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Abstract In this paper, we study the recursive stochastic optimal control problems.
The control domain does not need to be convex, and the generator of the backward
stochastic differential equation can contain z. We obtain the variational equations for
backward stochastic differential equations, and then obtain the maximum principle
which solves completely Peng’s open problem.
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Introduction

Let (�,F, P) be a complete probability space and let W be a d-dimensional
Brownian motion. The filtration {Ft : t ≥ 0} is generated by W , i.e.,

Ft := σ {W (s) : s ≤ t} ∨ N ,

where N is all P-null sets. Let U be a set in Rk and T > 0 be a given terminal time.
Set

U [0, T ] : = {(u(s))s∈[0,T ] : u is progressively measurable, u(s) ∈ U, and

E

[∫ T

0
|u(s)|βds

]
< ∞for all β > 0},
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where U is called the control domain and U [0, T ] is called the set of all admissible

controls. In fact, we only need E
[∫ T

0 |u(s)|β0ds
]

< ∞ for some β0 > 0. For sim-

plicity, we do not explicitly give this β0 in this paper. We consider the following state
equation: {

dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t),

x(0) = x0 ∈ R
n,

(1)

where b : [0, T ] × R
n × R

k → R
n , σ : [0, T ] × R

n × R
k → R

n×d . The cost
functional is defined by

J (u(·)) = E

[
φ(x(T )) +

∫ T

0
f (t, x(t), u(t))dt

]
, (2)

where φ : Rn → R, g : [0, T ] × R
n × R

k → R. The classical stochastic optimal
control problem is to minimize J (u(·)) over U [0, T ]. If there exists a ū ∈ U [0, T ]
such that

J (ū(·)) = inf
u∈U [0,T ]

J (u(·)),
The process ū is called an optimal control. The process x̄(·), which is the solution
of state Eq. (1) corresponding to ū, is called an optimal trajectory. The maximum
principle is to find a necessary condition for the optimality of the control ū.

A method for deriving the maximum principle is the variational principle. When
U is not convex, we use the spike variation method. More precisely, let ε > 0 and
Eε ⊂ [0, T ] be a Borel set with Borel measure |Eε| = ε, define

uε(t) = ū(t)IEc
ε
(t) + u(t)IEε (t),

where u ∈ U [0, T ]. This uε is called a spike variation of the optimal control ū. For
deriving the maximum principle, we only need to use Eε = [s, s+ε] for s ∈ [0, T−ε]
and ε > 0. The difficulty in the classical stochastic optimal control problem is the
variational equation for x(·), which is completely different from that in the determin-
istic optimal control problem. Peng (1990) was the first to consider the second-order
term in the Taylor expansion of the variation and to obtain the maximum principle
for the classical stochastic optimal control problem.

Consider the following backward stochastic differential equation (BSDE for
short):

y(t) = φ(x(T )) +
∫ T

t
f (s, x(s), y(s), z(s), u(s))ds −

∫ T

t
z(s)dW (s), (3)

where φ : Rn → R, f : [0, T ]×R
n ×R×R

d ×R
k → R. Pardoux and Peng (1990)

were the first to obtain that the BSDE (3) has a unique solution (y(·), z(·)) if f is
measurable of linear growth and satisfies a Lipschitz condition in (y, z). Duffie and
Epstein (1992) introduced the notion of recursive utilities in continuous time, which
is a type of BSDE where f is independent of z. In (El Karoui et al. 1997, 2001), the
authors extended the recursive utility to the case where f contains z. The term z can
be interpreted as an ambiguity aversion term in the market (see (Chen and Epstein
2002)).
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When f is independent of (y, z), it is easy to check that y(0) = E[φ(x(T )) +∫ T
0 f (t, x(t), u(t))dt]. So it is natural to extend the classical stochastic optimal con-
trol problem to the recursive case. we consider the control system which formed by
Eqs. (1) and (3), and we define the cost functional

J (u(·)) = y(0). (4)

The recursive stochastic optimal control problem is to minimize J (u(·)) in (4)
over U [0, T ]. When the control domain U is convex, the local maximum princi-
ple for this problem was studied in (Dokuchaev and Zhou 1999, Ji and Zhou 2006,
Peng 1993, Shi and Wu 2006, Wu 1998, Xu 1995) see also the references therein. In
this paper, the control domain U is not necessarily convex, and we shall obtain our
global maximum principle using the spike variation method.

A direct method for treating this problem would be to consider the second-order
terms in the Taylor expansion of the variation for the BSDE (3) as in (Peng 1990).
When f depends nonlinearly on z, there are two major difficulties (see (Yong 2010))
one meets: (i) What is the second-order variational equation for the BSDE (3)? it is
not similar to the one in (Peng 1990). (ii) How to obtain the second-order adjoint
equation which seems to be unexpectedly complicate due to the quadratic form with
respect to the variation of z?

Facing on these difficulties, Peng (1998) proposed the following open problem on
page 269:

“The corresponding ‘global maximum principle’ for the case where f depends
nonlinearly on z is open.”

Recently, a new method for treating this problem is to see z(·) as a control pro-
cess and the terminal condition y(T ) = φ(x(T )) as a constraint, and then use
the Ekeland variational principle to obtain the maximum principle. This idea was
used in (Kohlmann and Zhou 2000, Lim and Zhou 2001) for studying the back-
ward linear-quadratic optimal control problem, and then in (Wu 2013, Yong 2010)
for studying the recursive stochastic optimal control problem. But the maximum
principle obtained by these method contains unknown parameters.

In this paper, we overcome these both major difficulties one meets in the above
direct method by introducing two new adjoint equations in Peng’s open problem. The
second-order variational equation for the BSDE (3) and the maximum principle are
obtained. The main difference of our variational equations with those in (Peng 1990)
consists in the term 〈p(t), δσ (t)〉IEε (t) (see equation (15) in Variational equation for
BSDEs and maximum principle for the definition of p(t)) in the variation of z, which
is O(ε) for any order expansion of f . So it is not helpful to use the second-order
Taylor expansion for treating this term. Moreover, we also obtain the structure of the
variation for (y, z) and the variation for x . Based on this, we can get the second-
order adjoint equation. Due to the term 〈p(t), δσ (t)〉IEε (t) in the variation of z, our
global maximum principle is novel and different from that in (Wu 2013, Yong 2010),
which solves completely Peng’s open problem. Furthermore, our maximum principle
is stronger than the one in (Wu 2013, Yong 2010) (see Example 1).

The paper is organized as follows. In Preliminaries, we give some basic results
and the idea for the variation of BSDEs. The variational equations for BSDEs and the
maximum principle are deduced in Variational equation for BSDEs and maximum
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principle. In Problem with state constraint, we obtain the maximum principle for the
control system with state constraint.

