyze the impact of borrowing costs
incurred by a defaultable investor on her optimal allocation strategy. We construct a
dynamic optimization framework where a defaultable investor can buy CDS upfronts,
borrow at a premium over the risk-free rate, and invest in a money market account at
the risk-free rate. The choice of upfront CDSs reflects regulatory market practices fol-
lowing the Big Bang Protocol (ISDA News Release 2009), and requiring distressed
credits to trade with an upfront fee plus a running fixed coupon depending on the
credit quality of the reference entity. The borrowing rate of the investor accounts both
for her credit quality and for feedback effects generated by default of the reference
entity. The latter are modeled using a contagion credit risk model with interacting
default intensities, see also Jarrow and Yu (2001) for more explicit examples and
Frey and Backhaus (2008) for a theoretical illustration. The investor maximizes her
power utility from terminal wealth until the earlier of either her default time or the
investment horizon.

Building on (Kraft and Steffensen 2005), we use the dynamic programming
principle to characterize the HJB equations corresponding to the different default
states. When the investor defaults, the solution to the HJB equation is specified
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as a boundary condition. Due to borrowing costs incurred by the investor when
financing her purchases, the wealth process admits a concave drift, which is not
differentiable with respect to the investment strategy. This prohibits the use of first-
order conditions for analyzing the optimal strategy. Moreover, because of defaults
and contagion effects, we have to deal with the presence of jumps both in the price
and in the wealth dynamics, and with concave drift appearing only in the wealth
but not in the price dynamics. This leads us to apply a different method which
considers the concave drift as a continuous function of the admissible strategy ψ ,
differentiable everywhere except at a critical point �. Such a critical point defines
two regions where the optimal admissible control may lie. More specifically, we
decompose the component H(ψ) of the HJB equation yielding the optimal strategy
as H(ψ) = 1ψ≤�H1(ψ) + 1ψ>�H2(ψ), where H1(ψ) and H2(ψ) are two con-
tinuously differentiable functions. We analyze the solutions of the system of first
order conditions associated with H1(ψ) and H2(ψ), both seen as functions on their
entire domains. The similar method has been proposed in Bo and Capponi (2017)
for studying the fixed-income portfolio optimization with borrowing costs. We then
characterize the optimal strategy in terms of a relation between the critical point and
the previously established solutions. Default contagion makes the optimal strategy
coupled with the value function, which is recovered as the solution of the correspond-
ing nonlinear ordinary differential HJB equation. Moreover, we can prove that the
coefficients of this equation admit a singular growth. By means of a delicate analysis,
we establish the existence and uniqueness of a global solution to the HJB equation in
two main steps. First, we prove the locally Lipschitz-continuity of the optimal strat-
egy when seen as a function of the value function (see Lemma 8 for details). We then
show that if a solution to the HJB equation exists, then it must have a strictly pos-
itive uniform lower bound. This allows us to develop a novel truncation technique
to remove the singularity in the HJB equation, and subsequently prove the existence
and uniqueness of a global solution to the HJB equation.

The rest of the paper is organized as follows. “The model” section develops the
default and market model. “Price dynamics and borrowing rates” section provides
the dynamics of the CDS price process and analyzes borrowing rates. “Dynamic
investment problem” section formulates the dynamic investment problem. “Optimal
feedback strategy” section studies optimal investment strategies, while “Solvability
of HJB equations” section establishes existence and uniqueness of solutions for the
HJB equations. Some technical proofs are delegated to the Appendix.

The model

We describe the default model in “Default contagion model” section and the market
model in “The market model” section. Throughout the paper, we refer to “1” as the
reference entity of the CDS, and to “I” as the investor.

Default contagion model

The default state is described by a 2-dimensional default indicator process H(t) =
(H1(t), HI (t)), t ≥ 0, supported by a filtered probability space (�,G,Q). Here Q
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denotes the risk-neutral probability measure. Further, Hi(t) = 1 if i has defaulted by
time t and Hi(t) = 0 otherwise, i ∈ {1, I }. This means that the state space of the
default indicator process H = (H(t); t ≥ 0) is given by S := {0, 1}2. The default
time of the i-th name is defined by τi = inf{t ≥ 0; Hi(t) = 1} for i ∈ {1, I }. Then it
holds that Hi(t) = 1{τi≤t} for t ≥ 0.

We model default contagion through a Markovian model with interacting intensi-
ties. The default indicator process H is assumed to follow a continuous time Markov
chain on S, whereH(t) transits to the neighbouring stateH1(t) := (1−H1(t), HI (t))

at rate 1{H1(t)=0}h1,H(t)(t), and to the neighbouring stateHI (t) := (H1(t), 1−HI (t))

at rate 1{HI (t)=0}hI,H(t)(t). Here for i ∈ {1, I }, hi,z(t) is a positive bounded measur-
able function with a strictly positive lower bound. We also refer the reader to Frey and
Backhaus (2008) for explicit probabilistic models under this setup. Hence, H admits
the following Q-infinitesimal generator given by

Agz(t) =
∑

j∈{1,I }

(
1 − zj

)
hj,z(t)

[
gzj (t) − gz(t)

]
, (1)

where gz(t) is an arbitrary measurable function and the default state vectors

z1 := (1 − z1, zI ) , zI := (z1, 1 − zI ) , z ∈ S. (2)

The market filtration is given by Gt = σ(H(s); s ≤ t). We take the right contin-
uous version of Gt , i.e. Gt := ∩ε>0Gt+ε (see also Belanger et al. (2004)). Using the
Dynkin’s formula by choosing gz(t) = zi , it follows that

ξi(t) := Hi(t) −
∫ t

0
(1 − Hi(s))hi,H(s)(s)ds, t ≥ 0 (3)

is a martingale. At time 0, we place ourselves in the scenario where all names do not
default, i.e.H(0) = 0, where 0 is a two dimensional vector consisting of zero entries.

The market model

Consider a financial market consisting of a lending account, a borrowing account and
an upfront CDS.

- Lending account. The investor lends at a constant risk-free rate r > 0. The time-t
price of one share of his lending account is Bt = ert for t ≥ 0.

- Borrowing account. We proxy the borrowing costs incurred by investor with her
bond credit spreads. We also refer to Chen (2010) for a dynamic model address-
ing the credit spread puzzle along with its relation to borrowing costs. In our
model, credit spreads account both for the default risk of the investor and for
contagion effects induced by the reference entity underlying the CDS. More

specifically, the borrowing account of the investor is given by B̄t = e
∫ t
0 rH(s)(s)ds ,
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t ≥ 0, where rH(t)(t) denotes the default state dependent borrowing rate. The
latter will be analyzed in detail in “Borrowing rates” section.

- Upfront CDS. In a traditional running CDS contract a spread is paid throughout
the life of the contract. The Big Bang Protocol introduced by ISDANews Release
(2009) requires the premium leg to perform one of the following actions:

1. Make one single payment at the initiation of the CDS contract for protection
until maturity.

2. Make one upfront payment plus pay a running premium until the earlier of
a credit event or maturity. The running premium is set much lower than it
would be under the traditional method.

Upfront CDSs greatly reduce the counterparty exposure of the protection seller
to the protection buyer. Currently, most CDS trades follow the upfront mechanism,
especially for distressed credits. For a given loss rate L > 0 paid at default of the
reference entity “1”, we choose the contractual running spread premium ν > 0 so
that it satisfies the following upfront condition:

(A1) L inft≥0 h1,00(t) − ν > 0.

