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Abstract In this introductory paper to the issue, I will travel through the history of
how quantitative finance has developed and reached its current status, what problems
it is called to address, and how they differ from those of the pre-crisis world.

Background

In this introductory paper to the issue, I will travel through the history of how
quantitative finance has developed and reached its current status, what problems it
is called to address, and how they differ from those of the pre-crisis world.

I take the privileged vantage point of being the quantitative finance editor of
Risk magazine and risk.net, responsible for the publication of peer-reviewed papers
in their Cutting Edge section. Having been a member of the team since 2007, I
have witnessed the impact the credit crisis had on the industry and the practice of
derivatives pricing. What started as a localised crisis in the US mortgage market,
first signalled in 2007, became a full-blown credit crisis and liquidity crisis for the
industry, even spilling into a sovereign crisis in some countries.

The following charts total all papers submitted to Risk from 2007 to 2016 (inclu-
ding those not published), divided by category (although, it is often difficult to attri-
bute a single category to a research paper). On average, Risk receives a hundred
papers per year. These represent only a small subset of the literature on quantitative
finance but they help get a sense of current research activities for a given asset class
or subject. It will not come as a surprise, for example, that research in credit deriva-
tives has declined sharply over time and that on valuation adjustments has taken
centre stage. Developments in other fields have had less obvious patterns.
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I will not touch on the quantitative research on buy-side topics here; papers on
portfolio management, algorithmic trading and trade execution, though a significant
part of Risk’s output, are not relevant to the special edition of this journal.

I thank the editors and publishers of Probability, Uncertainty and Quantitative
Risk for this opportunity and I apologise in advance for the numerous omissions of
important contributions that lack of space makes inevitable.

Finding sigma

The history of quantitative finance has been a long journey in which mathematicians,
physicists, statisticians, economists, and those who are known as quants have pursued
a common objective: managing volatility, or, in broader terms, the riskiness of
financial markets.

The 20th century saw the birth and development of modern finance through
numerous phases of progress in the quantitative infrastructure it was built on. Op-
tion trading was already alive and well in the 17th century, when merchants sought
to protect themselves from the risk connected to their trades in what we would
consider today rudimental form. It was in 1900, however, that the first milestone of
quantitative finance was notched, when Louis de Bachelier published his Ph.D. the-
sis The theory of speculation (Bachelier, 1900). Bachelier introduced the concept
of Brownian motion to finance after it was, apparently independently, formalised
in mathematical terms by the Danish astronomer, mathematician, and statistician
Thorvald N. Thiele (Thiele, 1880) a few years earlier. Brownian motion, as a con-
tinuous and normally distributed random process, could be applied to approximate
asset prices’ volatile path.

Though for decades Bachelier’s work was largely overlooked and only fully
re-evaluated in the sixties, his studies have been enormously influential.
Brownian motion provided the essential tool for the study of stochastic
processes, which are a fundamental ingredient of quant finance. They were
fundamental for Japanese mathematician Kiyoshi Itô, who in the 1951 paper
On stochastic differential equations presented his lemma on how to differenti-
ate a time-dependent function of a stochastic process. In essence, with Itô’s
lemma one can derive the differential equations for calculating the value of
financial derivatives. Itô is considered the founder of stochastic calculus, and
the most commonly used of its variations is named after him.

The game-changing breakthrough in modern finance came in 1973 with the publi-
cation of Fischer Black and Myron Scholes’ The pricing of options and corporate
liabilities (Black, Scholes, 1973), and Robert Merton’s On the pricing of corporate
debt: the risk structure of interest rates (Merton, 1974). The papers presented, using
delta-hedging and arbitrage-free arguments, a call and put option pricing model. It
quickly entered wide use and, in fact, allowed the explosion of the options market as
we know it today.

The original BSM model notoriously had a number of limitations. Its assumptions
such as Gaussian-distributed underlying’s returns, no dividends, no transaction costs,
complete and liquid markets, and a known and constant risk-free rate, to cite just a
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few–oversimplified the reality of options markets and restricted the reliability and ap-
plicability of the model. Successive research in the field focussed on relaxing those
assumptions and building models that would match market prices more accurately. It
introduced variable risk-free rates, incorporated transaction costs and dividends, and
used distributions with fatter tails to capture non-normality.