Preliminaries

The results of this section can be found in (Peng 1990, Yong and Zhou 1999). For
simplicity of presentation, we suppose d = 1. We need the following assumption:

(A1) The functions b = b(t, x, u), σ = σ(t, x, u) are twice continuously differ-
entiable with respect to x ; b, bx , bxx , σ , σx , σxx are continous in (x, u); bx ,
bxx , σx , σxx are bounded; b, σ are bounded by C(1 + |x | + |u|).

Let ū(·) be the optimal control for the cost function defined in (2) and let x̄(·) be
the corresponding solution of equation (1). Similarly, we define (xε(·), uε(·)). Set

b(·) = (b1(·), . . . , bn(·))T , σ (·) = (σ 1(·), . . . , σ n(·))T ,

b(t) = b(t, x̄(t), ū(t)), δb(t) = b(t, x̄(t), u(t)) − b(t),
(5)

and define similarly bx (t), bixx (t), δbx (t), δb
i
xx (t), σ(t), σx (t), σ i

xx (t), δσ (t), δσx (t)
and δσ i

xx (t), i ≤ n, where bx = (bix j )i, j , σx = (σ i
x j )i, j . Let xi (·), i = 1, 2, be the

solution of the following stochastic differential equation (SDE for short):{
dx1(t) = bx (t)x1(t)dt + {σx (t)x1(t) + δσ (t)IEε (t)}dW (t),
x1(0) = 0,

(6)

and⎧⎪⎪⎨
⎪⎪⎩
dx2(t) =

{
bx (t)x2(t) + δb(t)IEε (t) + 1

2bxx (t)x1(t)x1(t)
}
dt

+
{
σx (t)x2(t) + δσx (t)x1(t)IEε (t) + 1

2σxx (t)x1(t)x1(t)
}
dW (t),

x2(0) = 0,
(7)

respectively, where bxx (t)x1(t)x1(t) = (tr[b1xx (t)x1(t)x1(t)T ], . . . , tr[bnxx (t)x1(t)x1
(t)T ])T and similarly for σxx (t)x1(t)x1(t).

Lemma 1 Suppose (A1) holds. Then, for any β ≥ 1,

E

[
sup

t∈[0,T ]
|xε(t) − x̄(t)|2β

]
= O
(
εβ
)
, (8)

E

[
sup

t∈[0,T ]
|x1(t)|2β

]
= O
(
εβ
)
, (9)

E

[
sup

t∈[0,T ]
|x2(t)|2β

]
= O
(
ε2β
)

, (10)

E

[
sup

t∈[0,T ]
|xε(t) − x̄(t) − x1(t)|2β

]
= O
(
ε2β
)

, (11)

E

[
sup

t∈[0,T ]
|xε(t) − x̄(t) − x1(t) − x2(t)|2β

]
= o
(
ε2β
)

. (12)
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Moreover, for all φ ∈ C2(Rn) such that φxx is bounded, we have the following
expansion:

E[φ(xε(T ))] − E[φ(x̄(T ))] = E[〈φx (x̄(T )), x1(T ) + x2(T )〉]
+E
[
1
2 〈φxx (x̄(T ))x1(T ), x1(T )〉

]
+ o(ε).

(13)

From this result, we can simply write x1(t) = O(
√

ε), x2(t) = O(ε), and

xε(t) = x̄(t) + x1(t) + x2(t) + o(ε). (14)

In the following we recall standard estimates of BSDEs (see (Briand et al. 2003) and
the references therein).

Lemma 2 Let (Yi , Zi ), i = 1, 2, be the solution of the following BSDE

Yi (t) = ξi +
∫ T

t
fi (s, Yi (s), Zi (s))ds −

∫ T

t
Zi (s)dW (s),

where E
[|ξi |β] < ∞, fi = fi (s, ω, y, z) : [0, T ]×�×R×R

d → R is progressively

measurable for each fixed (y, z), Lipschitz in (y, z), and E[(∫ T0 | fi (s, 0, 0)|ds)β ] <

∞ for some β > 1. Then there exists a constant Cβ > 0 depending on β, T and the
Lipschitz constant such that

E

[
sup

t∈[0,T ]
|Y1(t) − Y2(t)|β +

(∫ T

0
|Z1(s) − Z2(s)|2ds

)β/2]

≤ CβE

[
|ξ1 − ξ2|β +

(∫ T

0
| f1(s, Y1(s), Z1(s)) − f2(s, Y1(s), Z1(s))|ds

)β
]

.

In particular, taking ξ1 = 0 and f1 = 0, we have

E

[
sup

t∈[0,T ]
|Y2(t)|β +

(∫ T

0
|Z2(s)|2ds

)β/2]
≤ CβE

[
|ξ2|β +

(∫ T

0
| f2(s, 0, 0)|ds

)β
]

.

Variational equation for BSDEs and maximum principle

Peng’s open problem

Suppose n = 1 and d = 1 for simplicity of presentation. The results for the multi-
dimensional case will be given in the next subsection.

We consider the control system composed of SDE (1) and BSDE (3). The cost
function J (u(·)) is defined in (4). The control problem is to minimize J (u(·)) over
U [0, T ].

We need the following assumption:

(A2) The functions f = f (t, x, y, z), φ = φ(x) are twice continuously differ-
entiable with respect to (x, y, z); f , Df, D2 f are continuous in (x, y, z, u);
Df, D2 f , φxx are bounded; f is bounded by C(1 + |x | + |y| + |z| + |u|).



Page 6 of 20 M. Hu

Here Df is the gradient of f with respect to (x, y, z), D2 f is the Hessian matrix
of f with respect to (x, y, z).

Let ū(·) be the optimal control and let (x̄(·), ȳ(·), z̄(·)) be the corresponding
solution of the equations (1) and (3). Similarly, we define (xε(·), yε(·), zε(·), uε(·)).

In order to obtain the variational equation for BSDE (3), we consider the following
two adjoint equations: {−dp(t) = F(t)dt − q(t)dW (t),

p(T ) = φx (x̄(T )),
(15)

{−dP(t) = G(t)dt − Q(t)dW (t),
P(T ) = φxx (x̄(T )),

(16)

where F(t) and G(t) are adapted processes with suitable properties, the will be
chosen later.

Applying Itô’s formula to p(t)(x1(t) + x2(t)) + 1
2 P(t)(x1(t))2, we get

p(T )(x1(T ) + x2(T )) + 1

2
P(T )(x1(T ))2 = p(t)(x1(t) + x2(t)) + 1

2
P(t)(x1(t))

2

+
∫ T

t

{
A1(s)IEε (s) + A2(s)(x1(s) + x2(s)) + 1

2
A3(s)(x1(s))

2 + A4(s)x1(s)IEε (s)

}
ds

+
∫ T

t

{
p(s)δσ (s)IEε (s) + A5(s)(x1(s) + x2(s)) + 1

2
A6(s)(x1(s))

2 + A7(s)x1(s)IEε (s)

}
dW (s),

(17)
where

A1(s) = p(s)δb(s) + q(s)δσ (s) + 1
2 P(s)(δσ (s))2,

A2(s) = bx (s)p(s) + σx (s)q(s) − F(s),
A3(s) = bxx (s)p(s) + σxx (s)q(s) + 2P(s)bx (s) + 2Q(s)σx (s) + P(s)(σx (s))2 − G(s),
A4(s) = q(s)δσx (s) + Q(s)δσ (s) + P(s)σx (s)δσ (s),
A5(s) = σx (s)p(s) + q(s),
A6(s) = σxx (s)p(s) + 2P(s)σx (s) + Q(s),
A7(s) = p(s)δσx (s) + P(s)δσ (s).

