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Abstract One of the fundamental issues in Control Theory is to design feedback
controls. It is well-known that, the purpose of introducing Riccati equations in the
study of deterministic linear quadratic control problems is exactly to construct the
desired feedbacks. To date, the same problem in the stochastic setting is only partially
well-understood. In this paper, we establish the equivalence between the existence of
optimal feedback controls for the stochastic linear quadratic control problems with
random coefficients and the solvability of the corresponding backward stochastic
Riccati equations in a suitable sense. We also give a counterexample showing the
nonexistence of feedback controls to a solvable stochastic linear quadratic control
problem. This is a new phenomenon in the stochastic setting, significantly different
from its deterministic counterpart.
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Introduction

Let T > 0 and (�,F,F,P) be a complete filtered probability space with F =
{Ft }t∈[0,T ], which is the natural natural filtration generated by a one-dimensional
standard Brownian motion {W(t)}t∈[0,T ].

For any k ∈ N, t ∈ [0, T ] and r ∈ [1, ∞), denote byLr
Ft

(�;Rk) the Banach space

of all Ft -measurable random variables ξ : � → R
k so that E|ξ |r

Rk < ∞, with the

canonical norm. Denote by Lr
F
(�; C([t, T ];Rk)) the Banach space of all Rk-valued

F-adapted, continuous stochastic processes φ(·), with the following norm
|φ(·)|Lr

F
(�;C([t,T ];Rk)) �

(
E max

τ∈[t,T ] |φ(τ)|r
Rk

)1/r

.

Fix any r1, r2, r3, r4 ∈ [1, ∞). Put

L
r1
F
(�;Lr2(t, T ;Rk))=

⎧⎨
⎩ϕ : (t, T )×�→R

k

∣∣∣∣∣∣ϕ(·) is F-adapted and E

(∫ T

t

|ϕ(τ)|r2
Rk dτ

) r1
r2

<∞
⎫⎬
⎭,

L
r2
F
(t, T ;Lr1(�;Rk))=

⎧⎨
⎩ϕ : (t, T )×�→R

k

∣∣∣∣∣∣ ϕ(·) is F-adapted and
∫ T

t

(
E|ϕ(τ)|r1

Rk

) r2
r1 dτ <∞

⎫⎬
⎭.

Both L
r1
F

(�; Lr2(t, T ;Rk)) and L
r2
F

(t, T ; Lr1(�;Rk)) are Banach spaces with
the canonical norms. In a similar way, we may define L∞

F
(�; Lr2(t, T ;Rk)),

L
r1
F

(�; L∞(t, T ;Rk)) andL∞
F

(�; L∞(t, T ;Rk)). For q ∈ [1, ∞], we simply denote
L

q

F
(�; Lq(t, T ;Rk)) by L

q

F
(t, T ;Rk). Denote by S(Rk) the set of all k-dimensional

symmetric matrices and Ik the k-dimensional identity matrix.
For any n, m ∈ N, and (s, η) ∈ [0, T )×L2

Fs
(�;Rn), let us consider the following

controlled linear stochastic differential equation:
{

dx(r) = (A(r)x(r) + B(r)u(r)) dr + (C(r)x(r) + D(r)u(r)) dW(r) in [s, T ],
x(s) = η,

(1)with the following quadratic cost functional

J (s, η; u(·)) = 1

2
E

[∫ T

s

(〈Q(r)x(r), x(r)〉Rn + 〈R(r)u(r), u(r)〉Rm) dr + 〈Gx(T ), x(T )〉Rn

]
.

(2)
In (1)–(2), u(·)(∈ L2

F
(s, T ;Rm), the space of admissible controls) is the con-

trol variable, x(·) is the state variable, the stochastic processes A(·), B(·), C(·),
D(·), Q(·), R(·), and the random variable G satisfy suitable assumptions to be
given later (See (7) in the next section) such that Eq. (1) admits a unique solution
x(·; s, η, u(·)) ∈ L2

F
(�; C([s, T ];Rn)), and (2) is well-defined. In what follows, to

simplify notations, the time variable t is sometimes suppressed in A, B, C, D, etc.
In this paper, we are concerned with the following stochastic linear quadratic

control problem (SLQ for short):
Problem (SLQ). For each (s, η) ∈ [0, T ] × L2

Fs
(�;Rn), find a ū(·) ∈

L2
F
(s, T ;Rm) so that

J (s, η; ū(·)) = inf
u(·)∈L2

F
(s,T ;Rm)

J (s, η; u(·)) . (3)
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SLQs have been extensively studied in the literature, for which we refer the read-
ers to (Ait Rami et al. 2001, Athans 1971, Bismut 1976, 1978, Chen et al. 1998, Tang
2003, Wonham 1968, Yong and Zhou 2000) and the rich references therein. Simi-
lar to the deterministic setting (Kalman 1960, Wonham 1985, Yong and Lou 2006),
Riccati equations (and their variants) are fundamental tools to study SLQs. Neverthe-
less, for stochastic problems one usually has to consider backward stochastic Riccati
equations. For our Problem (SLQ), the desired backward stochastic Riccati equation
takes the following form:
{
dP =− (

PA+A�P +�C+C��+C�PC+Q−L�K†L
)
dt + �dW(t) in [0, T ],

P (T ) = G,

(4)
where A� stands for the transpose of A, and

K � R + D�PD, L � B�P + D�(PC + �), (5)

and K† denotes the Moore-Penrose pseudo-inverse of K.
To the authors’ best knowledge, (Wonham 1968) is the first work which employed

Riccati equations to study SLQs. After (Wonham 1968), Riccati equations were sys-
tematically applied to study SLQs (e.g. (Athans 1971, Bensoussan 1981, Bismut
1978, Davis 1977, Yong and Zhou 2000)), and the well-posedness of such equa-
tions was studied in some literatures (See (Tang 2003, Yong and Zhou 2000) and the
references cited therein).

In the early works on SLQs (e.g., (Chen et al. 1998, Wonham 1968, Yong and
Zhou 2000)), the coefficients A, B, C, D, Q, R, G appeared in the control system
(1) and the cost functional (2) were assumed to be deterministic. For this case, the
corresponding Riccati Eq. (4) is deterministic (i.e., � ≡ 0 in (4)), as well.

To the best of our knowledge, (Bismut 1976) is the first work that addressed the
study of SLQs with random coefficients. In (Bismut 1976, 1978), the author for-
mally derived the equation (4). However, at that time only some special and simple
cases could be solved. Later, (Peng 1992) proved the well-posedness for (4) under
the condition that D = 0 by means of Bellman’s principle of quasi linearization and
a monotone convergence result for symmetric matrices. This condition was dropped
in (Tang 2003), in which it was proved that (4) admits a unique solution (P, �) in a
suitable space under the assumptions that Q ≥ 0, G ≥ 0 and R >> 0.

