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Abstract In this paper, we propose a new type of viscosity solutions for fully
nonlinear path-dependent PDEs. By restricting the solution to a pseudo-Markovian
structure defined below, we remove the uniform non-degeneracy condition needed in
our earlier works (Ekren, I, Touzi, N, Zhang, J, Ann Probab, 44:1212–1253, 2016a;
Ekren, I, Touzi, N, Zhang, J, Ann Probab, 44:2507–2553, 2016b) to establish the
uniqueness result. We establish the comparison principle under natural and mild
conditions. Moreover, we apply our results to two important classes of PPDEs: the
stochastic HJB equations and the path-dependent Isaacs equations, induced from the
stochastic optimization with random coefficients and the path-dependent zero-sum
game problem, respectively.
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Introduction

In this paper, we study the following fully nonlinear parabolic path-dependent PDE
with terminal condition u(T , ω) = ξ(ω):

Lu(t, ω) := ∂tu(t, ω) + G(t, ω, u, ∂ωu, ∂2ωωu) = 0, (t, ω) ∈ [0, T ) × �. (1)
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Here � consists of continuous paths ω on [0, T ] starting from the origin, G is
a progressively measurable generator, and the path derivatives ∂tu, ∂ωu, ∂2ωωu are
defined through a functional Itô formula, initiated by Dupire (2009), see also Cont
and Fournie (2013). Such an equation was first introduced by Peng (2010; 2011). In a
series of papers by Ekren et al. (2014a) and Ekren et al. (2016a; 2016b), we proposed
a notion of a viscosity solution for such PPDEs and established its wellposedness:
existence, comparison principle, and stability. The main innovation of our notion
is that, due to the lack of local compactness of the state space �, we replace the
pointwise maximum in standard PDE literature with an optimal stopping problem
under certain nonlinear expectation.

Roughly speaking, the strategy in (Ekren et al. 2016a, 2016b) is a combination
of partial comparison, which is a comparison between a classical semisolution and a
viscosity semisolution, and a variation of the Perron’s approach. In particular, when
the PPDE has a classical solution, it is unique in the viscosity sense, as a direct
consequence of the partial comparison. By utilizing certain path-frozen PDE (not
PPDE!), in (Ekren et al. 2016b) we established the comparison in the case that the
viscosity solution can be approximated by piecewise classical semisolutions taking
the form:

∞∑

n=0

vn

((
H1, ωH1

)
, · · · ,

(
Hn, ωHn

) ; t, ωt

)
1{Hn≤t<Hn+1 or Hn<Hn+1=T =t}, (2)

where Hn is an increasing sequence of stopping times with H0 = 0, and the mapping
(t, x) �→ vn ((t1, x1), · · · , (tn, xn); t, x) is in C1,2. However, in order to obtain such
smooth vn, we need classical solutions of certain PDEs taking the form:

∂tv + Gn

(
t, v, ∂xv, ∂2xxv

)
= 0, (t, x) ∈ Qn ⊂ [0, T ] × R

d . (3)

For this purpose, in (Ekren et al. 2016b) we have to assume G is uniformly
nondegenerate.

The goal of this paper to is remove this uniform nondegeneracy. We note that
degenerate PPDEs appear naturally in many applications, and we will present two
examples in this paper. The first one is the stochastic Hamiltonian-Jacobi-Bellman
equation, introduced by Peng (1992) to characterize the value function u(t, x, ω) for
optimization problems with random coefficients. Peng (1992) solved the problem
when there is only drift control. The general case with volatility control has been
an open problem, see Peng (1999). We may view the stochastic HJB equation as a
PPDE by considering x as a path. This PPDE is by nature always degenerate. We
shall characterize the value function as the unique viscosity solution to this degen-
erate PPDE. We note that in the recent work Qiu (2016) viewed the stochastic HJB
equation as a backward SPDE and proved its wellposedness in the sense of Sobolev
solutions. The second example is the path-dependent Isaacs equations, induced from
the path-dependent zero sum game as in Pham and Zhang (2014). In order to obtain
the smooth vn in (2), (Pham and Zhang 2014) assumes G is uniformly nondegener-
ate and the dimension d ≤ 2. Besides the degeneracy, our work here also allows for
higher dimensions.