(18)

Remark 1 From the above computation, we can see that F(s) and G(s) do not
appear in the dW (s)-term.

By Lemma 1, for any β ≥ 2, we have

E

[∣∣∣∣φ (xε(T )
)− φ (x̄(T )) − p(T ) (x1(T ) + x2(T )) − 1

2
P(T ) (x1(T ))2

∣∣∣∣
β
]

= o
(
εβ
)

and

E

[(∫ T

0
|A4(s)x1(s)IEε (s)|ds

)β
]

= o
(
εβ
)
.

For simplicity of presentation, we write

φ(xε(T )) = φ(x̄(T )) + p(T )(x1(T ) + x2(T )) + 1

2
P(T )(x1(T ))2 + o(ε),

A4(s)x1(s)IEε (s) = o(ε).
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In the following, the meaning for o(ε) is in the above sense, similarly for O(ε). If
we replace φ(xε(T )) by φ(x̄(T )) + p(T )(x1(T ) + x2(T )) + 1

2 P(T )(x1(T ))2 + o(ε)
and note (17), then BSDE (3) corresponding to (yε(·), zε(·), uε(·)) can be rewritten as

ȳε(t) = φ(x̄(T )) + o(ε) +
∫ T

t

{
f (s, xε(s), yε(s), zε(s), uε(s)) + A1(s)IEε (s)

+ A2(s)(x1(s) + x2(s)) + 1

2
A3(s)(x1(s))

2
}
ds −

∫ T

t
z̄ε(s)dW (s), (19)

where
ȳε(t) = yε(t) −

[
p(t)(x1(t) + x2(t)) + 1

2
P(t)(x1(t))

2
]

,

z̄ε(t) = zε(t) −
{
p(t)δσ (t)IEε (t) + A5(t)(x1(t) + x2(t))

+1

2
A6(t)(x1(t))

2 + A7(t)x1(t)IEε (t)

}
.

(20)

Remark 2 By Lemma 1, for any β ≥ 2, we have E
[|φ(xε(T )) − φ(x̄(T ))|β] =

O(εβ/2). So the purpose of this transformation is to simplify the complex terminal
condition φ(xε(T )).

Set
ŷε(t) = ȳε(t) − ȳ(t), ẑε(t) = z̄ε(t) − z̄(t), (21)

then we obtain

ŷε(t) = o(ε) +
∫ T

t

{
f (s, xε(s), yε(s), zε(s), uε(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))

+A1(s)IEε (s) + A2(s)(x1(s) + x2(s)) + 1

2
A3(s)(x1(s))

2
}
ds −

∫ T

t
ẑε(s)dW (s).

(22)

Note that

f (s, xε(s), yε(s), zε(s), uε(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))
= [ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))] IEε (s)

+ f (s, xε(s), yε(s), zε(s), uε(s)) − f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s)IEε (s), u
ε(s))

= [ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))]IEε (s)
+ f (s, x̄(s) + x1(s) + x2(s), ȳ(s) + ŷε(s) + A8(s), z̄(s) + ẑε(s) + A9(s), ū(s))
− f (s, x̄(s), ȳ(s), z̄(s), ū(s)) + o(ε),

(23)
where

A8(s) = p(s)(x1(s) + x2(s)) + 1
2 P(s)(x1(s))2,

A9(s) = A5(s)(x1(s) + x2(s)) + 1
2 A6(s)(x1(s))2 + A7(s)x1(s)IEε (s),

(24)

then (ŷε(·), ẑε(·)) can almost be seen as a linear BSDE if F(t) and G(t) are chosen
to satisfy the following conditions:

(1) F(t) and G(t) are determined by (x̄(·), ȳ(·), z̄(·), ū(·)) ;
(2) f (s, x̄(s) + x1(s) + x2(s), ȳ(s) + A8(s), z̄(s) + A9(s), ū(s)) −

f (s, x̄(s), ȳ(s), z̄(s), ū(s))+A2(s)(x1(s)+x2(s))+ 1
2 A3(s)(x1(s))2 = O(ε)

and the O(ε) part does not contain x1(s) and x2(s).
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For this reason, applying Taylor’s expansion to f (s, x̄(s) + x1(s) + x2(s), ȳ(s) +
A8(s), z̄(s) + A9(s), ū(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s)), F(t) and G(t) must have
been chosen as follows:

F(t) = [ fy(t) + fz(t)σx (t) + bx (t)
]
p(t) + [ fz(t) + σx (t)

]
q(t) + fx (t),

G(t) =
[
fy(t) + 2 fz(t)σx (t) + 2bx (t) + (σx (t))

2
]
P(t) + [ fz(t) + 2σx (t)

]
Q(t)

+bxx (t)p(t) + σxx (t)
[
fz(t)p(t) + q(t)

]+ [1, p(t), σx (t)p(t)
+q(t)]D2 f (t) [1, p(t), σx (t)p(t) + q(t)]T , (25)

where fx (t) = fx (t, x̄(t), ȳ(t), z̄(t), ū(t)) and similarly for fy(t), fz(t) and D2 f (t).

Remark 3 If f is independent of (y, z), then the adjoint Eqs. (15) and (16) are
the same as those in (Peng 1990).

By the assumptions (A1) and (A2), we get that the adjoint equations (15) and (16)
have unique solutions (p(·), q(·)) and (P(·), Q(·)), respectively, and for any β ≥ 2,

E

[
sup

t∈[0,T ]
(|p(t)|β + |P(t)|β)+

(∫ T

0

(
|q(s)|2 + |Q(s)|2

)
ds

)β/2]
< ∞. (26)

Consider the following BSDE:

ŷ(t) =
∫ T

t

{
fy(s)ŷ(s) + fz(s)ẑ(s) +

[
p(s)δb(s) + q(s)δσ (s) + 1

2
P(s)(δσ (s))2

+ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))

]
IEε (s)

}
ds

−
∫ T

t
ẑ(s)dW (s). (27)

In the following theorem, we will prove that ŷε(t) − ŷ(t) = o(ε).