The above condition states that the running premium ν is decided in such a way
that the minimum expected loss rate paid throughout the life of the transaction
L inft≥0 h1,00(t) is always higher than the spread premium ν. Consequently, a posi-
tive money amount would have to be posted by the protection buyer at the inception
of the trade. Let T1 > 0 be the maturity of the CDS. Then, the dividend process is
given by, for t ∈ [0, T1],

Dt := LH1(t) − ν

∫ t

0
(1 − H1(s))ds, D0 = 0. (4)

The ex-dividend price of the CDS at time-t is given by

Ct = (1 − H1(t))BtEt

[∫ T

t

B−1
u dDu

]
. (5)

Here Et denotes the expectation operator conditional on Gt under Q. Throughout
the paper, we consider the following contagion condition.

(A2) The default intensities satisfy

h1,01(t) > h1,00(t) for t ∈ [0, T1], and hI,10(t) > hI,00(t) for t ∈ [0, T ],
where T1 > 0 is the maturity of the CDS, and T ∈ (0, T1) denotes the terminal
time of the borrowing account. Such a condition captures the self-exciting feature of
default events, empirically tested in several studies, see, for instance, Azizpour et al.
(2017) for the case of U.S. corporate defaults.
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Price dynamics and borrowing rates

We price CDS in “CDS pricing” section and analyze the investor’s borrowing costs
in “Borrowing rates” section.

CDS pricing

From (5), the price process of the CDS can be rewritten as, for t ∈ [0, T1],
Ct = (1 − H1(t))
H(t)(t). (6)

Here 
z(t), (t, z) ∈ [0, T1]×S, is the price function of the CDS contract given by


z(t) := L
(1)
z (t) − ν
(2)

z (t), (7)

where for (t, z) ∈ [0, T1] × S,


(1)
z (t) := Et,z

[
H1(T1)e

− ∫ T1
t r(1−H1(u))du

]
,


(2)
z (t) := Et,z

[∫ T1
t

e− ∫ u
t rds(1 − H1(u))du

]
.

Using Feymann-Kac formula, 
(1)
z (t) and 


(2)
z (t) solve respectively

⎧
⎨

⎩

(
∂
∂t

+ A
)



(1)
z (t) = r(1 − z1)


(1)
z (t), 


(1)
z (T1) = z1,

(
∂
∂t

+ A
)



(2)
z (t) + (1 − z1) = r


(2)
z (t), 


(2)
z (T1) = 0,

(8)

where the operator A is given by (1). It is not difficult to get that

Lemma 1 For (t, z) ∈ [0, T1] × S, the CDS price function 
z(t) has the closed-
form representations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


10(t) = 
11(t) = L;


01(t) = ∫ T1
t

(
Lh1,01(s) − ν

)
e− ∫ s

t (r+h1,01(u))duds;


00(t) = ∫ T1
t

(
Lh1,00(s) − ν + hI,00(s)
01(s)

)
e− ∫ s

t (r+h1,00(u)+hI,00(u))duds.

(9)

Also for all t ∈ [0, T1), 
01(t) > 
00(t), and 
01(T1) = 
00(T1) = 0.

Lemma 2 The Q-dynamics of the CDS price process is given by, for t ∈ [0, T1),
dCt = (1 − H1(t))

[
rCt + (

ν − h1,H(t)(t)L
)]

dt − Ct−dξ1(t)

+(1 − H1(t−))
[

HI (t−)(t) − Ct−

]
dξI (t). (10)

The investor wishes to optimize his expected utility under the measure that
describes the actual distribution of risk factors governing the market value. We pro-
vide a formula which allows for identifying the historical measure P from the risk
neutral measure Q under which the price processes are observed. Let λi,z(t) be a
bounded measurable function defined on (t, z) ∈ R+ × S, which takes values on
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(−1, ∞), where i ∈ {1, I }. Assume that the process X = (Xt ; t ≥ 0) satisfies the
following SDE given by

dXt

Xt−
=

∑

i∈{1,I }
λi,H(t−)(t)dξi(t), X0 = 1, (11)

where theQ-default martingale process ξi is defined by (3). Define a new probability
measure P � Q on GT by dP = XT dQ. Then, for i ∈ {1, I },

ξPi (t) := Hi(t) −
∫ t

0
(1 − Hi(s)) hPi,H(s)(s)ds, t ∈ [0, T ] (12)

is a P-martingale, where the relation between the P-default intensity of the i-th default
indicator Hi(t) and its Q-default intensity is given by

hPi,z(t) = hi,z(t)
(
1 + λi,z(t)

)
, (t, z) ∈ [0, T ] × S.

Then from Lemma 2, it follows that the P-dynamics of the CDS price process is
given by for t ∈ [0, T1),

dCt = (1 − H1(t))
[
rCt + (

ν − h1,H(t)(t)L
)]

dt

−Ct−d

{
ξP1 (t) +

∫ t

0
(1 − H1(s))λ1,H(s)(s)h1,H(s)(s)ds

}
(13)

+(1 − H1(t−))
[

HI (t−)(t) − Ct−

]
d

×
{
ξPI (t) +

∫ t

0
(1 − HI (s))λI,H(s)(s)hI,H(s)(s)ds

}
.

Borrowing rates

The default state dependent borrowing rate function of the investor rz(t), (t, z) ∈
[0, T ]×S, is given by the yield spread of a zero coupon bond written by the investor
and expiring at T. For (t, z) ∈ [0, T ] × S, we use Φz(t, T ) to denote the time-t price
function of the investor bond with maturity T > t , given by

Φz(t, T ) = Et,z

[
e− ∫ T

t rds(1 − HI (T ))
]
. (14)

Following Duffie and Singleton (2003), Section 5.3, define the default state depen-
dent borrowing rate of the investor when the investor does not default at time t as, for
z1 ∈ {0, 1},

rz10(t) := 1

T − t
log

(
1

Φz10(t, T )

)
, t ∈ [0, T ). (15)

When time to maturity approaches zero, we define rz10(T ) with z1 ∈ {0, 1} as the
limiting values, i.e.

rz10(T ) := lim
t↑T

1

T − t
log

(
1

Φz10(t, T )

)
. (16)

However, when the investor has defaulted at time t, he can not invest the bor-
rowing account anymore, and hence the borrowing rates of the investor rz11(t) with
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z1 ∈ {0, 1} are not needed. In order to be consistent mathematically, we set rz11(t) =
0 for all t ∈ [0, T ].

We next develop an explicit representation of Φz(t, T ). Recall the operator A
given by (1). It follows from (14) that on (t, z) ∈ [0, T ) × S,

(
∂

∂t
+ A

)
Φz(t, T ) = rΦz(t, T ), (17)

and Φz(T , T ) = 1 − zI . Then for t ∈ [0, T ],
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Φ01(t, T ) = Φ11(t, T ) = 0;

Φ10(t, T ) = e− ∫ T
t (r+hI,10(u))du;

Φ00(t, T ) = e− ∫ T
t (r+h1,00(u)+hI,00(u))du

+Φ10(t, T )
∫ T

t
h1,00(s)e

− ∫ s
t h1,00(u)due

∫ s
t (hI,10(u)−hI,00(u))duds.

(18)

Also for all t ∈ [0, T1), Φ10(t, T ) < Φ00(t, T ), and Φ10(T , T ) = Φ00(T , T ) = 1.
In the following, we analyze the borrowing rate functions rz10(t) defined by (15).

Using (15), we have

r10(t) = 1

T − t
log

(
1

Φ10(t, T )

)
, r00(t) = 1

T − t
log

(
1

Φ00(t, T )

)
. (19)

When time to maturity approaches zero, r10(T ) and r00(T ) are given by the limit-
ing values (16). The exact expressions are given in the following lemma whose proof
is reported in the Appendix.