Probability, Uncertainty and Quantitative Risk  (2016) 1:6 Page 3 of 34

We still follow the strategy in (Ekren et al. 2016b), but rely on the viscosity
solution theory of PDEs, instead of the classical solution theory of PDEs as in
(Ekren et al. 2016b). Namely, we will construct those vn via continuous (not C1,2 !)
viscosity solutions of certain path-frozen PDEs (3). However, we will establish the
uniqueness of viscosity solutions in a smaller class. Notice that there is a trade-
off between the regularity of the solution and the solution class for the uniqueness.
If we can establish higher regularity for the solutions (or approximate solutions),
then we can prove the uniqueness within a larger solution class. In our degener-
ate situation, we are not able to obtain smooth vn in (2), but in C0 only. As a
consequence, we will establish the uniqueness only in this class, namely there is
only one viscosity solution which can be approximated by piecewise Markovian
viscosity solutions in the form of (2). This (piecewise) Markovian structure allows
us to use the comparison principle of PDE, rather than the partial comparison of
PPDE.

There is another major difficulty in the degenerate case. Note that the path frozen
PDE (3) is a local PDE, with the domain Qn induced from the stopping times Hn.
However, in the degenerate case, the Hn used in (Ekren et al. 2016a, 2016b) has
very bad regularity, and consequently the PDE (3) in Qn typically does not have a
continuous viscosity solution. Strongly motivated by the recent work Bayraktar and
Yao (2016), we shall use some slightly modified stopping times Hn which enjoy all
the desired properties.

We remark that the present strategy, as in (Ekren et al. 2016b), relies heavily on
the path frozen PDEs and the related PDE results. In particular, it uses indirectly the
very deep regularity results for parabolic PDEs. In the (possibly degenerate) semi-
linear case, Ren et al. (2016a) and Ren (2016) studied the regularity for PPDEs
directly. The more recent paper Ren et al. (2016b) established the comparison for
fully nonlinear degenerate PPDEs, by introducing a regularization operator which can
be viewed as the counterpart of the sup-convolution in the PDE literature. Roughly
speaking, the strategy in (Ekren et al. 2016b) and the present paper is to approxi-
mate the PPDE by certain PDEs and use the solution of the latter to approximate
the solution of the original PPDE. While the strategy in (Ren et al. 2016a; 2016b)
is to approximate the solution of the PPDE directly and show that these approx-
imations are solutions of certain PDEs which are close to the original PPDE in
certain sense. The comparison principle in (Ren et al. 2016b), however, is also in
a smaller solution class by requiring a somewhat stronger regularity on the solu-
tions, and consequently, the coefficients of the PPDE should also have the same
stronger regularity. So there is a tradeoff between (Ren et al. 2016b) and the present
paper: (Ren et al. 2016b) requires stronger regularity while this paper requires cer-
tain piecewise Markovian structure. It will be indeed desirable if one could combine
the two techniques and obtain the complete results, which will be left for future
research.

Finally, while we focus on viscosity solutions for PPDEs, there have been dif-
ferent notions of solutions in the literature. First, with the smoothness in terms of
Dupire’s path derivatives, classical solutions were obtained by Dupire (2009) for
linear PPDEs (which he called functional PDEs) and by Peng and Wang (2016)
for semilinear PPDEs. Cont and Fournie (2013) extended the path derivatives to
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weaker ones which immediately provides weak solution (in the spirit of Sobolev
solution) for linear PPDEs. Peng and Song (2015) studied Sobolev solutions for
path-dependent HJB equations. Moreover, Cosso and Russo (2016) introduced the
so called strong-viscosity solution for semilinear PPDEs as the limit of approximat-
ing classical solutions. While all the notions are consistent with classical solutions
when the solutions are smooth, we emphasize that in the path-dependent case even
the heat equation may not have a classical solution. Our notion of viscosity solution
is a local property, thus the viscosity property can be easily verified in applications.
Of course, the challenge lies in the comparison principle, which is the main focus
of this paper as well as our earlier works. The Sobolev solution of (Peng and Song
2015) is a global solution and involves norm estimates, thus it is easier for unique-
ness but more difficult for existence. Indeed, for the path-dependent Isaacs equations
which is a typical example in our approach, it is still not clear what is the appro-
priate norm under which one may obtain Sobolev solution. See Pham and Zhang
(2013) for a study in this direction. The strong-viscosity solution of (Cosso and Russo
2016) involves a combination of local and global properties, and is easier for unique-
ness but more difficult for existence. Roughly speaking, it transforms the difficulty
in our uniqueness to their existence. To the best of our knowledge, the existence
of a strong-viscosity solution of (Cosso and Russo 2016) is not proven in the fully
nonlinear case.