Theorem 1 Suppose (A1) and (A2) hold. Then, for any β ≥ 2,

E

[
sup

t∈[0,T ]
|ŷε(t)|2 +

∫ T

0
|ẑε(t)|2dt

]
= O(ε2), (28)

E

[
sup

t∈[0,T ]
|ŷε(t)|β +

(∫ T

0
|ŷε(t)|2dt

)β/2]
= o(εβ/2), (29)

E

[
sup

t∈[0,T ]
|ŷ(t)|2 +

∫ T

0
|ẑ(t)|2dt

]
= O(ε2), (30)

E

[
sup

t∈[0,T ]
|ŷε(t) − ŷ(t)|2 +

∫ T

0
|ẑε(t) − ẑ(t)|2dt

]
= o(ε2). (31)
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Proof We first prove (28) and (29). Set

B1(s) = f (s, xε(s), yε(s), zε(s), uε(s)) − f (s, x̄(s) + x1(s) + x2(s), ȳε(s)
+A8(s), z̄ε(s) + A9(s), ū(s)),

B2(s) = f (s, x̄(s) + x1(s) + x2(s), ȳε(s) + A8(s), z̄ε(s) + A9(s), ū(s))
− f (s, x̄(s) + x1(s) + x2(s), ȳ(s) + A8(s), z̄(s) + A9(s), ū(s)),

B3(s) = f (s, x̄(s) + x1(s) + x2(s), ȳ(s) + A8(s), z̄(s) + A9(s), ū(s))
− f (s, x̄(s), ȳ(s), z̄(s), ū(s))

B4(s) = fz(s)[p(s)δσx (s) + P(s)δσ (s)],
B5(s) = [1, p(s), σx (s)p(s) + q(s)],

(32)

then

f (s, xε(s), yε(s), zε(s), uε(s))− f (s, x̄(s), ȳ(s), z̄(s), ū(s)) = B1(s)+B2(s)+B3(s),

B2(s) = f̃ y(s)ŷ
ε(s) + f̃z(s)ẑ

ε(s),

and

B3(s) = fx (s)(x1(s) + x2(s)) + fy(s)A8(s) + fz(s)A9(s)

+ 1

2
[x1(s) + x2(s), A8(s), A9(s)] D̃

2 f (s)[x1(s) + x2(s), A8(s), A9(s)]T ,

where

f̃ y(s) =
∫ 1

0
fy(s, x̄(s) + x1(s) + x2(s), ȳ(s) + A8(s) + μŷε(s),

z̄(s) + A9(s) + μẑε(s), ū(s))dμ,

f̃z(s) =
∫ 1

0
fz(s, x̄(s) + x1(s) + x2(s), ȳ(s) + A8(s) + μŷε(s),

z̄(s) + A9(s) + μẑε(s), ū(s))dμ,

D̃2 f (s) = 2
∫ 1

0

∫ 1

0
λD2 f (s, x̄(s) + λμ(x1(s) + x2(s)), ȳ(s) + λμA8(s),

z̄(s) + λμA9(s), ū(s))dλdμ.

Thus

ŷε(t) = o(ε) +
∫ T

t
{A1(s)IEε (s) + B1(s) + f̃ y(s)ŷ

ε(s) + f̃z(s)ẑ
ε(s)

+1

2
[x1(s) + x2(s), A8(s), A9(s)]D̃2 f (s)[x1(s) + x2(s), A8(s), A9(s)]T

+B4(s)x1(s)IEε (s) − 1

2
B5(s)D

2 f (s)BT
5 (s)(x1(s))

2}ds
−
∫ T

t
ẑε(s)dW (s),

(33)

By the Lemmas 1 and 2, and the Eqs. (26) and (33), we can easily obtain (28) and
(29). By Lemma 2, Eq. (30) is obvious. We now prove (31). Set

x̃ε(t) = xε(t) − x̄(t) − x1(t) − x2(t), ỹ
ε(t) = ŷε(t) − ŷ(t), z̃ε(t) = ẑε(t) − ẑ(t).
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By Eqs. (33) and (27), we get

ỹε(t) = o(ε) +
∫ T

t
{ f̃ y(s)ỹε(s) + f̃z(s)z̃

ε(s) + ( f̃ y(s) − fy(s))ŷ(s) + ( f̃z(s) − fz(s))ẑ(s)

+B1(s) − [ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s)]IEε (s)

+1

2
[x1(s) + x2(s), A8(s), A9(s)]D̃2 f (s)[x1(s) + x2(s), A8(s), A9(s)]T

+B4(s)x1(s)IEε (s) − 1

2
B5(s)D

2 f (s)BT
5 (s)(x1(s))

2}ds
−
∫ T

t
z̃ε(s)dW (s).

(34)

By the Lemmas 1 and 2, one can easily check that we only need to show that

E

[(∫ T

0
|
(
f̃ y(s) − fy(s)

)
ŷ(s) +

(
f̃z(s) − fz(s)

)
ẑ(s)|ds

)2]
= o(ε2),

E

[(∫ T

0
|B5(s)(D̃

2 f (s) − D2 f (s))BT
5 (s)(x1(s))

2|ds
)2]

= o(ε2),

E

[(∫ T

0
|B1(s) − [ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s)] IEε (s)|ds

)2]
= o(ε2).

Note that

| f̃ y(s)− fy(s)|+| f̃z(s)− fz(s)| ≤ C(|x1(s)+x2(s)|+|A8(s)|+|A9(s)|+|ŷε(s)|+|ẑε(s)|),
and

E

[(∫ T

0
|q(s)x1(s)ẑ(s)|ds

)2]
≤ E

[
sups∈[0,T ] |x1(s)|2

(∫ T

0
|q(s)|2ds

)(∫ T

0
|ẑ(s)|2ds

)]

≤
(
E

[(∫ T

0
|ẑ(s)|2ds

)2])1/2 (
E
[
sups∈[0,T ] |x1(s)|8

])1/4

×
(
E

[(∫ T

0
|q(s)|2ds

)4])1/4

= o(ε2),
(35)

then we can easily obtain E[(∫ T0 |( f̃ y(s)− fy(s))ŷ(s)+ ( f̃z(s)− fz(s))ẑ(s)|ds)2] =
o(ε2). Since D2 f is bounded, we get that for each β ≥ 2,

E

[(∫ T

0
|
(
D̃2 f (s) − D2 f (s)

)
||q(s)|2ds

)β
]

→ 0as ε → 0.

Thus we easily deduce E[(∫ T0 |B5(s)(D̃2 f (s) − D2 f (s))BT
5 (s)(x1(s))2|ds)2] =

o(ε2). It is easy to verify that

|B1(s) − [ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s)] IEε (s)|
≤ C
{|x̃ε(s)| + [|x1(s) + x2(s)| + |ŷε(s)| + |ẑε(s)| + |A8(s)| + |A9(s)|

]
IEε (s)

}
.
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Since

E

[(∫ T

0
|q(s)x1(s)|IEε (s)ds

)2]
≤ E

[
sup

s∈[0,T ]
|x1(s)|2

∫
Eε

|q(s)|2ds
]

ε

≤
(
E

[
sup

s∈[0,T ]
|x1(s)|4

])1/2 (
E

[(∫
Eε

|q(s)|2ds
)2])1/2

ε

= o(ε2),

we can easily obtain E[(∫ T0 |B1(s) − [ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) −
f (s)]IEε (s)|ds)2] = o(ε2). The proof is complete.