In Control Theory, one of the fundamental issues is to find feedback controls,
which are particularly important in practical applications. It is well-known that, in the
deterministic case, the purpose to introduce Riccati equations into the study of Con-
trol Theory (e.g., (Kalman 1960, Wonham 1985, Yong and Lou 2006)) is exactly to
design feedback controls for linear quadratic control problems (LQs for short). More
precisely, under some mild assumptions, one can show that the unique solvability of
deterministic LQs is equivalent to that of the corresponding Riccati equations, via
which one can construct the desired optimal feedback controls. Unfortunately, the
same problem is only partially well-understood in the stochastic setting, such as the
case that all of the coefficients in (1)–(2) are deterministic (Ait Rami et al. 2001,
Sun and Yong 2014), or the case that the diffusion term in (1) is control-independent,
i.e., D ≡ 0 (Peng 1992). However, for the general case, we shall explain in
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Remark 1.2 below that, the solution (P, �) (to (4)) found in (Tang 2003) is not
regular enough to serve as the design of feedback controls for Problem (SLQ).

Because of the difficulty mentioned above, it is quite natural to ask such a question:
Is it possible to link the existence of optimal feedback controls (rather than the sol-
vability) for Problem (SLQ) directly to the solvability of the Eq. (4)? Clearly, from
the viewpoint of applications, it is more desirable to study the existence of feedback
controls for SLQs than the solvability for the same problems.

The main purpose of this work is to give an affirmative answer to the above
question under sharp assumptions on the coefficients appearing in (1)–(2). For this
purpose, let us introduce below the notion of optimal feedback operator for Problem
(SLQ).

Definition 1.1 A stochastic process 	(·) ∈ L∞
F

(�; L2(0, T ;Rm×n)) is called an
optimal feedback operator for Problem (SLQ) on [0, T ] if, for all (s, η) ∈ [0, T ) ×
L2
Fs

(�;Rn) and u(·) ∈ L2
F
(s, T ;Rm), it holds that

J (s, η; 	(·)x̄(·)) ≤ J (s, η; u(·)), (6)

where x̄(·) = x(· ; s, η, 	(·)x̄(·)).

Remark 1.1 In Definition 1.1, 	(·) is required to be independent of the initial
state η ∈ L2

Fs
(�;Rn). For a fixed pair (s, η) ∈ [0, T ) × L2

Fs
(�;Rn), the inequality

(6) implies that the control

ū(·) ≡ 	(·)x̄(·) ∈ L2
F
(s, T ;Rm)

is optimal for Problem (SLQ). Therefore, for Problem (SLQ), the existence of an
optimal feedback operator on [0, T ] implies the existence of optimal control for any
pair (s, η) ∈ [0, T ) × L2

Fs
(�;Rn).

Remark 1.2 Under some assumptions, in (Tang 2003), it was shown that
the equation (4) admits a unique solution (P, �) ∈ L∞

F
(0, T ;S(Rn)) ×

L
p

F
(�; L2(0, T ;S(Rn))) for any given p ∈ [1, ∞). Nevertheless the approach in

(Tang 2003) does not produce the sharp regularity 	 ∈ L∞
F

(�; L2(0, T ; S(Rn)))

(but rather 	 ∈ L
p

F
(�; L2(0, T ;S(Rn))) for any p ∈ [1, ∞)). Although the author

showed in (Tang 2003) that if x̄ is an optimal state, then 	x̄ ∈ L2
F
(0, T ;Rn) and

hence it is the desired optimal control, such kind of control strategy is not robust,
even with respect to some very small perturbation. Actually, assume that there is
an error δx ∈ L2

F
(�; C([0, T ];Rn)) (the solution space of (1) with s = 0) with

|δx|L2
F
(�;C([0,T ];Rn)) = ε > 0 for ε being small enough in the observation of the

state, then by the well-posedness result in (Tang 2003), one cannot conclude that
	(x̄ +δx) is an admissible control. Thus, the 	 given in (Tang 2003) is not a “quali-
fied” feedback because it is not robust with respect to small perturbations. How about
to assume that 	 has a good sign or to be monotone (in a suitable sense)? Even for
such a special case, it is not hard to see that, things will not become better since we
have no other information about δx except that it belongs to L2

F
(�; C([0, T ];Rn)),

the integrability of the function 	δx (with respect to the sample point ω) cannot be
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improved, and therefore one could not conclude that 	(x̄ + δx) is an admissible
control, either.

In a recent paper (Tang 2015), the well-posedness result in (Tang 2003) was
slightly improved and it was shown that the solution (P, �) to (4) enjoys the BMO-
martingle property. However, this does not help to produce the boundedness of 	

with respect to the sample point ω, either. Actually, we shall give a counterexample
(i.e., Example 6.2) showing that such a boundedness result is not guaranteed without
further assumptions.

Let us recall that, the main motivation to introduce feedback controls is to keep
the corresponding control strategy to be robust with respect to (small) perturbations.
Hence, the well-posedness results in (Tang 2003, 2015) are not enough to solve our
Problem (SLQ). Nevertheless, for the case that D ≡ 0, the optimal feedback operator
in (10) (in the next section) is specialized as

	(·) = −K(·)†B(·)�P(·) +
(
Im − K(·)†K(·)

)
θ,

which is independent of �, and therefore the result in (Tang 2003) (or that in Peng
(1992)) is enough for this special case.

We have explained that a suitable optimal feedback control operator for our
Problem (SLQ) should belong to L∞

F
(�; L2(0, T ;Rn×m)). Nevertheless, to our best

knowledge, the existence of such operator is completely unknown for Problem (SLQ)
with random coefficients. In this paper, we shall show that the existence of the opti-
mal feedback operator for Problem (SLQ) is equivalent to the solvability of (4) in a
suitable sense. When the coefficients A, B, C, D, G, R, Q are deterministic, such an
equivalence was studied in (Ait Rami et al. 2001) (see also (Sun and Yong 2014) for
the problem of a linear quadratic stochastic two-person zero-sum differential game).
As far as we know, there is no study of such problems for the general case that A, B,
C, D, R, Q are stochastic processes, and G is a random variable.

The rest of this paper is organized as follows: “Statement of the main
results” section is devoted to presenting the main results of this paper. In “Some
preliminary results” section, we give some preliminary results which will be used
in the remainder of this paper. “Proof of Theorem 2.1”–“Proofs of Corollary 2.1
and Theorem 2.2” sections are addresses to proofs of our main results. At last,
in “Two illustrating examples” section, we give some examples for the existence and
nonexistence of the optimal feedback control operator.