The biggest challenge, however, was moving away from the assumption of con-
stant and known volatility, as it soon proved to be a highly unrealistic assumption.
Historical volatility is not fit for this purpose, as it gives no indication of expected
future volatility. Implied volatility was then introduced as an estimate of sigma in
the BSM formula, allowing the calibration of option prices to market prices, and
the hedging of a position.

Throughout the years, many models have been proposed to improve volatility
modelling. In the’80s, Robert Engle and Tim Bollerslev introduced the so-call ARCH
(autoregressive conditional heteroskedasticity) model (Engle, 1982) and its genera-
lised variant, GARCH (Bollerslev, 1986). They estimate volatility as a function of
past realised volatility and innovations in the time series. While often referred to as
stochastic volatility models, the deterministic nature of the volatility terms they
employ does not make the GARCH family stochastic in a strict sense.

Stochastic models have been extensively used in the industry and continue to be a
fundamental method of modelling equity and interest rate derivatives. In the Heston
model (Heston, 1993), the volatility term follows a mean-reverting, stochastic process
with a square-root diffusion. Its peculiarity also resides in the correlation between the
volatility and the returns of the underlying asset. The Heston model is probably the
most popular stochastic volatility model, not so much due to its accuracy, but rather
its relatively inexpensive computational requirements–a consequence of its closed-
form Fourier solution.

Heston has been enormously influential, with a large number of variants appea-
ring in the quant finance literature, which are widely applied to derivatives pricing
across different asset classes.

Almost contemporaneously to Heston, Bruno Dupire (Dupire 1994) developed the
local volatility model. It describes the volatility of a European option while capturing
its smile (or the tendency of increasingly in-the-money or out-of-the-money options
to exhibit higher implied volatility than that of at-the-money options, as observed in
particular in FX markets), fitting market prices with high accuracy. In its setting, the
volatility that plugs into the Black-Scholes formula is derived as a function of strike
price and time to maturity. In truth, local volatility represents a class of models not
entirely separated from stochastic volatility, as its volatility is an averaging function
of all instantaneous volatilities obtained from the stochastic models.

The stochastic alpha beta rho (SABR) model (Hagan et al., 2002) is a more
recent stochastic model, mostly used for interest rate derivatives. The authors
admittedly developed it in order to overcome a mismatch they verified between the
dynamics of the smile Dupire’s model was predicting and actual market realisation,
which they believed could lead to incorrect hedging strategies.

(Dupire, 1994) and (Hagan et al., 2002) have been the two most cited papers in
Risk over the past 10 years–confirming the impact these two models have had in
the derivatives market, and the effort other researchers have dedicated to their
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improvement (Day, 2016). Because, of course, no model is perfect: in Dupire’s
model, for example, one difficulty is to interpolate option prices between strikes,
which are assumed to be traded in a continuum of values. More generally, it is also
less suitable than stochastic models in pricing complex hybrid products.

The original SABR model was imperfect, in the sense that it lacked a few desi-
rable features: the mean reversion of volatility, the interaction between different
forward rates (which are assumed to be independent), and the possibility of cali-
brating the parameters to multiple maturities, for instance. Several adjustments to
address those issues have been proposed in the literature, however–and the model
is still considered the industry standard for rates derivatives.

In 2012, unprecedented conditions in some major markets in which interest rates
became negative challenged the SABR model, as it was not designed–like many
other models–to work in a negative interest rate environment. A solution to the
problem had to be found in very short order, with quants opting for a manual
adjustment on the rates’ distribution. By shifting the distribution to the right, one
could make sure that the rate would remain positive, so the modelling framework
in place would continue working. The trick of making rates artificially positive did
not fix the underlying problem, however. Furthermore, the distribution shift had to
be recalibrated each time there were significant negative rate moves in order to
guarantee non-negativity. It was only in 2015 that an elegant new solution was in-
troduced (Antonov, Konikov, and Spector, 2015). In The free boundary SABR, the
authors proposed an extension of the SABR model in which rates can go negative,
with no need to decide in advance how negative. Interestingly, the model has
proved very useful not only for its ability to capture negative rates, but near-zero
rates as well. That is important, because rates tend to display stickiness to zero be-
fore swinging into negative territory. Thanks to this work and others published the
same year, Alexandre Antonov was awarded Risk’s Quant of the Year in 2016.