Thus, from (18), (20), (21) and the above theorem, we obtain the following
variational equation for BSDE (3):

yε(t) = ȳ(t) + p(t)(x1(t) + x2(t)) + 1
2 P(t)(x1(t))2 + ŷ(t) + o(ε),

zε(t) = z̄(t) + p(t)δσ (t)IEε (t) + (σx (t)p(t) + q(t))(x1(t) + x2(t))
+ 1

2 (σxx (t)p(t) + 2P(t)σx (t) + Q(t))(x1(t))2

+(p(t)δσx (t) + P(t)δσ (t))x1(t)IEε (t) + ẑ(t) + o(ε).

(36)

Remark 4 We also give the variational equations for BSDE (3) as in (Peng 1990).
Set

y1(t) = p(t)x1(t), z1(t) = p(t)δσ (t)IEε (t) + [σx (t)p(t) + q(t)]x1(t), (37)

it is easy to check that (y1, z1) satisfies the following BSDE:⎧⎨
⎩

−dy1(t) = { fx (t)x1(t) + fy(t)y1(t) + fz(t)z1(t)
−[ fz(t)p(t)δσ (t) + q(t)δσ (t)]IEε (t)}dt − z1(t)dW (t),

y1(T ) = φx (x̄(T ))x1(T ).

(38)

Set

y2(t) = p(t)x2(t) + 1
2 P(t)(x1(t))2 + ŷ(t),

z2(t) = [σx (t)p(t) + q(t)]x2(t) + [δσx (t)p(t) + P(t)δσ (t)]x1(t)IEε (t)
+ 1

2 [σxx (t)p(t) + 2P(t)σx (t) + Q(t)](x1(t))2 + ẑ(t),
(39)

it is easy to verify that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−dy2(t) = { fx (t)x2(t) + fy(t)y2(t) + fz(t)z2(t)
+ 1

2 [x1(t), y1(t), z1(t)]D2 f (t)[x1(t), y1(t), z1(t)]T
+[q(t)δσ (t) − 1

2 fzz(t)(p(t)δσ (t))2 + f (t, x̄(t), ȳ(t), z̄(t) + p(t)δσ (t), u(t))
− f (t, x̄(t), ȳ(t), z̄(t), ū(t))]IEε (t) + L(t)x1(t)IEε (t)}dt − z2(t)dW (t),

y2(T ) = φx (x̄(T ))x2(T ) + 1
2φxx (x̄(T ))(x1(T ))2,

(40)

where L(t)x1(t)IEε (t) = o(ε), so we do not give the explicit formula for L(t). Note
the Eqs. (37) and (39), then the adjoint equations for (z1(t))2 and other terms are
essential for x1(t), x2(t) and x1(t)(x1(t))T , which is solved in (Peng 1990). In order
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to further explain the difference between the expansions for SDEs and BSDEs, we
consider the following equations:{−d ỹ1(t) = { fx (t)x1(t) + fy(t)ỹ1(t) + fz(t)z̃1(t)}dt − z̃1(t)dW (t),

ỹ1(T ) = φx (x̄(T ))x1(T ),
(41)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−d ỹ2(t) = { fx (t)x2(t) + fy(t)ỹ2(t) + fz(t)z̃2(t)
+ 1

2 [x1(t), ỹ1(t), z̃1(t)]D2 f (t)[x1(t), ỹ1(t), z̃1(t)]T
+[ f (t, x̄(t), ȳ(t), z̄(t) + p(t)δσ (t), u(t)) − f (t, x̄(t), ȳ(t), z̄(t), ū(t))
− fz(t)p(t)δσ (t) − 1

2 fzz(t)(p(t)δσ (t))2]IEε (t)}dt − z̃2(t)dW (t),
ỹ2(T ) = φx (x̄(T ))x2(T ) + 1

2φxx (x̄(T ))(x1(T ))2.

(42)
By Lemma 2, it is easy to show that

E

[
sup

t∈[0,T ]
|y1(t) + y2(t) − ỹ1(t) − ỹ2(t)|2 +

∫ T

0
|z1(t) + z2(t) − z̃1(t) − z̃2(t)|2dt

]
= o(ε2).

Thus, by Eq. (36), we get

yε(t) = ȳ(t) + ỹ1(t) + ỹ2(t) + o(ε),
zε(t) = z̄(t) + z̃1(t) + z̃2(t) + o(ε).

The main difference with the variation equation for SDEs is equation (42) which
is due to the term p(t)δσ (t)IEε (t) in the variation of z. If f is independent of z, the
variational equations for (y, z) are the same as in (Peng 1990), which is pointed out
in (Peng 1998).

Now we consider the maximum principle. From Eq. (36), we get

J (uε(·)) − J (ū(·)) = yε(0) − ȳ(0) = ŷ(0) + o(ε).

Define the following adjoint equation for BSDE (27):{
dγ (t) = fy(t)γ (t)dt + fz(t)γ (t)dW (t),
γ (0) = 1.

Applying Itô’s formula to γ (t)ŷ(t), we can obtain

ŷ(0) = E[∫ T0 γ (s)[p(s)δb(s) + q(s)δσ (s) + 1
2 P(s)(δσ (s))2

+ f (s, x̄(s), ȳ(s), z̄(s) + p(s)δσ (s), u(s)) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))]IEε (s)ds].
(43)

Note that γ (s) > 0, we then define the following function:

H(t, x, y, z, u, p, q, P) = pb(t, x, u) + qσ(t, x, u) + 1
2 P(σ (t, x, u) − σ(t, x̄, ū))2

+ f (t, x, y, z + p(σ (t, x, u) − σ(t, x̄, ū)), u),

(44)

where (p, q, P) is defined by the Eqs. (15) and (16). Thus we obtain the following
maximum principle.
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Theorem 2 Suppose (A1) and (A2) hold. Let ū(·) be an optimal control and
(x̄(·), ȳ(·), z̄(·)) be the corresponding solution. Then
H(t, x̄(t), ȳ(t), z̄(t), u, p(t), q(t), P(t)) ≥ H(t, x̄(t), ȳ(t), z̄(t), ū(t), p(t), q(t), P(t)),

∀u ∈ U, a.e., a.s.,
(45)

where H(·) is defined in (44).

Remark 5 If f is independent of (y, z), the above theorem is called Peng’s
maximum principle, which was first obtained by Peng in (1990).

If the control domain U is convex, we can get the following corollary which was
obtained by Peng in (1993).

Corollary 1 Let the assumptions as in Theorem 2 hold. If U is convex and b, σ , f
are continuously differentiable with respect to u, then

〈bTu (t)p(t)+σ T
u (t)q(t)+ fz(t)σ

T
u (t)p(t)+ fu(t), u− ū(t)〉 ≥ 0, ∀u ∈ U, a.e., a.s..