Lemma 3 It holds that r10(T ) = r + hI,10(T ) and r00(T ) = r + hI,00(T ). More-
over r + mI,10 ≤ r10(t) ≤ r + m̄I,10 and r + mI,00 ≤ r00(t) < r + m̄1,00 + m̄I,00
for all t ∈ [0, T ]. Here mi,z := inft∈[0,T ] hi,z(t) and m̄i,z := supt∈[0,T ] hi,z(t).

Dynamic investment problem

We derive the wealth dynamics in “Wealth process” section and formulate the optimal
control problem in “The optimal control problem” section.

Wealth process

We consider an investor who wants to maximize her power utility from terminal
wealth at time T by dynamically allocating her wealth across a CDS, financing her
purchases using the borrowing account, and lending using the risk-free bank account.
The investor has neither intermediate consumption nor capital income to support her
purchase of financial assets. Denote by φ(t) the number of shares of the CDS that
the investor buys (φ(t) > 0) or sells (φ(t) < 0) at time t. Similarly, φl

0(t) represents
the number of shares invested in the lending account, and φb(t) the number of shares
invested in her borrowing account. By definition φl

0(t) ≥ 0, while φb(t) ≤ 0. We
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assume that simultaneous borrowing and lending is not efficient, i.e., φl(t)φb(t) = 0.
We remark that similar assumptions have been made by Bielecki and Rutkowski
(2015) and, by Mercurio (2015). The wealth process of a portfolio φ = (φ, φl, φb)

equals

V
φ
t = φ(t)Ct + φl(t)Bt + φb(t)B̄t . (20)

As usual, we require the portfolio process φ to be G-predictable. Moreover, for

t ∈ [0, T ], we use πl(t) := φl(t)Bt

V
φ
t−

to denote the proportion of wealth invested in the

lending account. We use πb(t) := φb(t)B̄t

V
φ
t−

to denote the proportion of wealth invested

in the borrowing account. Then πl(t) ≥ 0, πb(t) ≤ 0 and πl(t)πb(t) = 0.
Recall (4). Using the self-financing condition, we can describe the wealth process

as V
φ
0 = v and

dV
φ
t = φ(t)d (Ct + Dt) + V

φ
t πb(t)

dB̄t

B̄t

+ V
φ
t π l(t)

dBt

Bt

. (21)

We introduce ψ(t) = φ(t)

V
φ
t−

for the CDS security, obtained dividing the number of

CDS shares by the current wealth level. Using (20), ψ(t)Ct + πb(t) + πl(t) = 1
on τI ∧ T > t . Using the conditions πb

0 (t) ≤ 0, πl
0(t) ≥ 0 and πb

0 (t)πl
0(t) = 0, it

follows that

πb(t) = {1 − ψ(t)Ct }− , πl(t) = {1 − ψ(t)Ct }+ . (22)

We used the notation x− := min{x, 0} and x+ := max{x, 0} for x ∈ R. We next
define the class of admissible strategies for the investor.

Definition 1 Let (t, v, z) ∈ [0, T ] × R+ × S. The admissible control set Ũt =
Ũt (v, z), is a class ofG-predictable locally bounded feedback trading strategies given
byψ(u) = ψH(u−)(u, V

v,ψ
u− ) for u ∈ [t, T ]. Here V

v,ψ
u > 0 for u ∈ [t, T ] denotes the

positive wealth process associated with the strategy ψ when V
v,ψ
t = v andH(t) = z.

In particular, in the state z = (z1, 1) with z1 ∈ {0, 1}, we set the corresponding
optimal feedback strategy to ψ∗

z11
(u, v) = π

l,∗
z11

(u, v) = π
b,∗
z11

(u, v) = 0 for (u, v) ∈
[t, T ]×R+. Here π

l,∗
z (·) and π

b,∗
z (·) denote the optimal feedback fractions of wealth

invested in the borrowing and the lending account respectively. We use Ut to denote
the set of all locally bounded feedback functions ψz(u, v) for (u, v, z) ∈ [t, T ] ×
R+ × S.

Using (13), it follows that
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Lemma 4 Let ψ ∈ Ũt for t ∈ [0, T ]. Then, the dynamics of the wealth V
ψ
u for

u ∈ [t, T ], is given by V
ψ
t = v and

dV ψ
u = rV ψ

u du + V ψ
u

{
ψ(u)(
H(u)(u) − L)h1,H(u)(u) + (

1 − ψ(u)
H(u)(u)
)

−− (rH(u)(u) − r)ψ(u)
[

HI (u)(u) − 
H(u)(u)

]
(1 − HI (u))hI,H(u)(u)

}
du

+ V
ψ
u−ψ(u)

(
L − 
H(u−)(u)

)
dH1(u) + V

ψ
u−ψ(u)

[

HI (u−)(u) − 
H(u−)(u)

]
dHI (u).

(23)

The optimal control problem

Consider the power utility U(v) = γ −1vγ for the initial wealth v > 0 and the risk-
aversion parameter γ ∈ (0, 1). The value function of our optimal control problem is
given by

wz(t, v) := sup
ψ∈Ũt

EP

[
U
(
V

ψ

T ∧τ t
I

)
|V ψ

t = v, H(t) = z
]
. (24)

Here the stopping time τ t
I := inf{s ≥ t; HI (s) = 1}.

Consider the default state z = (z1, 1) for z1 ∈ {0, 1}, i.e., corresponding to a
defaulted investor. This implies that she will not invest in any security. Hence, her
terminal wealth will be the same as her current wealth. As a result, the value function
in this state is given by, for z ∈ {0, 1},

wz11(t, v) = U(v), ∀ (t, v) ∈ [0, T ] × R+. (25)

For the default state z = (z1, 0) for z1 ∈ {0, 1}, i.e. corresponding to the alive
investor, using the above dynamic programming principle we obtain the following
HJB equation in these states

sup
ψ∈Ut

(
∂

∂t
+ Lψ

v + Lψ
J

)
wz10(t, v) = 0 (26)

with terminal condition wz10(T , v) = U(v) for all (v, z1) ∈ R+ × {0, 1}. Here for
ϕz(t, v) belonging to C1 w.r.t. (t, v), the operators

Lψ
v ϕz(t, v) := v

∂ϕz(t, v)

∂v

{
r + (1 − ψ
z(t))

− (rz(t) − r)

+ψ
[
(
z(t) − L)h1,z(t) − (


zI (t) − 
z(t)
)
(1 − zI )hI,z(t)

] }
, (27)

Lψ
J ϕz(t, v) := [

ϕz1 (t, v + vψ (L − 
z(t))) − ϕz(t, v)
]
(1 − z1)h

P

1,z(t)

+ [ϕzI
(
t, v + vψ

(

zI (t) − 
z(t)

))− ϕz(t, v)
]
(1 − zI )h

P

I,z(t).