Statement of the main results

Let us first introduce the following assumption:
(AS1) The coefficients in (1)–(2) satisfy the following measurability/integrability

conditions:

A(·) ∈ L∞
F

(�;L1(0, T ;Rn×n)), C(·) ∈ L∞
F

(�;L2(0, T ;Rn×n)),

B(·) ∈ L∞
F

(�;L2(0, T ;Rn×m)), D(·) ∈ L∞
F

(0, T ;Rn×m),

Q(·) ∈ L∞
F

(�;L1(0, T ;S(Rn))), R(·) ∈ L∞
F

(0, T ;S(Rm)), G ∈ L∞
FT

(�;S(Rn)).

(7)
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We have the following result:

Theorem 2.1 Let the assumption (AS1) hold. Then, Problem (SLQ) admits an
optimal feedback operator 	(·) ∈ L∞

F
(�; L2(0, T ;Rm×n)) if and only if the

Riccati Eq. (4) admits a solution (P (·), �(·)) ∈ L∞
F

(�; C([0, T ];S(Rn))) ×
L

p

F
(�; L2(0, T ;S(Rn))) (for all p ≥ 1) such that

R(K(t, ω)) ⊃ R(L(t, ω)) and K(t, ω) ≥ 0, a.e. (t, ω) ∈ [0, T ] × �, (8)

and
K(·)†L(·) ∈ L∞

F
(�; L2(0, T ;Rm×n)). (9)

In this case, the optimal feedback operator 	(·) is given as
	(·) = −K(·)†L(·) +

(
Im − K(·)†K(·)

)
θ, (10)

where θ ∈ L∞
F

(�; L2(0, T ;Rm×n)) is arbitrarily given. Furthermore,

inf
u∈L2

F
(s,T ;Rm)

J (s, η; u) = 1

2
E〈P(s)η, η〉Rn . (11)

Corollary 2.1 Let (AS1) hold. Then the Riccati Eq. (4) admits at most one solution
(P (·), �(·)) ∈ L∞

F
(�; C([0, T ];S(Rn)))×L

p

F
(�; L2(0, T ;S(Rn))) (for all p ≥ 1)

satisfying (8) and (9).

The result in Theorem 2.1 can be strengthened as follows.

Theorem 2.2 Let the assumption (AS1) hold. Then, Problem (SLQ) admits a
unique optimal feedback operator 	(·) ∈ L∞

F
(�; L2(0, T ;Rm×n)) if and only if the

Riccati Eq. (4) admits a unique solution (P (·), �(·)) ∈ L∞
F

(�; C([0, T ];S(Rn))) ×
L

p

F
(�; L2(0, T ; S(Rn))) (for all p ≥ 1) such that K(t, ω) > 0 for a.e. (t, ω) ∈

[0, T ] × � (and hence K† in (4) can be replaced by K−1) and K(·)−1L(·) ∈
L∞
F

(�; L2(0, T ;Rm×n)). In this case, the optimal feedback operator 	(·) is given
by 	(·) = −K(·)−1L(·), and (11) (in Theorem 2.1) holds.

Several remarks are in order.

Remark 2.1 We borrow some idea from (Ait Rami et al. 2001, Sun and Yong
2014) to employ the Moore-Penrose pseudo-inverse in the study of Riccati equations
for SLQs when the matrix K in (5) is singular.

Remark 2.2 The proof of sufficiency in Theorems 2.1–2.2 is very close to the
deterministic setting and also that of the case that the coefficients in (1)–(2)
are deterministic. The main difficulty in the proof of necessity in Theorems 2.1–2.2
consists in the very fact that the Eq. (4) is a nonlinear equation with a non-global
Lipschitz nonlinearity. Nevertheless, since Riccati equations appearing in Control
Theory enjoy some special structures, at least under some assumptions they are still
globally solvable. A basic idea to solve Riccati equations globally is to link them with
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suitable solvable optimal control problems, and via which one obtains the desired
solutions. To the best of our knowledge, such an idea was first used to solve determin-
istic differential Riccati equations in (Reid 1946) (though in that paper, the author
considered the second variation for a nonsingular nonparametric fixed endpoint
problem in the calculus of variations rather than an optimal control problem). This
idea was later adopted by many authors (e.g., (Ait Rami et al. 2001, Bismut 1978,
Kalman 1960, Sun and Yong 2014, Tang 2003)). In this work, we shall also use such
an idea.

Remark 2.3 To simplify the presentation, in this paper we assume that the filtra-
tion F is natural. One can also consider the case of general filtration. Of course,
for general filtration the solutions to (4) have to be understood in the sense of
transposition (introduced in (Lü and Zhang 2013, 2014)).

Remark 2.4 The same SLQ problems (as those in this paper) but in infinite dimen-
sions still make sense. However, the new difficulty in the infinite dimensional setting
is how to explain the stochastic integral

∫ T

0 �(t)dW(t) that appeared in (4) because
for this case �(·) is an operator-valued stochastic process, and therefore one has to
use the theory of transposition solution for operator-valued backward stochastic evo-
lution equations (Lü and Zhang 2014, 2015). Progress in this respect is presented in
(Lü and Zhang 2017).

Remark 2.5 It would be quite interesting to extend the main result in this paper
to linear quadratic stochastic differential games or similar problems for mean-field
stochastic differential equations. Some relevant studies can be found in (Pham 2017,
Sun and Yong 2014) but the full pictures are still unclear.

Some preliminary results

In this section, we present some preliminary results, which will be useful later.
First, for any s ∈ [0, T ), we consider the following stochastic differential

equation: {
dx = (Ax + f )dt + (Bx + g)dW(t) in [s, T ],
x(s) = η.

(12)

HereA,B ∈ L∞
F

(�; L2(0, T ;Rk×k)), η ∈ L2
Fs

(�;Rk), and f, g ∈ L2
F
(s, T ;Rk).

Let us recall the following result (We refer to ((Protter 2005), Chapter V, Section
3) for its proof).

Lemma 3.1 The Eq. (12) admits one and only one F-adapted solution x(·) ∈
L2
F
(�; C([s, T ];Rk)).

Next, we need to consider the following backward stochastic differential equation:{
dy = f (t, y, z)dt + zdW(t) in [s, T ],
y(T ) = ξ.

(13)
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Here ξ ∈ L∞
FT

(�;Rk), and f satisfies that

{
f (·, 0, 0) ∈ L∞

F
(�; L1(s, T ;Rk)),

|f (·, α1, α2) − f (·, β1, β2)|Rk ≤ f1(·)|α1 − β1|Rk + f2(·)|α2 − β2|Rk , ∀α1, α2, β1, β2 ∈ R
k,

(14)
where f1(·) ∈ L∞

F
(�; L1(s, T ;R)) and f2(·) ∈ L∞

F
(�; L2(s, T ;R)).