Now we give an example to compare our result with the result in (Wu 2013, Yong
2010).

Example 1 Suppose n = d = k = 1. U is a given subset in R. Consider the
following control system:

dx(t) = u(t)dW (t), x(0) = 0,

y(t) = x(T ) +
∫ T

t
f (z(s))ds −

∫ T

t
z(s)dW (s).

In this case, our maximum principle is

f (z̄(t) + u − ū(t)) − f (z̄(t)) ≥ 0, ∀u ∈ U, a.e., a.s.. (46)

Note that

y(t) −
∫ t

0
u(s)dW (s) =

∫ T

t
f (z(s) − u(s) + u(s))ds −

∫ T

t
(z(s) − u(s))dW (s),

then by the comparison theorem of BSDEs, it is easy to check that inequality (46) is
a sufficient condition. For the case U = {0, 1}, f (0) = 0, f ′(0) < 0, f (1) > 0,
f (−1) < 0, it is easy to verify that (x̄, ȳ, z̄, ū) = (0, 0, 0, 0) satisfies (46), thus ū = 0
is an optimal control. But fz(z̄(t))(1 − ū(t)) < 0, which implies that ū = 0 is not
an optimal control for the case U = [0, 1]. The maximum principle in (Yong 2010)
is fz(z̄(t))(u − ū(t)) ≥ 0, ∀u ∈ U, a.e., a.s., which only covers the case when U is
convex. The maximum principle in (Wu 2013) contains two unknown parameters.
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Remark 6 In (Wu 2013, Yong 2010), the authors consider the control system
which consists of SDE (1) and the following state equation:

y(t) = y0 −
∫ t

0
f (s, x(s), y(s), v(s), u(s))ds +

∫ t

0
v(s)dW (s), (47)

where the set of all admissible controls

Ũ [0, T ] = {(u, y0, v) ∈ U [0, T ] × R × M2(0, T ) : y(T ) = φ(x(T ))}.
The optimal control problem is to minimize J (u(·), y0, v(·)) = y0 over Ũ[0, T ].

Obviously, this problem is equivalent to Peng’s problem, i.e., the control system com-
posed of SDE (1) and BSDE (3), the control problem is to minimize J (u(·)) over
U [0, T ]. Thus our maximum principle also solves completely this control problem.

Multi-dimensional case

In this subsection, we extend Peng’s problem to the multi-dimensional case,
i.e., the functions in BSDE (3) are m-dimensional, φ : R

n → R
m ,

f : [0, T ] × R
n × R

m × R
m×d × R

k → R
m . The cost functional is

defined by
J (u(·)) = h(y(0)), (48)

where h : Rm → R. For deriving the variational equation for BSDE (3), we use the
following notations:

W (t) = (W 1(t), . . . ,Wd(t))T , φ(x) = (φ1(x), . . . , φm(x))T ,

σ (t, x, u) = (σ i j (t, x, u))1≤i≤n,1≤ j≤d ,

σ j (t, x, u) = (σ 1 j (t, x, u), . . . , σ nj (t, x, u))T , j = 1, . . . , d,

f (t, x, y, z, u) = ( f 1(t, x, y, z, u), . . . , f m(t, x, y, z, u))T ,

y(t) = (y1(t), . . . , ym(t))T , z(t) = (zi j (t)), i ≤ m, j ≤ d,

z j (t) = (z1 j (t), . . . , zmj (t))T , j = 1, . . . , d.

(49)

We keep Assumptions (A1) and (A2) extended in obvious way to the multi-
dimensional case n ≥ 1, m ≥ 1, d ≥ 1, and introduce the following adjoint
equations: for i = 1, . . . ,m,{

−dpi (t) = Fi (t)dt −∑d
j=1 q

j
i (t)dW j (t),

pi (T ) = φi
x (x̄(T )),

(50)

{
−dPi (t) = Gi (t)dt −∑d

j=1 Q
j
i (t)dW

j (t),
Pi (T ) = φi

xx (x̄(T )),
(51)

where, using the notations

p(t) = [p1(t), . . . , pm(t)]n×m ,q j (t) =
[
q j
1 (t), . . . , q j

m(t)
]
n×m

,

pl(t) = (p1l (t), . . . , pnl (t))T , q j
l (t) =

(
q1 jl (t), . . . , qnjl (t)

)T
,

bTxx (t)pl(t) =∑n
i=1 p

i
l (t)(b

i
xx (t))

T ,
(
σ

j
xx (t))T pl(t) =∑n

i=1 p
i
l (t)(σ

i j
xx (t)
)T

,

(σ
j
xx (t))T q

j
l (t) =∑n

i=1 q
i j
l (t)(σ i j

xx (t))T , l = 1, . . . ,m, j = 1, . . . , d,

(52)
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Fi (t) and Gi (t) are defined as follows:

Fi (t) = bTx (t)pi (t) + f ix (t) +∑m
l=1 f i

yl
(t)pl(t) +∑d

j=1(σ
j
x (t))T q j

i (t)

+∑d
j=1
∑m

l=1 f i
zl j

(t)[(σ j
x (t))T pl(t) + q j

l (t)],
Gi (t) = Pi (t)bx (t) + (bx (t))T Pi (t) +∑m

l=1 f i
yl

(t)Pl(t) +∑d
j=1[Q j

i (t)σ
j
x (t)

+(σ
j
x (t))T Q j

i (t) + (σ
j
xx (t))T q

j
i (t) + (σ

j
x (t))T Pi (t)σ

j
x (t)]

+∑d
j=1
∑m

l=1[ f izl j (t)Pl(t)σ
j
x (t) + f i

zl j
(t)(σ j

x (t))T Pl(t) + f i
zl j

(t)Q j
l (t)

+ f i
zl j

(t)(σ j
xx (t))T pl(t)] + bTxx (t)pi (t) + [In×n, p(t), (σ 1

x (t))T p(t)

+q1(t), . . . , (σ d
x (t))T p(t) + qd(t)]D2 f i (t)[In×n, p(t), (σ 1

x (t))T p(t)
+q1(t), . . . , (σ d

x (t))T p(t) + qd(t)]T ,

(53)

where D2 f i is the Hessian matrix of f i with respect to (x, y, z1, . . . , zd). Let ŷ(t) =
(ŷ1(t), . . . , ŷm(t))T , ẑ(t) = (ẑi j (t)) be the solution of the following BSDE:

ŷ(t) = ∫ Tt [ fy(s)ŷ(s) +∑d
j=1 fz j(s)ẑ

j (s) + {pT (s)δb(s) +∑d
j=1[(q j (s))T δσ j (s)

+ 1
2 P

T (s)δσ j (s)δσ j (s)] + f (s, x̄(s), ȳ(s), z̄(s) + pT (s)δσ (s), u)

− f (s, x̄(s), ȳ(s), z̄(s), ū(s))}IEε (s)]ds −∑d
j=1

∫ T
t ẑ j (s)dW j (s),

(54)
where

P(t) = [P1(t), . . . , Pm(t)], PT (s)δσ j (s)δσ j (s)

= (〈P1(s)δσ j (s), δσ j (s)〉, . . . , 〈Pm(s)δσ j (s), δσ j (s)〉)T .