The rest of the paper is organized as follows. In “Preliminaries” Section we review
the basic materials concerning PPDEs. In “Pseudo-Markovian viscosity solutions”
Section we introduce pseudo Markovian viscosity solutions, and in particular the
new hitting times inspired by (Bayraktar and Yao 2016). The comparison principle is
proved in “Comparison principle” section, and “Existence” section is devoted to exis-
tence. In “Stochastic HJB equations” sections and “Path dependent Isaacs equation”
we present two applications: the stochastic HJB equations induced from the opti-
mization problem with random coefficients and the path-dependent Bellman-Isaacs
equations induced from the zero sum stochastic differential games. Finally, some
technical proofs are in the Appendix.

Preliminaries

In this section, we recall the setup in (Ekren et al. 2016b) and explain why the non-
degeneracy requirement is crucial in the uniqueness proof there.

The canonical setting

Let � := {
ω ∈ C([0, T ],Rd) : ω0 = 0

}
, the set of continuous paths starting from

the origin, B the canonical process, F = {Ft }0≤t≤T the natural filtration generated by
B, P0 the Wiener measure, T the set of F-stopping times, and � := [0, T ]×�. Here
and in the sequel, for notational simplicity, we use 0 to denote vectors, matrices, or
paths with appropriate dimensions whose components are all equal to 0. Moreover,
let Sd denote the set of d × d symmetric matrices, and
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x · x′ :=
∑d

i=1
xix

′
i for any x, x′ ∈ R

d , γ : γ ′ := tr[γ γ ′] for any γ, γ ′ ∈ S
d .

We say a probability measure P on FT is a semimartinagle measure if B is a P-
semimartingale. For every constant L > 0, we denote by PL the collection of all
semimartingale measures P whose drift and diffusion characteristics are bounded by
L and

√
2L, respectively. Denote P∞ := ∪L>0PL.

We next discuss regularity of random variables and processes. First, define a semi-
norm on � and a pseudometric on � as follows: for any (t, ω), (t ′, ω′) ∈ �,

‖ω‖t := sup
0≤s≤t

|ωs |, d∞
(
(t, ω) ,

(
t ′, ω′)) := |t − t ′| 12 + ∥∥ω.∧t − ω′

.∧t ′
∥∥

T
. (4)

For a generic Euclidian space E, let L0(�; E) denote the set of FT -measurable
random variables ξ , C0(�; E) (resp. UC(�; E)) the subset of those ξ continuous
(resp. uniformly continuous) under ‖ · ‖T . Similarly, let L0(�; E) be the set of F-
progressively measurable processes u, C0(�; E) (resp. UC(�; E)) the subset of
processes continuous (resp. uniformly continuous) in (t, ω) under d∞. We use the
subscript b to indicate the subset of bounded elements; and we omit the notation E in
the spaces when E = R. For classical solutions of PPDEs, we need further regularity
of the processes. The following definition through the functional Itó’s formula is due
to (Ekren et al. 2016a) and is inspired by (Dupire 2009).

Definition 2.1 We say u ∈ C1,2(�) if u ∈ C0(�) and there exist ∂tu ∈ C0(�),
∂ωu ∈ C0(�,Rd), ∂2ωωu ∈ C0(�, Sd) such that, for any P ∈ P∞, u is a
P-semimartingale satisfying:

du = ∂tudt + ∂ωu · dBt + 1

2
∂2ωωu : d〈B〉t , 0 ≤ t ≤ T , P-a.s. (5)

We remark that the path derivatives ∂tu, ∂ωu and ∂2ωωu, if they exist, are unique.
We finally introduce the shifted spaces. Let 0 ≤ s ≤ t ≤ T .