By means of (Delbaen and Tang 2010, Theorem 2.7) (See also (Briand et al. 2003)
for an early result in this direction), we have

Lemma 3.2 For any p > 1, the Eq. (13) admits one and only one F-adapted
solution (y(·), z(·)) ∈ L∞

F
(�; C([s, T ];Rk)) × L

p

F
(�; L2(s, T ;Rk)).

Further, let us recall the following known Pontryagin-type maximum principle
(Bismut 1976, Theorem 3.2).

Lemma 3.3 Let (x̄(·), ū(·)) ∈ L2
F
(�; C([s, T ];Rn)) × L2

F
(s, T ;Rm) be an

optimal pair of Problem (SLQ). Then there exists a pair (ȳ(·), z̄(·)) ∈
L2
F
(�; C([s, T ];Rn)) × L2

F
(s, T ;Rn) satisfying the following backward stochastic

differential equation:

{
dȳ(t) = − (

A�ȳ(t) + C�z̄(t) + Qx̄(t)
)
dt + z̄(t)dW(t) in [s, T ],

ȳ(T ) = Gx̄(T ),

and

Rū(·) + B�ȳ(·) + D�z̄(·) = 0, a.e. (t, ω) ∈ [s, T ] × �.

As an immediate consequence of Lemmas 3.1 and 3.3, we have the following
result.

Corollary 3.1 Let	(·) be an optimal feedback operator for Problem (SLQ). Then,
for any (s, η) ∈ [0, T ) × L2

Fs
(�;Rn), the following forward-backward stochastic

differential equation:

⎧⎨
⎩

dx̄(t) = (A + B	)x̄(t)dt + (C + D	)x̄(t)dW(t) in [s, T ],
dȳ(t) = − (

A�ȳ(t) + C�z̄(t) + Qx̄(t)
)
dt + z̄(t)dW(t) in [s, T ],

x̄(s) = η, ȳ(T ) = Gx̄(T ),

admits a unique solution (x̄(·), ȳ(·), z̄(·)) ∈ L2
F
(�; C([s, T ];Rn)) × L2

F
(�;

C([s, T ];Rn)) × L2
F
(s, T ;Rn), and

R	x̄(·) + B�ȳ(·) + D�z̄(·) = 0, a.e. (t, ω) ∈ [s, T ] × �.

Finally, for the reader’s convenience, let us recall the following result for the
Moore-Penrose pseudo-inverse and refer the readers to (Ben-Israel and Greville
1974, Chapter 1) for its proof.
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Lemma 3.4 1) Let M ∈ R
n×n. Then the Moore-Penrose pseudo-inverse M† of M

satisfies that

M† = lim
δ↘0

(M�M + δIn)
−1M�.

2) If M ∈ S(Rn), then M†M = MM† and M†M is the orthogonal projector from
R

n to the range of M.

Proof of Theorem 2.1

In this section, we shall give a proof of Theorem 2.1. The proof will be divided into
two subsections.

Proof of the sufficiency in Theorem 2.1

In this subsection, we prove the “if” part in Theorem 2.1. The proof is more or less
standard. For the reader’s convenience, we provide here the details.

Let us assume that the Eq. (4) admits a solution (P (·), �(·)) ∈ L∞
F

(�; C([0, T ];
S(Rn))) × Lp(�; L2

F
(0, T ;S(Rn))) (for any p ∈ [1, ∞)) so that (8) and (9) hold.

Then, for any θ ∈ L∞
F

(�; L2(0, T ;Rm×n)), by (5) and (9), the function 	(·) given
by (10) belongs to L∞

F
(�; L2(0, T ; Rm×n)). For any s ∈ [0, T ), η ∈ L2

Fs
(�;Rn),

and u(·) ∈ L2
F
(s, T ;Rm), let x(·) ≡ x(· ; s, η, u(·)) be the corresponding state

process for (1). By Itô’s formula, and using (1), (4) and (5), we obtain that

d 〈Px, x〉Rn

= 〈dPx, x〉Rn + 〈Pdx, x〉Rn + 〈Px, dx〉Rn

+ 〈dPdx, x〉Rn + 〈dPx, dx〉Rn + 〈Pdx, dx〉Rn

= 〈− [
PA + A�P + �C + C�� + C�PC + Q − L�K†L

]
x, x

〉
Rn dr

+ 〈P(Ax + Bu), x〉Rn dr + 〈P(Cx + Du), x〉Rn dW(r)

+ 〈Px, Ax + Bu〉Rn dr + 〈Px, Cx + Du〉Rn dW(r)

+ 〈�(Cx + Du), x〉Rn dr + 〈�x, Cx + Du〉Rn dr

+ 〈P(Cx + Du), Cx + Du〉Rn dr + 〈�x, x〉Rn dW(r)

= − 〈
(Q − L�K†L)x, x

〉
Rn dr + 〈PBu, x〉Rn dr

+ 〈Px, Bu〉Rn dr + 〈PCx, Du〉Rn dr + 〈PDu, Cx + Du〉Rn dr

+ 〈Du, �x〉Rn dr + 〈�x, Du〉Rn dr + 〈P(Cx + Du), x〉RndW(r)

+〈Px, Cx + Du〉RndW(r) + 〈�x, x〉Rn dW(r)

= − 〈
(Q − L�K†L)x, x

〉
Rn dr + 2〈L�u, x〉Rndr + 〈D�PDu, u〉Rmdr

+ [2〈P(Cx + Du), x〉Rn + 〈�x, x〉Rn] dW(r).

(15)

Since K is an adapted process, from the first conclusion in Lemma 3.4, we deduce
that K† is also adapted.

Notice that from (10) one has

K	 = −KK†L, L + K	 = L − KK†L.

Moreover, by R(K(·)) ⊃ R(L(·)), we conclude that for a.e. (t, ω) ∈ (0, T ) × �,
and for any v ∈ R

n, there is a v̂ ∈ R
n such that K(t, ω)v̂ = L(t, ω)v. Hence
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L(t, ω)v + K(t, ω)	(t, ω)v

= L(t, ω)v − K(t, ω)K†(t, ω)L(t, ω)v

= K(t, ω)v − K(t, ω)K†(t, ω)K(t, ω)v̂ = 0.

This indicates that

L(t, ω) + K(t, ω)	(t, ω) = 0 for a.e. (t, ω) ∈ (0, T ) × �,

which, together with the symmetry of K(·), implies that L� = −	�K . Since
in this case 	(·) ∈ L∞

F
(�; L2(0, T ;Rm×n)), K(·) is bounded, one has L(·) ∈

L∞
F

(�; L2(0, T ;Rm×n)). Moreover, from the definition of 	 in (10), we derive that,

	�K	 = −	�K
[
K†L + (Im − K†K)θ

]
= −	�KK†L = L�K†L.