Similar to the analysis in Theorem 1, we get the following variational principle:

yi;ε(t) = ȳi (t) + 〈pi (t), x1(t) + x2(t)〉 + 1
2 〈Pi (t)x1(t), x1(t)〉 + ŷi (t) + o(ε),

zi j;ε(t) = z̄i j (t) + 〈pi (t), δσ j (t)〉IEε (t) + 〈(σ j
x (t))T pi (t) + q j

i (t), x1(t) + x2(t)〉
+〈(δσ j

x (t))T pi (t) + 1
2 Pi (t)δσ

j (t) + 1
2 P

T
i (t)δσ j (t), x1(t)〉IEε (t)

+ 1
2 〈[(σ j

xx (t))T pi (t) + Pi (t)σ
j
x (t) + (σ

j
x (t))T Pi (t) + Q j

i (t)]x1(t), x1(t)〉+ẑi j (t) + o(ε), i = 1, . . . ,m, j = 1, . . . , d.

(55)
Let h ∈ C1(Rm). Then we obtain

J (uε(·)) − J (ū(·)) = 〈hy(ȳ(0)), ŷ(0)〉 + o(ε).

We introduce the following adjoint equation for BSDE (54).

{
dγ (t) = f Ty (t)γ (t)dt +∑d

j=1 f T
z j

(t)γ (t)dW j (t),
γ (0) = hy(ȳ(0)).

(56)

Applying Itô’s formula to 〈γ (t), ŷ(t)〉, we obtain the following maximum
principle.
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Theorem 3 Suppose (A1) and (A2) hold. Let ū(·) be an optimal control and
(x̄(·), ȳ(·), z̄(·)) be the corresponding solution. The cost functional is defined in (48)
and h ∈ C1(Rm). Then

〈γ (t), pT (t)δb(t) +∑d
j=1[(q j (t))T δσ j (t) + 1

2 P
T (t)δσ j (t)δσ j (t)]

+ f (t, x̄(t), ȳ(t), z̄(t) + pT (t)δσ (t), u) − f (s, x̄(s), ȳ(s), z̄(s), ū(s))〉
≥ 0, ∀u ∈ U, a.e., a.s.,

(57)

where p, q j , P and γ are given in Eqs. (50), (51), (53) and (56).

Problem with state constraint

For simplicity of presentation, suppose d = m = 1, the multi-dimensional case can
be treated with the same method.

We consider the control system: SDE (1) and BSDE (3). The cost function J (u(·))
is defined in (4). In addition, we consider the following state constraint:

E[ϕ(x(T ), y(0))] = 0, (58)

where ϕ : Rn × R → R. We need the following assumption:

(A3) The function ϕ = ϕ(x, y) is twice continuously differentiable with respect to
(x, y); D2ϕ is bounded.

Define all admissible controls as follows:

Uad [0, T ] = {u(·) ∈ U [0, T ] : E[ϕ(x(T ), y(0))] = 0}.
The control problem is to minimize J (u(·)) over Uad [0, T ].

Let ū(·) ∈ Uad [0, T ] be an optimal control and (x̄(·), ȳ(·), z̄(·)) be the correspond-
ing solution of Eqs. (1) and (3). Similarly, we define (x(·), y(·), z(·), u(·)) for any
u(·) ∈ U [0, T ]. For any ρ > 0, define the following cost functional on U [0, T ]:

Jρ(u(·)) = {[(y(0) − ȳ(0)) + ρ]2 + |E[ϕ(x(T ), y(0))]|2}1/2. (59)

It is easy to check that{
Jρ(u(·)) > 0, ∀u(·) ∈ U [0, T ],
Jρ(ū(·)) = ρ ≤ infu∈U [0,T ] Jρ(u(·)) + ρ.

In order to use the well-known Ekeland variational principle, we define the
following metric on U [0, T ]:

d (u(·), v(·)) = E

[∫ T

0
I{u �=v}(t, ω)dt

]
.

Suppose that (U [0, T ], d) is a complete space and Jρ(·) is continuous, otherwise we
can use the technique in (Tang and Li 1994, Wu 2013) and obtain the same result.
Thus, by Ekeland’s variational principle, there exists a uρ(·) ∈ U [0, T ] such that

Jρ(uρ(·)) ≤ ρ, d(uρ(·), ū(·)) ≤ √
ρ,

Jρ(u(·)) − Jρ(uρ(·)) + √
ρd(uρ(·), u(·)) ≥ 0, ∀u(·) ∈ U [0, T ]. (60)
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For any ε > 0, let Eε ⊂ [0, T ] be a Borel subset with Borel measure |Eε| = ε,
and define

uε
ρ(t) = uρ(t)IEc

ε
(t) + u(t)IEε (t), for u(·) ∈ U [0, T ].

It is easy to check that d(uρ(·), uε
ρ(·)) ≤ ε. Let (xρ(·), yρ(·), zρ(·)) be the solution

corresponding to uρ(·). Similarly, (xε
ρ(·), yε

ρ(·), zερ(·), uε
ρ(·)) is associated with uε

ρ(·).
Thus, with (60), we get

0 ≤ Jρ(uε
ρ(·)) − Jρ(uρ(·)) + √

ρε

≤ λρ

[
yε
ρ(0) − yρ(0)

]+ μρ

{
E
[
ϕ(xε

ρ(T ), yε
ρ(0))

]
−E[ϕ(xρ(T ), yρ(0))]}+ √

ρε + o(ε),
(61)

where

λρ = Jρ(uρ(·))−1[(yρ(0) − ȳ(0)) + ρ], μρ = Jρ(uρ(·))−1E[ϕ(xρ(T ), yρ(0))].
Let (pρ(·), qρ(·)) and (Pρ(·), Qρ(·)) be, respectively, the solution of Eq. (15)

and (16) with (x̄(·), ȳ(·), z̄(·), ū(·)) replaced by (xρ(·), yρ(·), zρ(·), uρ(·)), and all
the coefficients endowed with the superscript ρ. Then, the same computation as for
Theorem 1 leads to:

yε
ρ(0) − yρ(0) = ŷρ(0) + o(ε), (62)

where

ŷρ(t) =
∫ T

t
{ f ρ

y (s)ŷρ(s) + f ρ
z (s)ẑρ(s) + [〈pρ(s), δbρ(s)〉 + 〈qρ(s), δσρ(s)〉

+ 1
2 〈Pρ(s)δσρ(s), δσρ(s)〉 + f (s, xρ(s), yρ(s), zρ(s) + 〈pρ(s), δσρ(s)〉, u)

− f (s, xρ(s), yρ(s), zρ(s), uρ(s))]IEε (s)}ds −
∫ T

t
ẑρ(s)dW (s).