Optimal feedback strategy

The aim of this section is to find the optimal feedback strategy to our portfolio
optimization problem (25)–(26).
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Let z = (z1, zI ) ∈ S be an arbitrary default state. Recall that at the state zI = 1 in
which the credit event of the investor has occurred. Using Definition 1, the optimal
feedback strategy ψ∗

z11
(t) = π

l,∗
z11

(t) = π
b,∗
z11

(t) = 0. If z1 = 1 and zI = 0, i.e., the
CDS defaults but the investor’s credit event has not yet occurred, then he can only
invest in the risk-free asset and hence

ψ∗
10(t) = 0, π

b,∗
10 (t) = 0, π

l,∗
10 (t) = 1. (28)

The nontrivial case is when no credit event has occurred, i.e. z = (0, 0). We next
characterize the optimal feedback strategy in this state. First, we postulate (and later
verify) that the value function admitting wz(t, v) = vγ ϕz(t) where ϕz(t) is a positive
function which depends on state z ∈ S. It then follows directly from (25) that

ϕ01(t) = ϕ11(t) = γ −1, t ∈ [0, T ]. (29)

For (ψ; t, ϕ) ∈ R × [0, T ] × R+, define

H(ψ; t, ϕ) := γ
{
r + (1 − ψ
00(t))

− (r00(t) − r)

+ψ
[
(
00(t) − L) h1,00(t) − (
01(t) − 
00(t)) hI,00(t)

] }
ϕ

+{ [1 + ψ (L − 
00(t))]
γ ϕ10(t) − ϕ

}
hP1,00(t)

+{ [1 + ψ (
01(t) − 
00(t))]
γ ϕ01(t) − ϕ

}
hPI,00(t). (30)

Equation (26) in the state z = (0, 0) can then be rewritten as

ϕ′(t) + sup
ψ∈R

H(ψ; t, ϕ(t)) = 0. (31)

The aim is to analyze ψ → H(ψ; t, ϕ) for characterizing the optimal feedback
strategy ψ∗ in the state z = (0, 0). Noting that for fixed (t, ϕ) ∈ [0, T ] × R+,
H(ψ; t, ϕ) is not differentiable at ψ = �(t) := 
00(t)

−1 > 0. Hence the first-order
condition for optimality cannot be applied. To this purpose, we introduce

g1(ψ; t, ϕ) := [
(
00(t) − L)h1,00(t) − (
01(t) − 
00(t)) hI,00(t)

]
ϕ

+ [1 + ψ (L − 
00(t))]
γ−1 (L − 
00(t)) hP1,00(t)ϕ10(t) (32)

+ [1 + ψ (
01(t) − 
00(t))]
γ−1 (
01(t) − 
00(t)) hPI,00(t)ϕ01(t),

g2(ψ; t, ϕ) := g1(ψ; t, ϕ) − 
00(t)(r00(t) − r)ϕ.

It can be seen from (32) that both g1 and g2 are strictly decreasing and continuous
in ψ . On the other hand, to guarantee that the wealth process is always positive after
a default in terms of Eq. (23), the feedback strategy ψ should satisfy the following
admissibility condition:

ψ = ψ(t, ϕ) > max

{
− 1

L − 
00(t)
, − 1


01(t) − 
00(t)

}
= − 1

L − 
00(t)
, (33)

where the last equality above follows from Lemma 1.
We next characterize the optimal feedback strategy satisfying (33). The key idea

behind our method is to decompose the function as

H(ψ; t, ϕ) = 1ψ≤�(t)H1(ψ; t, ϕ) + 1ψ>�(t)H2(ψ; t, ϕ). (34)



Page 12 of 23 L. Bo

Here the decomposing functions

H1(ψ; t, ϕ) := γ
{
r + ψ

[
(
00(t) − L)h1,00(t) − (
01(t) − 
00(t))hI,00(t)

] }
ϕ

+{ [1 + ψ(L − 
00(t))]
γ ϕ10(t) − ϕ

}
hP1,00(t)

+{ [1 + ψ (
01(t) − 
00(t))]
γ ϕ01(t) − ϕ

}
hPI,00(t), (35)

H2(ψ; t, ϕ) := H1(ψ; t, ϕ) + γ (1 − ψ
00(t)) (r00(t) − r)ϕ.

It is easy to see that gi is the first-order derivative of γ −1Hi w.r.t. ψ for i = 1, 2.
Then we have the following lemma whose proof is reported in the Appendix.

Lemma 5 Let (t, ϕ) ∈ [0, T ] × R+ be fixed. For each i = 1, 2, there exists
a unique finite ψ

f oc
i > − 1

L−
00(t)
satisfying (33) such that gi(ψ

f oc
i ; t, ϕ) = 0.

Moreover, ψ
f oc
i , viewed as a function of (t, ϕ), is C1. In addition, for all (t, ϕ) ∈

[0, T ] × R+ it holds that

− 1

L − 
00(t)
< ψ

f oc

2 (t, ϕ) < ψ
f oc

1 (t, ϕ) < +∞. (36)

Using Lemma 5, we characterize the optimal feedback strategy in terms of a rela-
tion between the critical point �(t) and the solutions ψ

f oc
i of the system of first order

condition equations.

Proposition 1 For i = 1, 2 and (t, ϕ) ∈ [0, T ] × R+, let ψ
f oc
i = ψ

f oc
i (t, ϕ) be

as obtained in Lemma 5 above. Then in the state z = (0, 0),

(i) The optimum ψ∗(t, ϕ) = ψ
f oc

2 (t, ϕ) if and only if the critical point �(t) ≤
ψ

f oc

2 (t, ϕ). Correspondingly, the optimal feedback borrowing strategy is given

by πb,∗(t, ϕ) = 1 − ψ
f oc

2 (t, ϕ)
00(t) and the optimal feedback lending
strategy is πl,∗(t, ϕ) = 0;

(ii) The optimum ψ∗(t, ϕ) = �(t) if and only if the critical point ψ
f oc

2 (t, ϕ) ≤
�(t) ≤ ψ

f oc

1 (t, ϕ). Correspondingly, the optimal feedback borrowing and
lending strategies are given by πb,∗(t, ϕ) = πl,∗(t, ϕ) = 0;

(iii) The optimum ψ∗(t, ϕ) = ψ
f oc

1 (t, ϕ) if and only if the critical point �(t) ≥
ψ

f oc

1 (t, ϕ). Correspondingly, the optimal feedback borrowing strategy is given
by πb,∗(t, ϕ) = 0 and the optimal feedback lending strategy is πl,∗(t, ϕ) =
1 − ψ

f oc

1 (t, ϕ)
00(t).

Proof For fixed (t, ϕ) ∈ [0, T ] × R+, recall the decomposition (34) with Hi ,
i = 1, 2 defined in (32). We first prove the necessity. Consider the case (i). In
this case, g1(ψ; t, ϕ) > 0 for all ψ ≤ �(t). This implies that the continuous func-
tion H1(ψ; t, ϕ) is increasing w.r.t. ψ ≤ �(t). Moreover, for ψ > �(t), ψ

f oc

2 (t, ϕ)

is the unique local optimum for the continuous function ψ → H2(ψ; t, ϕ) using
Lemma 5. Since in case (i) ψ

f oc

2 (t, ϕ) > �(t), we also have that the continuous func-

tion ψ → H2(ψ; t, ϕ) is increasing for �(t) ≤ ψ ≤ ψ
f oc

2 (t, ϕ), and decreasing
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when ψ > ψ
f oc

2 (t, ϕ). This also implies that ψ∗(t, ϕ) = ψ
f oc

2 (t, ϕ) (see Fig. 1).

On the other hand, since ψ
f oc

2 (t, ϕ) > �(t) in case (i), then the optimal fraction
invested in the borrowing account is given by πb,∗(t, ϕ) = (1− ψ∗(t, ϕ)
00(t))

− =
(1 − ψ

f oc

2 (t, ϕ)
00(t))
− = 1 − ψ

f oc

2 (t, ϕ)
00(t) < 0. Hence, the optimal fraction
of wealth in the lending account is πl,∗(t, ϕ) = 0 using (22).