Among numerous stochastic volatility models, four outlined in papers by Lor-
enzo Bergomi between 2004 and 2009 stand out: Smile Dynamics I, II, III, and IV
(Bergomi 2004, 2005, 2008, 2009). The importance of his work–which gained him
Risk’s Quant of the Year award in 2009–lies in the way volatility and spot price
dynamics are combined in a framework that is easy to implement, computationally
inexpensive, and applicable to vanilla products as well as exotic equity derivatives
and volatility derivatives. In particular, it overcomes the limited freedom the Hes-
ton model imposes on the joint dynamics of spot prices, volatility, and correlation
between the two.

In the following two charts, we notice the trend in research in interest rates deriva-
tives (Fig. 1) and that of derivatives on equity and volatility (Fig. 2), as seen in Risk.

Aside from SABR-related works, several of those papers investigated ways to
address the dislocation between Libor and OIS rates that emerged with the advent
of the crisis. The spread between the two had been mostly single-digit numbers of
basis points up until 2007 and reckoned negligible. Upon Lehman Brothers’ col-
lapse in September 2008, it ballooned to 365 basis points. Suddenly, Libor was not
a risk-free rate anymore. Of course, by definition it never was, being the rate at
which the banks make (or declare they could make) unsecured loans to each other.
It moves in tandem with the perceived credit quality of the banking system. But it

M. CesaPage 4 of 16



had never reached such levels that its non-risk-free nature became obvious. Banks
adapted to the new environment by switching to OIS-based curves to discount cash
flows.

It was Vladimir Piterbarg, in his seminal paper on funding and discounting
(Piterbarg, 2010), who first set out how derivatives pricing and risk management
was affected by the new rate environment and each bank’s own cost of funds. He
started from first principles, and derived the formulae for derivatives valuation in
the presence of costs associated with borrowing and lending, highlighting that
different rates should be applied depending on whether a trade is secured through
collateral posting, or unsecured. This work, also praised for its clarity, won him his
second Quant of the Year award in 2011 (having already won in 2006 with a paper
on volatility smile modelling).

Further research by (Bianchetti, 2010) confirms the market practice is now that
of using two curves to obtain no-arbitrage solutions. He does so by taking into
account the term structure of the basis (the spread between Libor and OIS), which
can be obtained from the market, and derives pricing formulae based on an
arbitrage-free double-curve setting. This solution uses an analogy to the cross-
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currency derivative pricing method in which an adjustment is needed to express
the discounted cash flows under different rates.

In the cross-currency derivatives markets this basis was already known to be
significant, with a difference in funding costs applying depending on the currency
of the collateral posted for a given trade. Masaaki Fujii and Akihiko Takahashi
(Fujii, Takahashi, 2011) showed the impact of this on derivatives pricing by
pricing the embedded cheapest-to-deliver option dealers have in a cross currency
swap, which gives them a choice of currencies to post as collateral. Their model
allows one to avoid the potentially large mispricing of future cash flows and subse-
quent losses encountered in case of applying the incorrect discount rate.

A natural step in the study of the Libor-OIS spread was moving from a de-
terministic to a stochastic basis. Among others, two papers by Fabio Mercurio
provided a solution based on the Brace-Gatarek-Musiela model for interest
rates to model the joint behaviour of Libor and OIS through the tenors of the
term structure (Mercurio, 2010); and one that models the basis explicitly in the
multi-curve environment (Mercurio, 2012).

In later research, (Crépey and Douady, 2013) proposed an equilibrium approach
to explain the mechanism according to which banks lend at an optimised rate be-
tween Libor and OIS. That rate is built on Lois (Libor-OIS spread) and the authors
show it is a function of the credit skew of a typical borrower and the liquidity of a
typical lender.

One of the visible effects of the crisis was the decline in the market for complex
derivative instruments. Hybrid products, fancy exotic options, and cross-asset
structured securities lost most of their appeal, both because they were often seen as
unnecessary and excessively risky by clients, and because they became uneconomical
for banks, as capital, funding, and regulatory compliance eroded profits. However,
Figs. 1 and 2, which also comprise papers on these topics, seem to suggest there has
been only a moderate decline in research on derivatives pricing. This is because
volatility, smile dynamics, and correlation modelling have been inspiring new ideas,
such as modelling swap rates’ volatility (Rheinlaender, 2015) and local or stochastic
correlation models (see, for example, Langnau, 2010 and Zetocha, 2015) and the
trend is unlikely to end soon.