(63)
Similar to Variational equation for BSDEs and maximum principle, we consider

the BSDEs:{−dpρ
0 (t) = [(bρ

x (t))T p
ρ
0 (t) + (σ

ρ
x (t))T qρ

0 (t)]dt − qρ
0 (t)dW (t),

p0(T ) = μρϕx (xρ(T ), yρ(0)),
(64)

⎧⎨
⎩

−dPρ
0 (t) = [(bρ

x (t))T Pρ
0 (t) + Pρ

0 (t)bρ
x (t) + (σ

ρ
x (t))T Pρ

0 (t)σρ
x (t) + (σ

ρ
x (t))T Qρ

0 (t)
+Qρ

0 (t)σρ
x (t) + (bρ

xx (t))T p
ρ
0 (t) + (σ

ρ
xx (t))T q

ρ
0 (t)]dt − Qρ

0 (t)dW (t),
P0(T ) = μρϕxx (xρ(T ), yρ(0)).

(65)
Then, using (62)-(65), we can deduce

μρ{E[ϕ(xε
ρ(T ), yε

ρ(0))] − E[ϕ(xρ(T ), yρ(0))]}
= E[∫ T0 {〈pρ

0 (s), δbρ(s)〉 + 〈qρ
0 (s), δσρ(s)〉 + 1

2 〈Pρ
0 (s)δσρ(s), δσρ(s)〉}IEε (s)ds]

+ μρE[ϕy(xρ(T ), yρ(0))]ŷρ(0) + o(ε).
(66)

Let us now introduce the following adjoint equation for BSDE (63):{
dγ ρ(t) = f ρ

y (t)γ ρ(t)dt + f ρ
z (t)γ ρ(t)dW (t),

γ ρ(0) = λρ + μρE[ϕy(xρ(T ), yρ(0))].
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Then we get

{λρ + μρE[ϕy(xρ(T ), yρ(0))]}ŷρ(0)

= E[∫ T0 γ ρ(s){〈pρ(s), δbρ(s)〉 + 〈qρ(s), δσρ(s)〉 + 1
2 〈Pρ(s)δσρ(s), δσρ(s)〉

+ f (s, xρ(s), yρ(s), zρ(s) + 〈pρ(s), δσρ(s)〉, u) − f (s, xρ(s), yρ(s), zρ(s), uρ(s))}IEε (s)ds],
(67)

and for the Hamiltonian

H(t, x, y, z, u, x ′, u′, p0, q0, P0, p, q, P, γ )

= 〈p0 + γ p, b(t, x, u)〉 + 〈q0 + γ q, σ (t, x, u)〉
+ 1

2 〈(P0 + γ P)(σ (t, x, u) − σ(t, x ′, u′)), σ (t, x, u) − σ(t, x ′, u′)〉
+ γ (t) f (t, x, y, z + 〈p, σ (t, x, u) − σ(t, x ′, u′)〉, u),

(68)

it follows from (61), (62), (66) and (67) that

0 ≤ E[
∫ T

0
{H(t, xρ(t), yρ(t), zρ(t), u, xρ(t), uρ(t), pρ

0 (t), qρ
0 (t), Pρ

0 (t), pρ(t), qρ(t),

Pρ(t), γ ρ(t)) − H(t, xρ(t), yρ(t), zρ(t), uρ(t), xρ(t), uρ(t), pρ
0 (t), qρ

0 (t),

Pρ
0 (t), pρ(t), qρ(t), Pρ(t), γ ρ(t))}IEε (t)dt] + √

ρε + o(ε).

Thus, from the arbitrariness of ε > 0 and Eε ⊂ [0, T ] with |Eε| = ε, we obtain

H(t, xρ(t), yρ(t), zρ(t), u, xρ(t), uρ(t), pρ
0 (t), qρ

0 (t), Pρ
0 (t), pρ(t), qρ(t), Pρ(t), γ ρ(t))

≥ H(t, xρ(t), yρ(t), zρ(t), uρ(t), xρ(t), uρ(t), pρ
0 (t), qρ

0 (t), Pρ
0 (t), pρ(t), qρ(t), Pρ(t), γ ρ(t))

− √
ρ, for all u ∈ U, a.e., a.s..

Recall (59) and the definition of λρ and μρ , we have |λρ |2+|μρ |2 = 1. Thus there
exists a subsequence of (λρ, μρ) which converges to (λ, μ) with |λ|2 + |μ|2 = 1, as
ρ → 0. As d(uρ(·), ū(·)) ≤ √

ρ, we can choose a sub-subsequence satisfying

(xρ(·), yρ(·), zρ(·), uρ(·), pρ
0 (·), qρ

0 (·), Pρ
0 (·), pρ(·), qρ(·), Pρ(·), γ ρ(·)) →

(x̄(·), ȳ(·), z̄(·), ū(·), p0(·), q0(·), P0(·), p(·), q(·), P(·), γ (·)), a.e., a.s.
Here (p0(·), q0(·)) and (P0(·), Q0(·)) is, respectively, the solution of Eqs. (15) and

(16),
{−dp0(t) = [(bx (t))T p0(t) + (σx (t))T q0(t)]dt − q0(t)dW (t),

p0(T ) = μϕx (x̄(T ), ȳ(0)),
(69)

⎧⎨
⎩

−dP0(t) = [(bx (t))T P0(t) + P0(t)bx (t) + (σx (t))T P0(t)σx (t) + (σx (t))T Q0(t)
+Q0(t)σx (t) + (bxx (t))T p0(t) + (σxx (t))T q0(t)]dt − Q0(t)dW (t),

P0(T ) = μϕxx (x̄(T ), ȳ(0)),
(70)

and {
dγ (t) = fy(t)γ (t)dt + fz(t)γ (t)dW (t),
γ (0) = λ + μE[ϕy(x̄(T ), ȳ(0))]. (71)

Thus we obtain the following theorem.
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Theorem 4 Suppose (A1), (A2) and (A3) hold. Let ū(·) be an optimal control with
state constraint (58) and (x̄(·), ȳ(·), z̄(·)) be the corresponding solution. Then there
exist two contants λ and μ with |λ|2 + |μ|2 = 1 such that

H(t, x̄(t), ȳ(t), z̄(t), u, x̄(t), ū(t), p0(t), q0(t), P0(t), p(t), q(t), P(t), γ (t))
≥ H(t, x̄(t), ȳ(t), z̄(t), ū, x̄(t), ū(t), p0(t), q0(t), P0(t), p(t), q(t), P(t), γ (t)),

for allu ∈ U, a.e., a.s.,

where H(·), (p(·), q(·)), (P(·), Q(·)), (p0(·), q0(·)), (P0(·), Q0(·)) and γ (·) are
defined in (68), (15), (16), (69), (70) and (71).
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