As a result, we may rewrite (15) as follows:

d 〈Px, x〉Rn = − 〈
(Q − 	�K	)x, x

〉
Rn dr + 2〈L�u, x〉Rndr + 〈D�PDu, u〉Rmdr

+ [2〈P(Cx + Du), x〉Rn + 〈�x, x〉Rn] dW(r).

(16)
In order to deal with the stochastic integral in (16), for any s ∈ [0, T ), we

introduce the following sequence of stopping times τj :

τj � inf

{
t ≥ s

∣∣∣∣
∫ t

s

|�(r)|2dr ≥ j

}
∧ T , j = 1, 2, · · · .

It is easy to see that τj → T , P-a.s., as j → ∞. Using (16), we obtain that,

E〈P(τj )x(τj ), x(τj )〉Rn + E

∫ T

s

χ[s,τj ] [〈Qx(r), x(r)〉Rn + 〈Ru(r), u(r)〉Rm ] dr

= E〈P(s)η, η〉Rn + E

∫ T

s

χ[s,τj ]
[
〈	�K	x(r), x(r)〉Rn + 2〈L�u(r), x(r)〉Rn

]
dr

+ E

∫ T

s

χ[s,τj ]〈(R + D�PD)u(r), u(r)〉Rmdr.

Clearly,

|〈P(τj )x(τj ), x(τj )〉Rn | ≤ |P |L∞
F

(0,T ;Rn×n) max
t∈[0,T ]

|x(t, ·)|2
Rn , P-a.s.

by Dominated Convergence Theorem, we obtain that

lim
j→∞〈P(τj )x(τj ), x(τj )〉Rn = 〈P(T )x(T ), x(T )〉Rn . (17)

Furthermore, ∣∣χ[s,τj ] [〈Qx(r), x(r)〉Rn + 〈Ru(r), u(r)〉Rm ]
∣∣

≤ |[〈Qx(r), x(r)〉Rn + 〈Ru(r), u(r)〉Rm ]| ∈ L1
F
(0, T ),

by Dominated Convergence Theorem again, we obtain that

lim
j→∞E

∫ T

s

χ[s,τj ] [〈Qx(r), x(r)〉Rn + 〈Ru(r), u(r)〉Rm ] dr

= E

∫ T

s

[〈Qx(r), x(r)〉Rn + 〈Ru(r), u(r)〉Rm ] dr.

(18)
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Similarly, we can show that

lim
j→∞E

∫ T

s

χ[s,τj ]
[
〈	�K	x(r), x(r)〉Rn + 2〈L�u(r), x(r)〉Rn

]
dr

+ lim
j→∞E

∫ T

s

χ[s,τj ]〈(R + D�PD)u(r), u(r)〉Rmdr

= E

∫ T

s

[
〈	�K	x(r), x(r)〉Rn + 2〈L�u(r), x(r)〉Rn

]
dr

+ E

∫ T

s

〈(R + D�PD)u(r), u(r)〉Rmdr.

(19)

It follows from (17)–(19) that

2J (s, η; u(·))

= E〈Gx(T ), x(T )〉Rn + E

∫ T

s

[〈Qx(r), x(r)〉Rn + 〈Ru(r), u(r)〉Rm ] dr

= E〈P(s)η, η〉Rn + E

∫ T

s

[
〈	�K	x, x〉Rn + 2〈L�u, x〉Rn + 〈Ku, u〉Rm

]
dr

= E

[
〈P(s)η, η〉Rn +

∫ T

s

(〈K	x, 	x〉Rm − 2 〈K	x, u〉Rm + 〈Ku, u〉Rm) dr

]

= 2J (s, η; 	x̄) + E

∫ T

s

〈K(u − 	x), u − 	x〉Rm dr,

(20)
where we have used the fact that L� = −	�K . Hence, by K(·) ≥ 0, we have

J (s, η; 	x̄) ≤ J (s, η; u), ∀ u(·) ∈ L2
F
(s, T ;Rm).

Thus, for any θ ∈ L∞
F

(�; L2(0, T ;Rm×n)), the function 	(·) given by (10) is
an optimal feedback operator for Problem (SLQ). This completes the proof of the
sufficiency in Theorem 2.1.

Proof of the necessity in Theorem 2.1

This subsection is addressed to proving the “only if” part in Theorem 2.1. We borrow
some ideas from (Ait Rami et al. 2001, Bismut 1978, Kalman 1960, Reid 1946,
Sun and Yong 2014, and divide the proof into several steps.

Step 1. Let 	(·) ∈ L∞
F

(�; L2(0, T ;Rm×n)) be an optimal feedback operator for
Problem (SLQ) on [0, T ]. Then, by Corollary 3.1, for any ζ ∈ R

n, the following
forward-backward stochastic differential equation⎧⎨

⎩
dx(t) = (A + B	)x(t)dt + (C + D	)x(t)dW(t) in [0, T ],
dy(t) = − (

A�y(t) + C�z(t) + Qx(t)
)
dt + z(t)dW(t) in [0, T ],

x(0) = ζ, y(T ) = Gx(T )

(21)

admits a solution (x(·), y(·), z(·)) ∈ L2
F
(�; C([0, T ];Rn)) × L2

F
(�; C([0, T ];

R
n)) × L2

F
(0, T ;Rn) so that

R	x + B�y + D�z = 0, a.e. (t, ω) ∈ (0, T ) × �. (22)
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Also, consider the following stochastic differential equation:{
dx̃ = [−A − B	 + (C + D	)2

]�
x̃dt − (C + D	)� x̃dW(t) in [0, T ],

x̃(0) = ζ.

(23)
By Lemma 3.1, the Eq. (23) admits a unique solution x̃ ∈ L2

F
(�; C([0, T ];Rn)).

Further, consider the following Rn×n-valued equations:⎧⎨
⎩

dX = (A + B	)Xdt + (C + D	)XdW(t) in [0, T ],
dY = − (

A�Y + C�Z + QX
)
dt + ZdW(t) in [0, T ],

X(0) = In, Y (T ) = GX(T )

(24)

and{
dX̃ = [−A − B	 + (C + D	)2

]�
X̃dt − (C + D	)�X̃dW(t) in [0, T ],

X̃(0) = In.

(25)
In view of Corollary 3.1, it is easy to show that the Eqs. (24) and (25)

admit, respectively, unique solutions (X, Y, Z) ∈ L2
F
(�; C([0, T ];Rn×n)) ×

L2
F
(�; C([0, T ];Rn×n)) × L2

F
(0, T ;Rn×n) and X̃ ∈ L2

F
(�; C([0, T ];Rn×n)).