For case (ii), g1(ψ; t, ϕ) > 0 for all ψ ≤ �(t), and g2(ψ; t, ϕ) < 0 for all ψ ≥
�(t). This implies that the continuous function H1(ψ; t, ϕ) is increasing w.r.t. ψ ≤
�(t), while the continuous function H2(ψ; t, ϕ) is decreasing w.r.t. ψ ≥ �(t). Since
ψ

f oc

2 (t, ϕ) < �(t) < ψ
f oc

1 (t, ϕ) in case (ii), then ψ∗(t, ϕ) = �(t) (see Fig. 2).
On the other hand, in terms of (22), the optimal fraction invested in the borrowing
account is given by πb,∗(t, ϕ) = (1 − ψ∗(t, ϕ)
00(t))

− = (1 − �(t)
00(t))
− =

0, and the optimal fraction invested in the lending account is πl,∗(t, ϕ) = (1 −
ψ∗(t, ϕ)
00(t))

+ = 0.
For case (iii), g2(ψ; t, ϕ) < 0 for all ψ ≥ �(t). This implies that the contin-

uous function H2(ψ; t, ϕ) is decreasing w.r.t. ψ ≥ �(t). Note that for ψ < �(t),
using Lemma 5, the continuous function ψ → H1(ψ; t, ϕ) admits a unique local
optimum ψ

f oc

1 (t, ϕ) . Since in case (iii), �(t) > ψ
f oc

1 (t, ϕ), the continuous function

ψ → H1(ψ; t, ϕ) is decreasing when ψ
f oc

1 (t, ϕ) ≤ ψ ≤ �(t), and increas-

ing when ψ < ψ
f oc

1 (t, ϕ). Consequently, the optimum of ψ → H(ψ; t, ϕ) is

ψ
f oc

1 (t, ϕ) (see Fig. 3). On the other hand, since �(t) > ψ
f oc

1 (t, ϕ), the opti-
mal fraction of wealth invested in the borrowing account is given by πb,∗(t, ϕ) =
(1 − ψ

f oc

1 (t, ϕ)
00(t))
− = 0, and hence the optimal fraction of wealth invested in

the lending account is πl,∗(t, ϕ) = (1−ψ
f oc

1 (t, ϕ)
00(t))
+ = 1−ψ

f oc

1 (t, ϕ)
00(t)

using (22).
We next check sufficiency. For case (i), given that the optimum ψ∗(t, ϕ) =

ψ
f oc

2 (t, ϕ), assume by contradiction that the critical point �(t) > ψ
f oc

2 (t, ϕ).

Consider first the case where ψ
f oc

2 (t, ϕ) < �(t) < ψ
f oc

1 (t, ϕ). Then, using the

g1( )

g2( )

1
foc 

2
foc 

0
     -1

L - 00

0 1
foc 

2
foc 00

H1 H2

     -1

L - 00

Fig. 1 The optimum ψ∗(t, ϕ) in case (i)
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g1( )

g2( )

1
foc 

2
foc 

00     -1

L - 00

1
foc 

2
foc 00

H1

H2

     -1

L - 00

Fig. 2 The optimum ψ∗(t, ϕ) in case (ii)

necessary result proved above in (ii), it follows that the optimum ψ∗(t, ϕ) =
�(t), which contradicts the given assumption ψ∗(t, ϕ) = ψ

f oc

2 (t, ϕ), since

�(t) > ψ
f oc

2 (t, ϕ) in this subcase. Next consider the remaining case where

�(t) ≥ ψ
f oc

1 (t, ϕ). Using the necessary result proved above in (iii), we con-

clude that the optimum ψ∗(t, ϕ) = ψ
f oc

1 (t, ϕ), which also contradicts the given

assumption ψ∗(t, ϕ) = ψ
f oc

2 (t, ϕ) due to the inequality (36) in Lemma 5. Thus
we have proven sufficiency in case (i). For cases (ii) and (iii), the correspond-
ing proofs are similar. Here we omit them. This completes the proof of the
proposition.

Lemma 5 provides a finite lower bound for ψ
f oc
i . The next lemma gives a finite

upper bound for ψ
f oc
i . These boundedness estimates will play a crucial role in

proving existence and uniqueness of solutions of the HJB equation.

g1( )

g2( )

1
foc 

2
foc 

00     -1

L - 00

1
foc 

2
foc 00

H1

H2

     -1

L - 00

Fig. 3 The optimum ψ∗(t, ϕ) in case (iii)
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Lemma 6 For (t, ϕ) ∈ [0, T ] × R+, it holds that

− 1

L − 
00(t)
< ψ

f oc

2 (t, ϕ) < ψ
f oc

1 (t, ϕ) ≤ max
{
ψ̄(t, ϕ), ψ̂(t, ϕ)

}
, (37)

where

ψ̄(t, ϕ) := 1

L − 
00(t)

⎡

⎣
(

h1,00(t)ϕ

hP1,00(t)ϕ10(t)

) 1
γ−1

− 1

⎤

⎦ ,

ψ̂(t, ϕ) := 1


01(t) − 
00(t)

⎡

⎣
(

hI,00(t)ϕ

hPI,00(t)ϕ01(t)

) 1
γ−1

− 1

⎤

⎦ . (38)

The proof is delegated into the Appendix.

Solvability of HJB equations

We prove the existence and uniqueness of a global solution to HJB equations at each
default state. We then show that it corresponds with the value function of the control
problem via a verification theorem.

Recall (29) and consider z1 = 1 in Eq. (26) with the optimum given by (28). We
obtain the HJB equation at default state z = (1, 0) which given by

0 = ϕ′
10(t) + γ rϕ10(t) + (ϕ11(t) − ϕ10(t)) hPI,10(t)

with terminal condition ϕ10(T ) = γ −1. The closed-form solution is given by, for
t ∈ [0, T ],

ϕ10(t) = γ −1
(
1 +

∫ T

t

hPI,10(s)e
∫ T
s (hP

I,10(u)−γ r)du
ds

)
e
− ∫ T

t (hP
I,10(u)−γ r)du

. (39)

We next analyze the nontrivial case, i.e. when no credit event has occurred. To this
purpose, recall ψf oc

i = ψ
f oc
i (t, ϕ) as obtained in Lemma 5. We have

Lemma 7 For each i = 1, 2, as a C1 function, ϕ → ψ
f oc
i (t, ϕ) is strictly

decreasing for each fixed time t ∈ [0, T ]. Moreover, for each t ∈ [0, T ],

lim
ϕ↓0ψ

f oc
i (t, ϕ) = +∞, lim

ϕ↑∞ ψ
f oc
i (t, ϕ) = − 1

L − 
00(t)
. (40)

Recall that �(t) = 
00(t)
−1 > 0 for all t ∈ [0, T ]. Then, using Lemma 7 above,

it follows that for each fixed time t ∈ [0, T ], there exists a unique bi(t) > 0 such
that �(t) = ψ

f oc
i (t, bi(t)) for i = 1, 2. Moreover, t → bi(t) is continuous and

b2(t) < b1(t) for all t ∈ [0, T ] using Lemma 6. From Proposition 1, it follows
that the optimum ψ∗ = ψ∗(t, ϕ) is a continuous function of (t, ϕ) ∈ [0, T ] × R+,
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and admits the following representation (see also Fig. 4 for an illustration). For each
t ∈ [0, T ] fixed, on ϕ ∈ R+,

ψ∗(t, ϕ) =
⎧
⎨

⎩

ψ
f oc

2 (t, ϕ), ϕ ≤ b2(t),

�(t), ϕ ∈ (b2(t), b1(t)),

ψ
f oc

1 (t, ϕ), ϕ ≥ b1(t).

(41)

It implies that for fixed t ∈ [0, T ], ϕ → ψ∗(t, ϕ) is continuous and decreasing. It
is not difficult to claim that

Lemma 8 It holds that ϕ → ψ∗(t, ϕ) given by (41) is locally Lipschitz-continuous
uniformly in t ∈ [0, T ].