– Let �t := {
ω ∈ C([t, T ],Rd) : ωt = 0

}
be the shifted canonical space and

define Bt , Ft , Pt
0, �t , T t , P t

L, P t∞ etc. in an obvious sense. In particular, �t :=
[t, T ] × �t . Define ‖ · ‖t

s on �t and dt∞ on �t in the spirit of (4), and the sets
L
0(�t ; E) etc. in an obvious way.

– For ω ∈ �s and ω′ ∈ �t , define the concatenation path ω ⊗t ω′ ∈ �s by:
(
ω ⊗t ω′) (r) := ωr1[s,t)(r) + (

ωt + ω′
r

)
1[t,T ](r), for all r ∈ [s, T ].

– Let ξ ∈ L
0(�s) and X ∈ L

0(�s). For (t, ω) ∈ �s , define ξ t,ω ∈ L
0(�t ) and

Xt,ω ∈ L
0(�t ) by:

ξ t,ω
(
ω′) := ξ

(
ω ⊗t ω′) , Xt,ω(ω′) := X

(
ω ⊗t ω′) , for all ω′ ∈ �t .

It is clear that, for any (t, ω) ∈ � and any u ∈ C0(�), we have ut,ω ∈ C0(�t ). The
spaces introduced above enjoy the same property.
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Viscosity solution of PPDEs

Our PPDE takes the form of (1) with a terminal condition u(T , ω) = ξ(ω). We say
u ∈ C1,2(�) is a classical solution (resp. supersolution, subsolution) of PPDE (1) if

Lu(t, ω) = (resp. ≤, ≥) 0, ∀(t, ω) ∈ [0, T ) × �.

The definition of viscosity solution is more involved. First, for any ξ ∈ L
0(�t )

with appropriate integrability, we introduce the following nonlinear expectations:

EL

t [ξ ] := sup
P∈P t

L

E
P[ξ ] and EL

t [ξ ] := inf
P∈P t

L

E
P[ξ ] = −EL

t [−ξ ]. (6)

Next, for any t ∈ [0, T ] and ε > 0, we define a hitting time:

Ĥ
t

ε := inf
{
s > t : |Bt

s | ≥ ε
} ∧ (t + ε) ∧ T . (7)

Now for u ∈ L
0(�) with appropriate integrability, we introduce the following classes

of test functions: for any L > 0 and (t, ω) ∈ [0, T ) × �,

ALu(t, ω):=
{
ϕ ∈ C1,2(�t ) : (ϕ − ut,ω

)
t
=0= inf

τ∈T t
EL

t

[
(ϕ − ut,ω)

τ∧Ĥt
ε

]
for some ε > 0

}
,

AL
u(t, ω):=

{
ϕ ∈ C1,2(�t ) : (ϕ − ut,ω

)
t
=0= sup

τ∈T t

EL

t

[
(ϕ − ut,ω)

τ∧Ĥt
ε

]
for some ε > 0

}
.

(8)

Definition 2.2 Let u ∈ L
0(�) with appropriate integrability and L > 0. We

say u is a PL-viscosity subsolution (resp. supersolution) of PPDE (1) if, for any

(t, ω) ∈ [0, T ) × � and any ϕ ∈ ALu(t, ω) (resp. ϕ ∈ AL
u(t, ω)):

Lt,ωϕ(t, 0) := ∂tϕ(t, 0) + Gt,ω(·, ϕ, ∂ωϕ, ∂2ωωϕ)(t, 0) ≥ (resp. ≤) 0.

We say u is a PL-viscosity solution of PPDE (1) if it is both a PL-viscosity sub- and
supersolution.

We remark that to establish the viscosity theory certain semi-regularity is required
for semisolutions, as introduced in (Ekren et al. 2016a, 2016b). Moreover, the
smooth test processes ϕ in 8 can actually be restricted to parabolas, and thus the
definition can be rewritten in terms of semi-jets, see (Ren et al. 2014).