It follows from (21) to (25) that, for any ζ ∈ R
n,

x(t; ζ ) = X(t)ζ, y(t; ζ ) = Y (t)ζ, x̃(t; ζ ) = X̃(t)ζ, ∀ t ∈ [0, T ],
z(t; ζ ) = Z(t)ζ, a.e. t ∈ [0, T ]. (26)

By (22) and noting (26), we find that

R	X + B�Y + D�Z = 0, a.e. (t, ω) ∈ [0, T ] × �. (27)

For any ζ, ρ ∈ R
n and t ∈ [0, T ], by Itô’s formula, we have

〈x(t; ζ ), x̃(t; ρ)〉Rn − 〈ζ, ρ〉Rn

=
∫ t

0
〈(A+B	) x(r; ζ ), x̃(r; ρ)〉Rn dr +

∫ t

0
〈(C+D	) x(r; ζ ), x̃(r; ρ)〉Rn dW(r)

+
∫ t

0

〈
x(r; ζ ),

[
−A − B	 + (C + D	)2

]∗
x̃(r; ρ)

〉
Rn

dr

−
∫ t

0

〈
x(r; ζ ), (C + D	)∗ x̃(r; ρ)

〉
Rn dW(r)

−
∫ t

0

〈
(C + D	) x(r; ζ ), (C + D	)∗ x̃(r; ρ)

〉
Rn dr

= 0.

Thus, 〈
X(t)ζ, X̃(t)ρ

〉
Rn = 〈x(t; ζ ), x̃(t; ρ)〉Rn = 〈ζ, ρ〉Rn , P-a.s.

This implies that X(t)X̃(t)∗ = In, P-a.s., that is, X̃(t)∗ = X(t)−1, P-a.s.
Step 2. Put

P(t, ω) � Y (t, ω)X̃(t, ω)�, �(t, ω) � Z(t, ω)X̃(t, ω)�. (28)
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By Itô’s formula,

dP = {− (
A�Y + C�Z + QX

)
X−1 + YX−1

[
(C + D	)2 − A − B	

]
−ZX−1(C + D	)

}
dt + [

ZX−1 − YX−1(C + D	)
]
dW(t)

= {−A�P − C�� − Q + P
[
(C + D	)2 − A − B	

] − �(C + D	)
}
dt

+ [� − P(C + D	)] dW(t).

Let

� � � − P(C + D	). (29)

Then, (P (·), �(·)) solves the following R
n×n-valued backward stochastic differ-

ential equation:⎧⎨
⎩

dP = − [
PA + A�P + �C + C�� + C�PC

+(PB + C�PD + �D)	 + Q
]
dt + �dW(t) in [0, T ],

P (T ) = G.

(30)

By Lemma 3.2, we conclude that (P, �) ∈ L∞
F

(�; C([0, T ];Rn×n)) ×
L

p

F
(�; L2(0, T ;Rn×n)) with any p > 1.
For any t ∈ [0, T ) and η ∈ L2

Ft
(�;Rn), let us consider the following forward-

backward stochastic differential equation:⎧⎨
⎩

dxt (r) = (A + B	) xtdr + (C + D	) xtdW(r) in [t, T ],
dyt (r) = − (

A�yt + C�zt + Qxt
)
dr + ztdW(r) in [t, T ],

xt (t) = η, yt (T ) = Gxt(T ).

(31)

Clearly, the Eq. 31 admits a unique solution
(
xt (·), yt (·), zt (·)) ∈ L2

F
(�; C([t, T ];

R
n)) × L2

F
(�; C([t, T ];Rn)) × L2

F
(t, T ;Rn). Also, consider the following forward-

backward stochastic differential equation:⎧⎨
⎩

dXt(r) = (A + B	)Xtdr + (C + D	) XtdW(r) in [t, T ],
dY t (r) = − (

A�Y t + C�Zt + QXt
)
dr + ZtdW(r) in [t, T ],

Xt (t) = In, Y t (T ) = GXt(T )

(32)

Likewise, the Eq. (32) admits a unique solution
(
Xt(·), Y t (·), Zt (·)) ∈

L2
F
(�; C([t, T ];Rn×n))×L2

F
(�; C([t, T ];Rn×n))×L2

F
(t, T ;Rn×n). It follows from

(31) and (32) that, for any η ∈ L2
Ft

(�;Rn),

xt (r) = Xt(r)η, yt (r) = Y t (r)η, ∀ r ∈ [t, T ].
zt (r) = Zt(r)η, a.e. r ∈ [t, T ]. (33)

By the uniqueness of the solution to (21), for any ζ ∈ R
n and t ∈ [0, T ], we

have that

Xt(r)X(t)ζ = xt (r; X(t)ζ ) = x(r; ζ ), P-a.s.

thus,

Y t (t)X(t)ζ = yt (t; X(t)ζ ) = Y (t)ζ, P-a.s.

This implies that for all t ∈ [0, T ],
Y t (t) = Y (t)X̃(t)� = P(t), P-a.s. (34)
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Let η, ξ ∈ L2
Ft

(�;Rn). Since Y t (r)η = yt (r; η) and Xt(r)ξ = xt (r; ξ), applying
Itô’s formula to 〈xt (·), yt (·)〉Rn , we get that

E〈ξ, P (t)η〉Rn+ = E〈GXt(T )η,Xt (T )ξ 〉Rn + E

∫ T

t

〈Q(r)Xt (r)η,Xt (r)ξ 〉Rndr

− E

∫ T

t

〈B	Xt(r)ξ, Y t (r)η〉Rndr − E

∫ T

t

〈D	Xt(r)ξ, Zt (r)η〉Rndr.

(35)
This, together with Corollary 3.1, implies that

E〈P(t)η, ξ〉Rn = E〈GXt(T )η, Xt (T )ξ〉Rn + E

∫ T

t

(〈Q(r)Xt (r)η, Xt (r)ξ〉Rn

+〈R(r)	(r)Xt (r)η, 	(r)Xt (r)ξ〉Rn

)
dr.

Therefore,

E〈P(t)η, ξ 〉Rn = E

〈
ξ,Xt (T )�GXt(T )η

+E

∫ T

t

(
Xt(r)�Q(r)Xt (r)η + Xt(r)�	(r)�R(r)	(r)Xt (r)η

)
dr

〉
Rn

.

(36)
This concludes that

P(t) = E

(
Xt(T )�GXt(T )

+E

∫ T

t

(
Xt(r)�Q(r)Xt (r) + Xt(r)�	(r)�R(r)	(r)Xt (r)

)
dr

∣∣∣∣ Ft

)
.

(37)
By (37) and the symmetry of G, Q(·) and R(·), it is easy to conclude that, for any

t ∈ [0, T ], P(t) is symmetric, P-a.s.
Next, we prove that �(t, ω) = �(t, ω)� for a.e. (t, ω) ∈ (0, T ) × �.
Clearly, (P �, ��) satisfies that⎧⎨
⎩

dP � = − [
P �A + A�P � + ��C + C��� + C�P �C

+	�(PB + C�PD + �D)� + Q
]
dt + ��dW(t) in [0, T ],

P (T )� = G.