Risk management

We observe risk management research has recently been more active than it was
during the crisis years. Several studies on building stress-testing methodologies,
liquidity risk, and operational risk have appeared in Risk. Others have proposed
risk measures based on the omega risk measure or expectiles, as an alternative to
value-at-risk (VaR) or expected shortfall (ES).

Needless to say, the vast majority of the papers comprising Fig. 3 deal with
VAR, or in smaller measure, ES. That pattern is expected to change in years to
come. Under the Basel Committee’s Fundamental review of the trading book
(FRTB), ES is due to replace VaR for the calculation of market risk capital require-
ments. One of the debates sparked by the move centres on the possibility of back-
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testing ES, a desirable feature given the wide applications ES will have. ES has
been proven not to be elicitable, a property–possessed by some risk measures (like
VaR) and not others (like ES)–which was thought necessary for a back-test to be
valid. (Acerbi and Székely, 2014) and (Fissler et al., 2016) proved this not to be
the case. Elicitability is a necessary property in case of comparative back-testing
between two risk measures, but does not affect an individual measure’s
backtestability.

One notable recent adjustment to VaR has been proposed in the paper Risk
management for whales (Cont and Wagalath, 2016) and it involves the inclu-
sion of liquidation costs in the risk management model for financial portfolios.
The paper explicitly refers to the famous 2012 ‘London whale’ incident, in
which JP Morgan lost USD 6.2 billion in liquidation costs while trying to
reduce its risk-weighted assets. The liquidation component of the model is
designed to capture the price impact of large sales. They show that a standard
model that neglects liquidity issues would have estimated a VaR five times
lower than their LVaR. A warning on the riskiness of liquidating a large port-
folio might suggest to a bank to revise their exit strategy.

Credit derivatives

As mentioned above, the chart in Fig. 4–showing post-crisis credit derivatives
research in Risk–will surprise no one. In fact, if there is anything surprising in it, it
is the relatively intense research activity on collateralised debt obligations (CDOs)
pricing still persisting in 2010 and more moderately in 2011. Following the spec-
tacular failure of these products, the details of which are not of interest to us here,
their issuance volumes went from USD 180 billion per quarter at the beginning of
2007 to about USD 10 billion a year later. The banking system, from 2007 and
2009, suffered losses connected to CDOs in the region of a half-trillion US dollars.

Having got the pricing so wrong, not only were credit derivatives desks deci-
mated by banks, even doing research on CDOs carried reputational risk that no
model could manage. In early 2010, it was not rare to see discussion of complex
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securities like CDOs appearing in the mainstream media, with the institution or
person involved being named and shamed.

However, it is true that in the past 3-4 years the issuance of CDOs has been on
the rise again–but that has not stimulated a new wave of frenetic search for the
perfect copula model.

Valuation adjustments

Valuation adjustments (XVAs) affect derivatives pricing by incorporating counter-
party risk, funding, margin requirements, and regulatory capital. By construction,
the calculation of their values, sensitivities, and joint behaviour is an enormous
computational challenge, which has forced banks to equip themselves by adding
computing power (like GPUs) and adapting and deploying mathematical solutions
(like AAD) to the cause. XVAs are now a key ingredient in the pricing of deriva-
tives of all asset classes, and are intrinsically connected with all areas discussed in
this paper.

Their rise to prominence in finance can be seen as a by-product of the credit
crisis and the subsequent introduction of more stringent regulatory frameworks in
banking. The evolving ideas regarding price modelling, risk management, accoun-
ting, and the controversies of valuation adjustments have generated a rich stream
of research in which the last word has yet to be said: Fig. 5 tells the story
eloquently.

A credit valuation adjustment (CVA) is commonly defined as the difference
between the price of an instrument including credit risk and the price of the same
instrument where both parties are credit risk free (Green, 2016). In essence, it
represents the price of counterparty credit risk.