We next focus on the solvability of Eq. (31). To this purpose, we rewrite it as in
the following form

ϕ′(t) + A
(
t, ψ∗(t, ϕ(t))

)
ϕ(t) + C

(
t, ψ∗(t, ϕ(t))

) = 0 (42)

with terminal condition ϕ(T ) = γ −1, where ψ∗(t, ϕ) is given by (41), and the
coefficients

A(t, ψ) := γ
{
r + (1 − ψ
00(t))

− (r00(t) − r)

−ψ
[
(L − 
00(t)) h1,00(t) + (
01(t) − 
00(t)) hI,00(t)

] }

−hP1,00(t) − hPI,00(t), (43)

C(t, ψ) := [1 + ψ(L − 
00(t))]
γ hP1,00(t)ϕ10(t)

+γ −1 [1 + ψ (
01(t) − 
00(t))]
γ hPI,00(t).

Above, we have used the explicit representation for ϕ01(t) = γ −1 given in (29),
and that ϕ10(t) is given by (39).

Fig. 4 The dependence of
ψ∗(t, ϕ) on ϕ

v

0 (t)

     -1

L - 00(t)

0 b1
0(t)b2
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1
foc (t,v)

2
foc (t,v)

*00(t,v)
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Noting that ψ∗(t, ϕ) is the optimum. Then, for all (t, ϕ) ∈ [0, T ] × R+,

A(t, ψ∗(t, ϕ))ϕ + C(t, ψ∗(t, ϕ)) ≥ A(t, �(t))ϕ + C(t, �(t)). (44)

Consider the following ODE

u′(t) + A(t, �(t))u(t) + C(t, �(t)) = 0 (45)

with terminal condition u(T ) = a0 ∈ (0, γ −1]. We rewrite Eq. (42) as

v′(t) + Ā(t, v(t))v(t) + C̄(t, v(t)) = 0 (46)

with v(T ) = γ −1, where Ā(t, v) := A(t, ψ∗(t, v)) and C̄(t, v) := C(t, ψ∗(t, v))

on (t, v) ∈ [0, T ] × R+. The coefficients Ā(t, v) and C̄(t, v) admit the following
estimates.

Lemma 9 Let (t, v) ∈ [0, T ] × R+. Then there exist K, K̄ > 0 such that

|Ā(t, v)| ≤ K + K̄v
1

γ−1 and 0 < C̄(t, v) ≤ K + K̄v
γ

γ−1 .

The following lemma, proven in the Appendix, show that the solution to the HJB
equation is bounded from below.

Lemma 10 If there exists a solution (v(t); t ∈ [0, T ]) to Eq. (46), then there
exists a constant η > 0 such that v(t) ≥ η for all t ∈ [0, T ].

Using Lemma 10, and recall η therein, Eq. (46) is equivalent to the following
equation

v′(t) + Āη(t, v(t))v(t) + C̄η(t, v(t)) = 0 (47)

with v(T ) = γ −1. Here, for (t, v) ∈ [0, T ] × R+, the coefficients

Āη(t, v) := Ā(t, v ∨ η), C̄η(t, v) := C̄(t, v ∨ η). (48)

We hence focus on the existence and uniqueness of the solution to Eq. (47). For
this purpose, given η in Lemma 10 and K, K̄ in Lemma 9, define f1(η) := K +
K̄η

1
γ−1 , f2(η) := K + K̄η

γ
γ−1 , and the following positive deterministic function by

κ̄(t) :=
(
1

γ
+ f2(η)

f1(η)

)
ef1(η)(T −t) − f2(η)

f1(η)
, t ∈ [0, T ]. (49)

Then we have

Theorem 1 There exists a unique solution (v(t); t ∈ [0, T ]) to Eq. (47).
Moreover, η ≤ v(t) ≤ κ̄(t) for all t ∈ [0, T ].

Proof Consider the truncated coefficients given by, for (t, v) ∈ [0, T ] × R+,

Āη,κ (t, v) := Āη(t, v ∧ κ̄(t)), C̄η,κ (t, v) := C̄η(t, v ∧ κ̄(t)). (50)

Using the estimates in Lemma 9, we have that for all (t, v) ∈ [0, T ] × R+,
∣∣Āη,κ (t, v)

∣∣ ≤ f1(η), 0 < C̄η,κ(t, v) ≤ f2(η). (51)
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Recall A(t, ψ) and C(t, ψ) defined in (43). Then, ψ → A(t, ψ) is Lipschitz-
continuous and ψ → C(t, ψ) is locally Lipschitz-continuous uniformly in time
t ∈ [0, T ]. Then using Lemma 8 and the estimate (51), the truncated coefficients
v → Āη,κ (t, v) and v → C̄η,κ (t, v) are (bounded) Lipschitz-continuous on v ∈ R+,
uniformly in time t ∈ [0, T ]. This yields that the following truncated ODE

v′
κ(t) + Āη,κ (t, vκ(t))vκ(t) + C̄η,κ (t, vκ(t)) = 0, vκ(T ) = γ −1. (52)

admits a unique solution vκ(t) for t ∈ [0, T ]. On the other hand, we can write Eq. (52)
in the following integral form, i.e., for each t ∈ [0, T ],

vκ(t) = γ −1e
∫ T
t Āη,κ (s,vκ (s))ds +

∫ T

t

C̄η,κ (s, vκ(s))e
∫ s
t Āη,κ (ι,vκ (ι))dιds.

Using (51), it follows that for all t ∈ [0, T ],

vκ(t) = γ −1e
∫ T
t Āη,κ (s,vκ (s))ds +

∫ T

t

C̄η,κ (s, vκ(s))e
∫ s
t Āη,κ (ι,vκ (ι))dιds

≤ γ −1el1(η)(T −t) + l2(η)

∫ T

t

el1(η)(s−t)ds = κ̄(t). (53)

In terms of (50), it holds that

Āη,κ (t, vκ(t)) = Āη(t, vκ(t)), C̄η,κ (t, vκ(t)) = C̄η(t, vκ(t)).

By the uniqueness of the solution to Eq. (52), we have v(t) = vκ(t) for all
t ∈ [0, T ], and moreover η ≤ v(t) ≤ κ̄(t) for all t ∈ [0, T ] in light of (53) and
Lemma 10. This completes the proof of the theorem.

We finally mention that the verification theorem also holds on our control problem,
i.e., the solution of the HJB equation is the value function of our control problem.
The proof is standard and it heavily depends on the bounded solutions to the HJB
equations discussed above. Hence, we omit the statement of the verification theorem
and the proof.

Appendix

Technical proofs

Proof of Lemma 3 We first consider the limit expression for r10(T ). Using (18),

lim
t↑T

1

T − t
log

(
1

Φ10(t, T )

)
= lim

t↑T

1

T − t

∫ T

t

hI,10(u)du

= lim
x↓0

1

x

∫ x

0
hI,10(T − u)du = r + hI,10(T ).

For the limit r00(T ), we set x = T − t and rewrite

Φ10(t, T ) = Φ̃I,10(x) := e− ∫ x
0 (r+hI,10(T −u))du,
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and

Φ00(t, T ) = Φ̃I,00(x) := e− ∫ x
0 (r+h1,00(T −u)+hI,00(T −u))du

+Φ̃I,10(x)

∫ x

0
h1,00(T−u)e−

∫ x
u h1,00(T−s)dse

∫ x
u(hI,10(T −s)−hI,00(T −s))dsdu.

Moreover, the derivative function �̃′
I,00(x) is given by

Φ̃ ′
I,00(x) = −(r + h1,00(T − x) + hI,00(T − x))e− ∫ x

0 (r+h1,00(T −u)+hI,00(T −u))du

+Φ̃ ′
I,10(x)

∫ x

0
h1,00(T −u)e−∫ x

u h1,00(T −s)dse
∫ x
u (hI,10(T−s)−hI,00(T−s))dsdu

+Φ̃I,10(x)h1,00(T − x).