(38)

According to (30) and (38), and noting that P(·) is symmetric, we find that for any
t ∈ [0, T ],

0 = −
∫ t

0

{ [
�C + C�� + (PB + C�PD + �D)	

]

−
[
�C + C�� + (PB + C�PD + �D)	

]�}
dτ +

∫ t

0
(� − ��)dW(τ).

(39)
By (39) and the uniqueness of the decomposition of semimartingale, we conclude

that

�(t, ω) = �(t, ω)�, a.e. (t, ω) ∈ (0, T ) × �. (40)
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Step 3. In this step, we show that (P, �) is a pair of stochastic processes satisfying
(4), (8), (9) and (10). Moreover, (11) holds.

From (27) and (28), it follows that

B�P + D�� + R	 = 0, a.e. (t, ω) ∈ [0, T ] × �. (41)

By (41) and (29), and noting (5), we see that

0 = B�P + D� [� + P(C + D	)] + R	 = B�P + D�PC + D�� + K	

= L + K	.

(42)
Thus, it follows from (42) that R(K(·)) ⊃ R(L(·)) and

K†K	 = −K†L.

By Lemma 3.4, K†K is an orthogonal projector from R
m to the range of K. Hence

we have∫ T

0
|K†(r)L(r)|2

Rm×ndr =
∫ T

0
|K†(r)K(r)|2

Rm×m |	(r)|2
Rm×ndr ≤

∫ T

0
|	(r)|2

Rm×ndr, a.s.

This leads to (9). Moreover, we have (10), i.e., 	(·) = −K(·)†L +(
Im − K(·)†K(·)) θ for some θ ∈ L∞

F
(�; L2(0, T ;Rm×n)). Therefore, by (40), (42)

and Lemma 3.4, it follows that

(PB + C�PD + �D)	 = L�	 = −	�K	

= −	�K
[−K(·)†L + (

Im − K(·)†K(·)) θ
]

= 	�KK†L = −L�K†L.

(43)

Hence, by (30), we conclude that (P, �) is a solution to (4).
Now, let us show that

K ≥ 0, a.e. (t, ω) ∈ [0, T ] × �. (44)

For this purpose, from (43), we see that

	�K	 = L�K†L. (45)

Due to (45) and (5), for any (s, η) ∈ [0, T ) × L2
Fs

(�;Rn), by repeating the
procedures in deriving (20) above, we show that

J (s, η; u(·)) = 1

2
E

(
〈P(s)η, η〉Rn +

∫ T

s

〈K(u − 	x), u − 	x〉Rm dr

)

= J (s, η; 	(·)x̄(·)) + 1

2
E

∫ T

s

〈K(u − 	x), u − 	x〉Rm dr.

(46)

Hence, by the optimality of the feedback operator 	(·), (11) holds and

0 ≤ E

∫ T

s

〈K(u − 	x), u − 	x〉Rm dr, ∀ u(·) ∈ L2
F
(s, T ;Rm). (47)

For any v(·) ∈ L2
F
(s, T ;Rm), we may choose a control u(·) ∈ L2

F
(s, T ;Rm) (in

(1)) in the “feedback form” u(·) = v(·) + 	(·)x(·). Hence, by (47), we obtain (44).
This completes the proof of the necessity in Theorem 2.1.
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Proofs of Corollary 2.1 and Theorem 2.2

This section is addressed to proving Corollary 2.1 and Theorem 2.2.

Proof of Corollary 2.1 Suppose that the Eq. (4) admits two pairs of solutions
(Pi(·), �i(·)) ∈ L∞

F
(�; C([0, T ];S(Rn)))×L

p

F
(�; L2(0, T ;S(Rn))) (i = 1, 2), so

that

R(Ki(t, ω)) ⊃ R(Li(t, ω)), Ki(t, ω) ≥ 0, a.e. (t, ω) ∈ [0, T ] × �,

Ki(·)†Li(·) ∈ L∞
F

(�; L2(0, T ;Rm×n)),

where Ki � R + D�PiD and Li � B�Pi + D�(PiC + �i). Let

	i(·) � −Ki(·)†Li(·) +
(
Im − Ki(·)†Ki(·)

)
θi

for some θi ∈ L∞
F

(�; L2(0, T ;Rm×n)). Then by the sufficiency in Theorem 2.1,
	1(·) and 	2(·) are two optimal feedback operators and

inf
u∈L2

F
(s,T ;Rm)

J (s, η; u) = 1

2
E〈P1(s)η, η〉Rn = 1

2
E〈P2(s)η, η〉Rn . (48)

By the arbitrariness of s, η, one has P1(·) = P2(·). Similar to the proof of (40),
one can show that �1(·) = �2(·).

Proof of Theorem 2.2 The “if” part. By the necessity in Theorem 2.1, it
remains to show the uniqueness of optimal feedback operators. Suppose there
exists another optimal feedback operator 	̃(·). By the necessity in Theorem
2.1, the Riccati equation (4) admits a (corresponding) solution

(
P̃ (·), �̃(·)) ∈

L∞
F

(�; C([0, T ];S(Rn))) × L
p

F
(�; L2(0, T ;S(Rn))) (for any p ∈ [1, ∞)) so that

R(K̃(t, ω)) ⊃ R(L̃(t, ω)), K̃(t, ω) ≥ 0, a.e. (t, ω) ∈ [0, T ] × �,

K̃(·)†L̃(·) ∈ L∞
F

(�; L2(0, T ;Rm×n)), 	̃(·) = −K̃(·)†L̃(·) + (
Im − K̃(·)†K̃(·)) θ̃

for some θ̃ ∈ L∞
F

(�; L2(0, T ;Rm×n)), where K̃ � R + D�P̃D and L̃ � B�P̃ +
D�(P̃C + �̃). Moreover,

inf
u∈L2

F
(s,T ;Rm)

J (s, η; u) = 1

2
E〈P̃ (s)η, η〉Rn . (49)

Since (11) and (49) hold for any (s, η) ∈ [0, T ) × L2
Fs

(�;Rn), it follows that

P(·) = P̃ (·). Similar to the proof of (40), one can show that �(·) = �̃(·). Hence,
K = K̃ and L = L̃. Since K(t, ω) > 0 for a.e. (t, ω) ∈ [0, T ] × �, one has
	(·) = 	̃(·).

The “only if” part. We only need to prove that the uniqueness and
existence of optimal feedback operators implies K(·) > 0 a.e. For any
θ̃ ∈ L∞

F
(�; L2(0, T ;Rm×n)), we construct another stochastic process 	̃ ∈

L∞
F

(�; L2(0, T ;Rm×n)) as follows
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	̃ � −K†L + (Im − K†K)(θ + θ̃ ).