CVA had been calculated by some top-tier banks long before the crisis, since
approximately 2003. At the time, however, it was merely a back-office exercise
whose value was not included in derivative prices. Rather, it was used as a measure
to monitor counterparty risk at trade level.
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The first CVA models focussed only on the unilateral case, meaning they were
only taking into account the default risk of the counterparty. It was soon observed
that this could create a price asymmetry, as each counterparty would propose a
price that considered only the other party’s default risk and not its own–poten-
tially scuppering any deal. Bilateral models were then introduced to address this
issue. In a bilateral setting, symmetry is restored by calculating the CVA term for
each counterparty as a cost and considering its algebraic opposite as a benefit for
the other party. The total adjustment for a given counterparty is therefore the dif-
ference between the cost and the benefit. The benefit is known as debit valuation
adjustment (DVA)–a source of great controversy upon its introduction. The
mechanism allows a bank to report a profit as a consequence of its deteriorating
financial health, given that a higher default risk means a higher CVA for its coun-
terparty and a symmetrically higher DVA for itself. This not only raises an eye-
brow for its economic implications and propensity for perverse incentives; it also
creates a challenge, since this quantity cannot be replicated, and therefore hedg-
ing and monetising it is not possible. One theoretical solution to hedge DVA is
for a bank to take a long position in its own credit default swaps (CDS)–but that
is not technically doable. A way around the problem some banks are said to em-
ploy (see Carver, 2012) is to take a long position on a basket of CDSs on corre-
lated entities: a US bank could, for example, use CDSs on other US banks to
hedge its own DVA.

Among the first studies on the subject are Brigo and Capponi’s paper (Brigo
and Capponi, 2010)–which was first made public in 2008–and Jon Gregory’s 2009
paper. Gregory provides a set of pricing equations for the bilateral counterparty risk
case with non-simultaneous and simultaneous defaults, but dismisses the idea of
reporting the DVA benefit as nonsensical. Brigo and Capponi do not touch upon
the issue of the benefit, but provide an arbitrage-free and symmetric CVA model
applicable to the trades in CDSs.

In 2011, Burgard and Kjaer (see Burgard and Kjaer 2011a, b) proposed an alter-
native hedging strategy for own-credit risk that involves the repurchase of the
bank’s issued bonds. On this semi-replication strategy, they build a Black-Scholes
PDE with bilateral counterparty risk that also takes the funding costs of hedging
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into account. The bonds to buy back are of different seniorities (from risky to risk-
free) to allow consideration of either of the two cases at default.

While subject to criticism because of the practical restrictions of the approach,
the strategy has set the market standard and greatly influenced successive research
in the field. In 2013, Burgard and Kjaer (Burgard, Kjaer 2013) expanded on the
funding considerations by developing a strategy to decide whether to hold bonds
or issue new ones. They were named Risk’s Quants of the Year in 2014 thanks to
these papers. The authors have continued building on their framework and a recent
paper (Burgard and Kjaer, 2017) extends the model to multiple netting sets while
contributing to an important ongoing debate on funding as explained later in this
chapter.

Funding valuation adjustment (FVA) is the funding cost of hedging an uncolla-
teralised client trade. It has caused controversy very early in its young history. Its
economic value, accounting treatment, and even philosophical meaning were
debated for several months by academic and practitioners alike, creating two rather
clearly distinct camps. Through the pages of Risk, John Hull and Alan White (Hull
and White, 2012a) voiced their opinion, stating: “FVA should not be considered
when determining the value of a derivatives portfolio, and it should not be consi-
dered when determining the prices the dealer should charge when buying or selling
derivatives.” To support this conclusion, they assume complete and perfectly effi-
cient markets and they rely on the Modigliani-Miller theorem, according to which
the price of an asset does not depend on the way it is funded.

Immediately after Hull and White’s piece was published, quants from various in-
stitutions contacted Risk’s editorial team in London and New York to express their
views. Hull and White said they were themselves “inundated” with responses from
all over the world. It became apparent that debate was not merely philosophical: it
had important practical implications. This was understandable because adopting one
principle over the other could mean a difference in the region of hundreds of millions
of dollars for the largest dealers.

Stephen Laughton and Aura Vaisbrot, then at the Royal Bank of Scotland, were
the first to publish their counterargument (Laughton and Vaisbrot, 2012). Their main
point was that market incompleteness does not allow one to hedge all risk factors in a
derivatives portfolio as Hull and White assume. In essence, they were saying that a
funding adjustment to the risk-neutral value is necessary. They also imply that, as a
consequence, pricing differs depending on the bank’s funding rate–that is, it violates
the law of one price, which determines that a given asset, traded in two different
markets, must have only one price in order to avoid arbitrage opportunities. Since the
2008 crisis, prices have become dealer dependent.