Note that Φ̃I,00(0) = Φ̃I,10(0) = 1. Then

lim
x↓0 Φ̃ ′

I,00(x) = −(r + h1,00(T ) + hI,00(T )) + h1,00(T ) = −(r + hI,00(T )).

By application of L’Hospital’s rule, it follows that

lim
t↑T

1

T − t
log

(
1

Φ00(t, T )

)
= lim

x↓0 − log(Φ̃I,00(x))

x
= − lim

x↓0
Φ̃ ′

I,00(x)

Φ̃I,00(x)
= r+hI,00(T ).

Using (18), the borrowing rate r10(t) satisfies, for t ∈ [0, T ),

r10(t) = 1

T − t

∫ T

t

(
r + hI,10(u)

)
du,

and r10(T ) = r + hI,10(T ) using Lemma 3. This yields the estimate

r + mI,10 ≤ r10(t) ≤ r + m̄I,10, t ∈ [0, T ].
Noting that

Φ00(t, T ) = e−r(T −t)−∫ T
t hI,00(u)du+∫ T1

t
[h1,00(s)(Φ10(s,T )−Φ00(s, T ))]e−

∫ s
t rduds.

It then follows from (18) that

Φ00(t, T ) < e−r(T −t)−∫ T
t hI,00(u)du ≤ e−(r+mI,00)(T −t), t ∈ [0, T ). (54)

On the other hand, it holds that

Φ00(t, T ) > e− ∫ T
t (r+h1,00(u)+hI,00(u))du ≥ e−(r+m̄1,00+m̄I,00)(T −t), t ∈ [0, T ). (55)

Using (54) and (55), for t ∈ [0, T ), we obtain

(r + mI,00)(T − t) < log

(
1

Φ00(t, T )

)
< (r + m̄1,00 + m̄I,00)(T − t).

This yields that, for all t ∈ [0, T ),

r + mI,00 <
1

T − t
log

(
1

Φ00(t, T )

)
< r + m̄1,00 + m̄I,00.

Note that r00(T ) = r + hI,00(T ) using Lemma 3. Then, we obtain the estimate

r + mI,00 ≤ r00(t) < r + m̄1,00 + m̄I,00, t ∈ [0, T ).
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This concludes the proof of the lemma.

Proof of Lemma 5 Recall g1(ψ; t, ϕ) defined by (32). For all ψ satis-
fying (33), g1(ψ; t, ϕ) is continuous and decreasing w.r.t. ψ . Noting that
lim

ψ↓− 1
L−
00(t)

g1(ψ; t, ϕ) = +∞ and

lim
ψ↑+∞ g1(ψ; t, ϕ) = [

(
00(t) − L) h1,00(t) − (
01(t) − 
00(t)) hI,00(t)
]
ϕ < 0.

(56)
Apply the intermediate value theorem, and obtain a unique finite solution

ψ
f oc

1 > − 1
L−
00(t)

satisfying g1(ψ
f oc

1 ; t, ϕ) = 0. Note that ∂g1(ψ;,t,ϕ)
∂ψ

< 0 in
its domain. Then, in light of Kumagai (1980)’s implicit function theorem, we also
have that ψ

f oc

1 viewed as a function of (t, ϕ) is C1 in (t, ϕ). For g2(ψ; t, ϕ) and
all ψ satisfying (33), g2(ψ; t, ϕ) is continuous and decreasing w.r.t. ψ . Note that
lim

ψ↓− 1
L−
00(t)

g2(ψ; t, ϕ) = +∞, and

lim
ψ↑+∞ g2(ψ; t, ϕ) = [

(
00(t) − L) h1,00(t) − (
01(t) − 
00(t)) hI,00(t)
]
ϕ

−
00(t)(r00(t) − r)ϕ.

Since 0 < 
00(t) < 
01(t) < L, and r00(t) − r > 0 for all t ∈ [0, T ]
using Lemma 3, we have limψ↑+∞ g2(ψ; t, ϕ) < 0. Then applying the intermedi-

ate value theorem, there is a unique finite solution ψ
f oc

2 > − 1
L−
00(t)

satisfying

g2(ψ
f oc

2 ; t, ϕ) = 0. Further, in light of Kumagai (1980)’s implicit function theorem,

ψ
f oc

2 , viewed as a function of (t, ϕ) is C1 in (t, ϕ), since the derivative ∂g2(ψ;t,ϕ)
∂ψ

< 0
in its domain.

Since 
00(t)(r00(t) − r)ϕ > 0 for all (t, ϕ) ∈ [0, T ] × R+, by (32) it follows
immediately that for all (t, ϕ) ∈ [0, T ] ×R+, g2(ψ; t, ϕ) < g1(ψ; t, ϕ). This yields
the validity of (36).

Proof of Lemma 6 Recall g1 given in (32). Then, ψ → g1(ψ; t, ϕ) is continuous
and decreasing onψ > − 1

L−
00(t)
. Moreover, we can decompose g1 as g1(ψ; t, ϕ) =

ḡ1(ψ; t, ϕ) + ĝ1(ψ; t, ϕ), where

ḡ1(ψ; t, ϕ) := (
00(t) − L) h1,00(t)ϕ

+ [1 + ψ (L − 
00(t))]
γ−1 (L − 
00(t)) hP1,00(t)ϕ10(t),

ĝ1(ψ; t, ϕ) := − (
01(t) − 
00(t)) hI,00(t)ϕ

+ [1 + ψ (
01(t) − 
00(t))]

−1 (
01(t) − 
00(t)) hPI,00(t)ϕ01(t).

It is easy to check that ḡ1(ψ̄(t, ϕ); t, ϕ) = ĝ1(ψ̂(t, ϕ); t, ϕ) = 0. Next, we prove
that

g1(max{ψ̄(t, ϕ), ψ̂(t, ϕ)}; t, ϕ) ≤ 0. (57)

First we consider the case where ψ̄(t, ϕ) ≤ ψ̂(t, ϕ). In this case,
g1(ψ̂(t, ϕ); t, ϕ) = ḡ1(ψ̂(t, ϕ); t, ϕ), since ĝ1(ψ̂(t, ϕ); t, ϕ) = 0. Note that ψ →
ḡ1(ψ; t, ϕ) is continuous and decreasing on ψ > − 1

L−
00(t)
. Since ψ̄(t, ϕ) ≤
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ψ̂(t, ϕ), ḡ1(ψ̄(t, ϕ); t, ϕ) ≥ ḡ1(ψ̂(t, ϕ); t, ϕ). Using ḡ1(ψ̄(t, ϕ); t, ϕ) = 0, we
obtain that

g1(max{ψ̄(t, ϕ), ψ̂(t, ϕ)}; t, ϕ) = ḡ1(ψ̂(t, ϕ); t, ϕ) ≤ 0,

yielding the inequality (57). By a symmetric argument, we can prove (57) when
ψ̄(t, ϕ) > ψ̂(t, ϕ), and omit the proof here. Since g1(ψ; t, ϕ) is a continuous
and decreasing function of ψ > − 1

L−
00(t)
, g1(ψ

f oc

1 (t, ϕ); t, ϕ) = 0. Using the
inequality (36) in Lemma 5, we then obtain the inequality (37).