Repeating the argument in the proof of the sufficiency in Theorem 2.1, one can show
that 	̃(·) is an optimal feedback operator. By the uniqueness of optimal feedback
operators, we deduce that 	(·) = 	̃(·), and therefore (Im − K†K)θ̃ = 0. The
arbitrariness of θ̃ indicates that K†K = Im. As a result, K† = K−1, and hence
K(·) > 0 a.e.

Two illustrating examples

We have discussed the relationship between the existence of feedback operator and
the well-posedness of the Riccati Eq. (4). In this section, we present two examples
which are inspired by (Wang, T: New optimality conditions in linear quadratic prob-
lems with random coefficients and applications, in submission). In the first example,
we show that there does exist a feedback operator 	(·) ∈ L∞

F
(�; L2(0, T ;Rm×n))

for this case; while in the second one, it is shown that the desired feedback operator
may not exist for another situation.

We begin with the following positive case.

Example 6.1 Applying Itô’s formula to sinW(·), we obtain that

sinW(T ) − sinW(t) =
∫ T

t

cosW(s)dW(s) − 1

2

∫ T

t

sinW(s)ds. (50)

Write

ξ � 2 + T

2
+ sinW(T ) + 1

2

∫ T

0
sinW(s)ds,

y(t) � 2 + T

2
+ sinW(t) + 1

2

∫ t

0
sinW(s)ds, Y (t) � cosW(t), t ∈ [0, T ].

(51)
From (50), it is clear that 1 ≤ y(·) ≤ 3 + T , and (y(·), Y (·)) satisfies

y(t) = ξ −
∫ T

t

Y (s)dW(s), t ∈ [0, T ].
Consider an SLQ problem with the following data (Note that, by (51), 1 ≤ ξ ≤

3 + T ):

m = n = 1, A = B = C = Q = S = 0, D = 1, R = 1

2(3 + T )
, G = ξ−1−R > 0.

(52)
The corresponding Riccati equation is{

dP (s) = (R + P(s))−1�2(s)ds + �(s)dW(s), s ∈ [0, T ],
P (T ) = G.

(53)

By Itô’s formula, one can show that (P (·), �(·)) = (
y(·)−1 − R, −y(·)−2Y (·)) is

the unique solution to (53). According to Theorem 2.1,

	(·) � −y(·)−1Y (·) ∈ L∞
F

(�; L2(0, T ;R))

is an optimal feedback operator.
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Next, we give a negative example to show the nonexistence of the desired optimal
feedback operator.

Example 6.2 Define two (one-dimensional) stochastic processes M(·) and ζ(·)
and a stopping time τ as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M(t) �
∫ t

0

1√
T − s

dW(s), t ∈ [0, T ),

τ � inf { t ∈ [0, T ) | |M(t)| > 1} ∧ T ,

ζ(t) � π

2
√
2
√

T − t
χ[0,τ ](t), t ∈ [0, T ).

(54)

It was shown in ((Frei and dos Reis 2011), Lemma A.1) that∣∣∣∣
∫ T

0
ζ(s)dW(s)

∣∣∣∣ = π

2
√
2

∣∣∣∣
∫ τ

0

1√
T − t

dW(t)

∣∣∣∣ = π

2
√
2

|M(τ)| ≤ π

2
√
2
, (55)

and

E

[
exp

(∫ T

0
|ζ(t)|2dt

)]
= ∞. (56)

Consider the following backward stochastic differential equation:

Y (t) =
∫ T

0
ζ(s)dW(s) + π

2
√
2

+ 1 −
∫ T

t

Z(s)dW(s), t ∈ [0, T ].

This equation admits a unique solution (Y, Z) as follows

Y (t) =
∫ t

0
ζ(s)dW(s) + π

2
√
2

+ 1, Z(t) = ζ(t), t ∈ [0, T ].

From (54)–(56), it is easy to see that⎧⎨
⎩
1 ≤ Y (·) ≤ π√

2
+ 1,

Z(·) /∈ L∞
F

(�; L2(0, T ;R)).

(57)

Consider an SLQ problem with the following data:

m=n=1, A=B = C = Q = S = 0, D = 1, R = 1

4
> 0, G = Y (T )−1−1

4
> 0.

(58)
For this problem, the corresponding Riccati equation reads

{
dP (s) = (R + P(s))−1�2(s)ds + �(s)dW(s), s ∈ [0, T ],
P (T ) = G,

(59)

and 	(·) = −(R + P(·))−1�(·).
Put

P̃ (·) � P(·) + R, �̃ � �.
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It follows from (59) that⎧⎨
⎩

dP̃ (s) = P̃ (s)−1�̃2(s)ds + �̃(s)dW(s), s ∈ [0, T ],
P̃ (T ) = Y (T )−1.

(60)

Applying Itô’s formula to Y (·)−1, we deduce that (P̃ (·), �̃(·)) =
(Y (·)−1, −Y (·)−2Z(·)) is the unique solution to (60). As a result,

(P (·), �(·)) � (Y (·)−1 − R, −Y (·)−2Z(·))
is the unique solution to the Riccati Eq. (59). Moreover, 	(·) = −Y (·)−1Z(·). By
(57), we see that 	(·) does not belong to L∞

F
(�; L2(0, T ;R)), either. Hence, it is

not a “qualified” feedback operator.

Remark 6.1 Clearly, the form of (59) is the same as that of (53) but their endpoint
values at T are different. For the endpoint value G given in (52), the corresponding
�(·) ∈ L∞

F
(�; L2(0, T ;R)). However, for the endpoint value G given in (58), the

resulting �(·) /∈ L∞
F

(�; L2(0, T ;R)).
Generally speaking, it would be quite interesting to find some suitable con-

ditions to guarantee that the Eq. (4) admits a unique solution (P (·), �(·)) ∈
L∞
F

(0, T ;S(Rn)) × L∞
F

(�; L2(0, T ;S(Rn))) but this is an unsolved problem.

Remark 6.2 Example 6.2 also shows that, a solvable Problem (SLQ) does not
need to have feedback controls. This is a significant difference between SLQs and
their deterministic counterparts. Indeed, it is well-known that one can always find
the desired feedback control through the corresponding Riccati equation whenever a
deterministic LQ is solvable.
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Ben-Israel, A, Greville, TNE: Generalized Inverses: Theory and Applications. Pure and Applied Mathe-
matics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney (1974)

Bensoussan, A: Lectures on stochastic control. In: Nonlinear Filtering and Stochastic Control. Lecture
Notes in Math, vol. 972, pp. 1–62. Springer-Verlag, Berlin (1981)

Bismut, J-M: Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim
14, 419–444 (1976)
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