Others intervened pointing out that post-crisis discounting cannot be performed
using risk-free rates as that would ignore the cost of funding the replicating
instruments.

To the delight of those following it, the debate continued for some time; Hull
and White, unconvinced by their critics’ arguments, replied, maintaining their
position that FVA should be ignored (Hull and White, 2012b).

While both sides might be able to substantiate their viewpoints on theoret-
ical grounds, the reality is that banks have almost universally accepted
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accounting for FVA and have been including it in derivatives pricing for sev-
eral years. The losses banks faced when first incorporating FVA caused many
a storm on earnings days: JP Morgan reported a $1.5 billion loss attributable
to FVA in the fourth quarter of 2013 (Cameron, 2014). In 2014, other banks
followed suit: UBS reported a $282 million loss on FVA in the third quarter,
Citi $474 million, BAML $497 million, to name just some of the casualties
(Rennison 2014, Becker 2015a and 2015b).

Meanwhile, the debate moved from the justification of FVA’s existence to its
pricing and accounting, with quants and academics trying to find consistent
answers.

In their most recently published paper, Burgard and Kjaer shared their fin-
dings on FVA and the effect of funding on the economic value of a firm for
the shareholder. Taking a step back, funding can be symmetric or asymmetric
depending on whether a derivative desk can borrow and lend at the same rate.
Symmetry is the common market assumption, while the asymmetry in funding
has been presented in (Albanese, Andersen, and Iabichino, 2015). Views on
this are far from unanimous.

Capital valuation adjustment (KVA) accounts for the cost of equity capital a
bank incurs when entering a derivative trade. To explain the concept, some would
say KVA is affine to FVA, in the sense that, in both cases, the cost is associated
with a source of funding. The difference is that KVA, rather than measuring the
funding cost coming from debt, refers to the funding cost from equity. That is, as a
new deal is agreed on, it generates a cost of borrowing from the shareholder. That
cost is normally of comparable scale to that of other valuation adjustments, which
means its importance cannot be underestimated.

KVA was first introduced by Andrew Green, Chris Kenyon, and Chris Dennis in
2014. They model it by adapting the semi-replication hedging strategy of (Burgard
and Kjaer, 2011a) to replicate the cost of capital of a trade. The issue here is not so
much in pricing KVA, but rather knowing regulatory capital requirements and
computing the expected value of capital through time. That is either done through
standardised approaches or internal model methods.

Albanese et al. (2016) offer a different reading on KVA, which they define as a
cost proportional to the capital-at-risk multiplied by the hurdle rate. This aligns
with the previous definition of KVA as the compensation to shareholders’ capital.
In their paper they focus on the accounting framework for FVA and KVA, while
explaining the tight connection between the two, due to the fact that they both are
forms of funding. Criticising market practice and accounting standards, they argue
that by not reporting capital and funding costs transparently, banks are implicitly
allowed to hide those costs and report inflated profits.

The most recent addition to the XVA family is the adjustment for the cost of
funding initial margin, known as MVA. It became mandatory to post initial margin
on derivatives transactions that are not-centrally cleared in September 2016 in the
US, Canada, and Japan, and in February 2017 in Europe.

Initial margin requirements are calculated using the International Swaps and
Derivatives Association’s Standard initial margin model, which is a way of
enabling participants in non-cleared trades to collect margin from each other
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(Osborn, 2016). To then calculate the MVA, Kenyon and Green (2015) again
propose to adapt Burgard and Kjaer’s semi-replication method. As with KVA,
the evolution of a quantity–here the initial margin–has to be estimated for the
expected lifetime of the portfolio. This is done through the calculation of VaR
or ES, which may require a computationally expensive Monte Carlo simula-
tion. According to their model, applying a regression technique makes the
whole process become much faster.

Credit risk

Credit risk is a vast subject. The two categories above (credit derivatives and
valuation adjustments) have been isolated in order to observe their specific trends.
The “residual” series, as seen in Fig. 6, is therefore partial and not representative
of the entire category.

Topics that fall under this umbrella are related to credit portfolios and the corre-
lation structure therein, collateral posting, central counterparties (CCPs) and
systemic risk, with some interactions between them.