Proof of Lemma 7 The limits (40) is obvious. Using the implicit function theorem
and Lemma 6, it is not difficult to see that

ψ
f oc

1 (t, v)

∂v
= − ∂g1(ψ

f oc

1 ;t,v)

∂v

/
∂g1(ψ;t,v)

∂ψ

∣∣∣
ψ=ψ

f oc

1

< 0,

since 0 < γ < 1. Similarly, it also holds that

ψ
f oc

2 (t, v)

∂v
= − ∂g2(ψ

f oc

2 ;t,v)

∂v

/
∂g2(ψ;t,v)

∂ψ

∣∣∣
ψ=ψ

f oc

2

< 0.

This ends the proof.

Proof of Lemma 9 Combining Proposition 1, Lemma 6 and the estimate 0 <


00(t) < 
01(t) < δL for some δ ∈ (0, 1), it follows that there exist constants
K1, K̄1 > 0 so that

∣∣ψ∗(t, v)
∣∣ ≤ K1 + K̄1v

1
γ−1 , (t, v) ∈ [0, T ] × R+. (58)

Moreover, from Lemma 3 and (43), it follows that, for all (t, v) ∈ [0, T ] × R+,
∣∣Ā(t, v)

∣∣≤γ
{
r+(1+L|ψ∗(t,v)|)(h1,00(0)+hI,00(0))+2L |ψ∗(t,v)| (m̄1,00+m̄I,00

)}

+m̄P

1,00 + m̄P

I,00 ≤ K + K̄v
1

γ−1 ,

for some constants K, K̄ > 0. Similarly, using (39) and (58), there exist constants
K1, K, K̄ > 0 so that

C̄(t, v) ≤ 1

γ

[
1+2L

∣∣ψ∗(t, v)
∣∣]γ m̄P

1,00

(
1+m̄P

I,10T
)
+ 1

γ

[
1 + 2L

∣∣ψ∗(t, v)
∣∣ ]γ m̄P

I,00

≤ K1
[
1 + 2L

∣∣ψ∗(t, v)
∣∣ ]γ ≤ K1

[
1 + (2L

∣∣ψ∗(t, v)
∣∣)γ
]

≤ K1 + K1(2L)γ
∣∣ψ∗(t, v)

∣∣γ ≤ K + K̄v
γ

γ−1 ,

where we use the inequality (x + y)γ ≤ xγ + yγ for all x, y ∈ R+ and γ ∈ (0, 1).
This completes the proof of the lemma.

Proof of Lemma 10 Recall A(t, ψ) and C(t, ψ) defined in (43). It is immediately
verified that ψ → A(t, ψ) is Lipschitz-continuous and ψ → C(t, ψ) is locally
Lipschitz-continuous uniformly in time t ∈ [0, T ]. Using Lemma 8, v → Ā(t, v)

and v → C̄(t, v) are locally Lipschitz-continuous uniformly in time t ∈ [0, T ].
Since v(t) is a solution to Eq. (46) by assumption, it is C1 on [0, T ], and hence it
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is bounded on [0, T ]. Then using the comparison theorem for first-order ODEs, we
deduce that v(t) ≥ u(t) for all t ∈ [0, T ] using the inequality (44) and noting that
u(T ) = a0 ≤ 1

γ
= v(T ).

Next, we prove that there exists a constant η > 0 so that u(t) ≥ η for all t ∈ [0, T ].
To this purpose, we first estimate the coefficient A(t, �(t)) and C(t, �(t)). Firstly,
observe that C(t, �(t)) > 0 for all t ∈ [0, T ]. On the other hand, note that

0 < (L − 
00(t))h1,00(t) + (
01(t) − 
00(t))hI,00(t) < L(m̄1,00 + m̄I,00),

and noting that 
00(t) on t ∈ [0, T ] is bounded, it follows that for all t ∈ [0, T ],
�(t) ≤ r + m̄1,00 + m̄I,00

Lm1,00 − ν
× 1

1 − e−(r+m̄1,00+m̄I,00)(T1−T )
=: δT .

Then, using (43), it holds that for all t ∈ [0, T ],
A(t, ψ0(t)) ≥ γ

{
r − δT L(m̄1,00 + m̄I,00)

}− m̄P

1,00 − m̄P

I,00 =: η0. (59)

Recall Eq. (45). The solution (u(t); t ∈ [0, T ]) admits the following form

u(t) = a0e
∫ T
t A(s,ψ0(s))ds + ∫ T

t
C(s, ψ0(s))e

∫ s
t A(ι,ψ0(ι))dιds

≥ a0e
∫ T
t A(s,ψ0(s))ds ≥ a0e

η0(T −t).

Define the constant given by

η :=
{

a0, if η0 ≥ 0,
a0e

η0T , if η0 < 0.

Then, it holds that u(t) ≥ η for all t ∈ [0, T ]. This implies that v(t) ≥ u(t) ≥ η,
for all t ∈ [0, T ].
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Cvitanić, J, Karatzas, I: Hedging contingent claims with constrained portfolios. Ann. Appl. Probab 3,

652–681 (1993)
Draouil, O, Oksendal, B: A donsker delta functional approach to optimal insider control and applications

to finance. Commun. Math Stats 3, 365–421 (2015)
Duffie, D, Singleton, K: Credit Risk. Princeton University Press, Princeton (2003)
El Karoui, N, Peng, S, Quenez, MC: Backward stochastic differential equations in finance. Math Finan 7,

1–71 (1997)
Frey, R, Backhaus, J: Pricing and hedging of portfolio credit derivatives with interacting default intensities.

Int. J. Theor. Appl. Finan 11, 611–634 (2008)
Giesecke, K, Kim, B, Kim, J, Tsoukalas, G: Optimal credit swap portfolios. Manage Sci 60, 2291–2307

(2014)
ISDA News Release: ISDA Announces Successful Implementation of Big Bang’ CDS Protocol; Deter-

minations Committees and Auction Settlement Changes Take Effect (2009). Available at http://www.
isda.org/press/press040809.html

Jarrow, R, Yu, F: Counterparty risk and the pricing of defaultable securities. J. Finan 56, 1765–1799 (2001)
Jiao, Y, Pham, H: Optimal investment with counterparty risk: a default density approach. Finan. Stoch 15,

725–753 (2011)
Korn, R: Contingent claim valuation in a market with different interest rates. Math. Meth. Oper. Res 42,

255–274 (1995)
Korn, R, Kraft, H: Optimal portfolios with defaultable securities-a firm value approach. Int. J. Theor. Appl.

Finan 6, 793–819 (2003)
Kraft, H, Steffensen, M: Portfolio problems stopping at first hitting time with application to default risk.

Math. Meth. Oper. Res 63, 123–150 (2005)
Kumagai, S: An implicit function theorem: comment. J. Optim. Theor. Appl 31, 285–288 (1980)
Mercurio, F: Bergman, Piterbarg, and Beyond: pricing derivatives under collateralization and differential

rates. In: Londoño, J, Garrido, J, Hernández-Hernández, D (eds.) Actuarial Sciences and Quantitative
Finance. Springer Proceedings in Mathematics & Statistics, vol 135. Springer, Cham (2015)

http://www.bloomberg.com/news/2013-11-08/pimco-said-to-wager-10-billion-in-default-swaps-credit-markets.html
http://www.bloomberg.com/news/2013-11-08/pimco-said-to-wager-10-billion-in-default-swaps-credit-markets.html
http://www.isda.org/press/press040809.html
http://www.isda.org/press/press040809.html

	Portfolio optimization of credit swap under funding costs
	Abstract
	Introduction
	The model
	Default contagion model
	The market model

	Price dynamics and borrowing rates
	CDS pricing
	Borrowing rates

	Dynamic investment problem
	Wealth process
	The optimal control problem

	Optimal feedback strategy
	Solvability of HJB equations
	Appendix
	Technical proofs

	Competing interests
	References