In the post-crisis world, CCPs have assumed a fundamental role in the financial
system. They exist as the agent between two counterparties on opposite sides of a
trade, with the purpose of eliminating counterparty risk. The questions their role
poses are whether they are themselves a safe counterparty, and whether their size
constitutes a significant systemic risk. CCPs’ business is complex to model. Each
CCP may have thousands of clients, also called general clearing members (GCMs),
and each GCM may deal with multiple CCPs. There are initial margins, variation
margins and default fund contributions to be considered. The correlation structure
is such that an analytical description of this system is impossible. Studies on CCPs’
efficiency have returned mixed results.

A paper by Duffie and Zhu (2011) focusses on the counterparty risk a CCP is
supposed to mitigate. The authors argue that, under given circumstances, the use of
multiple CCPs may have the counterintuitive effect of increasing counterparty ex-
posure as a consequence of the fragmentation of netting. Also, they conclude that
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if a GCM deals with derivatives in multiple asset classes, clearing them through a
single CCP is more efficient than doing so through multiple CCPs.

Borovkova and El Mouttalibi (2013) conducted an extensive analysis on the
effect of CCPs’ activity on systemic risk. They apply a network simulation ap-
proach through a Monte Carlo method, in which scenarios include those of
market shocks, default contagion, CCPs’ default. Their finding suggests that in
the case of a homogeneous financial system (which is only a theoretical
construct) central clearing guarantees higher stability. However, in the more
realistic case of an inhomogeneous financial system, market instability is
greater and CCPs’ presence is harmful.

More recently, (Barker et al., 2017) analysed the credit and liquidity risks for a
GCM that clears with a given CCP. Their rather complex model aims at quantif-
ying the impact of another GCM’s default on the CCP and, consequently, on the
GCM itself. Their research concludes, in contrast to Borovkova and El Mouttalibi
(2013), that a greater use of central clearing does not increase systemic risk.

Computational finance

The manipulation of large datasets–computationally expensive operations such as
the simulation of millions of scenarios for the calculation of sensitivities and valu-
ation adjustments, for instance–are daily struggles for a derivatives desk. As Fig. 7
shows, attention to these issues is gaining pace.

Several of the papers appearing in Risk on the subject of computational finance
during this period focussed on the applications of Monte Carlo methods. This versatile
technique for simulation of processes has been proven functional for a myriad of appli-
cations. Originally, Monte Carlo was applied for the pricing of exotic options and the
calculation of sensitivities of a derivatives portfolio. But it is also commonly used, for
example, to estimate the distribution of credit portfolio losses, with a growing body of
research on this subject aimed at speeding up computing time. This method is also used
to support stress testing, as an ideal tool to generate financial stress scenarios which can
be plugged into a risk measure (for example, value-at-risk).
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The work of (Capriotti and Giles, 2010) and (Capriotti, Lee, and Peacock,
2011) applied Monte Carlo in conjunction with adjoint algorithmic differentiation
(AAD) to build a framework that showed considerably reduced computational costs
compared to other methods. The first paper delivered a fast estimate of correlation
risk and Greeks, while the second provided a framework for real-time counterparty
credit risk measure, allowing banks to react with their hedging strategies.

Adjoint methods were introduced to finance by (Giles and Glasserman, 2006) as
a fast calculation technique for calculating portfolio Greeks. Capriotti and his co-
authors contributed extensively to the development and popularisation of AAD in
the following years. Most major banks have now adopted it, as its time-saving and
accurate outputs are extremely valuable–though the cost of implementation (in
terms of project time, expertise required, and adaptation of existing database and
software libraries) remains an obstacle for some (see Sherif, 2015).

Conclusion

As Andrew Green explains in his book on XVAs (Green, 2016), before the crisis the
components of the price of a derivative instrument were its risk-neutral price (dis-
counted at Libor rate), hedging costs, CVA (with the limitations mentioned above,
and only in the latest pre-crisis years), and the bank’s profit. Since the crisis, the price
components are risk-neutral price (discounted using OIS), hedging costs, CVA,
bank’s profit, FVA (including cost of liquidation buffers), KVA, MVA, and even, for
some financial entities, tax valuation adjustment. If a derivative is cleared, not all of
these components will apply–but other factors such as clearing costs will.

The number of components has doubled and the computational requirement has
grown by orders of magnitude. The search for a comprehensive quantitative
solution that can cope with all the challenges continues.
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