Viscosity solution of PDEs

In this subsection, we consider the following PDE on an open domain Q ⊂ [0, T ) ×
R

d :

Lv(t, x) := ∂tv(t, x) + g(t, x, v, ∂xv, ∂xxv) = 0, (t, x) ∈ Q. (9)

We shall introduce two notions of viscosity solutions, one is adapted from
Definition 2.2, and the other is the standard one in PDE literature, see e.g. (Crandall
et al. 1992) and (Fleming and Soner 2006).

Definition 2.3 Let v : Q → R be measurable with certain integrability.
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(i) For some L > 0, we say v is a PL-viscosity subsolution of PDE (9) if, for any
(t, x) ∈ Q,

Lϕ(t, x) ≥ 0, ∀ϕ ∈ ALv(t, x), where

ALv(t, x) := {
ϕ ∈ C1,2(Q) : ∃ε > 0 s.t. [ϕ − v](t, x) = 0

= inf
τ∈T t :τ≤Ĥ

t
ε

EL
t

[[ϕ − v](τ, x + Bt
τ )
] }

.

(10)

(ii) We say v is a Crandall-Lions viscosity subsolution of PDE (9) if, for any
(t, x) ∈ Q,

Lϕ(t, x) ≥ 0, ∀ϕ ∈ Av(t, x), where

Av(t, x) := {
ϕ ∈ C1,2(Q) : ∃ε > 0 s.t. [ϕ − v](t, x) = 0 = inf

(s,y)∈Q:|s−t |+|y−x|≤ε
[ϕ − v](s, y)

}
.

(11)
(iii) We define the corresponding viscosity supersolution and the viscosity solution

in an obvious way.

Remark 2.4 (i) When ε > 0 is small enough, we have (s, x + Bt
s) ∈ Q for all

s ≤ Ĥ
t

ε. Thus the ALv(t, x) in (10) is well defined.
(ii) It is clear that Av(t, x) ⊂ ALv(t, x). Then a PL-viscosity subsolution

is a Crandall-Lions viscosity subsolution. In general, these notions might not be
equivalent.

(iii) Due to (ii), formally it could be easier to prove the comparison principle for
PL-viscosity semisolutions than for Crandall-Lions viscosity semisolutions. It will be
interesting to explore such a possibility. �

The degeneracy of G

In this subsection, we explain why the non-degeneracy requirement is crucial for the
comparison principle in (Ekren et al. 2016b), and how we overcome the difficulties
in this paper.

A key element in the strategy of (Ekren et al. 2016b) is the following path frozen
PDE (not PPDE!): for fixed (t, ω) ∈ [0, T ) × � and ε > 0,

∂t v + G (s, ω·∧t , v, ∂xv, ∂xxv) = 0, (s, x) ∈ Q̂t
ε := [t, (t + ε) ∧ T ) × {x ∈ R

d : |x| < ε}.
(12)

We emphasize that at above the path ω in G is frozen at t and thus the equation is
a (deterministic) PDE. Moreover, the domain Q̂t

ε is induced by the hitting time Ĥ
t

ε,

indeed, we have (s, Bt
s) ∈ Q̂t

ε for s < Ĥ
t

ε.
In order to construct smooth test functions, we let Gε be a smooth mollifier

of G and require the following mollified path frozen PDE (with smooth boundary
condition) has a classical solution:

∂tv + Gε(s, ω·∧t , v, ∂xv, ∂xxv) = 0, (s, x) ∈ Q̂t
ε. (13)
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In the PDE literature, one typically needs uniform non-degeneracy of Gε in terms of
γ , namely there exists a constant c0 > 0 such that

Gε

(·, γ + γ ′) − Gε(·, γ ) ≥ c0tr
(
γ ′) , ∀γ, γ ′ ∈ S

d with γ ′ ≥ 0. (14)

Moreover, for Bellman-Isaacs equations, one may obtain classical solution only when
d ≤ 2, even if Gε is uniformly non-degenerate.

We note that the classical solution of (13) is used to prove the partial comparison
principle, namely the comparison between a classical semisolution and a viscosity
semisolution. Our first observation is that, since we are utilizing PDE results, we can
use the comparison principle for viscosity solutions of PDE directly. We note that by
doing this we are using the regularities of PDEs indirectly, because the comparison
principle in PDE literature relies on the regularities through a regularization proce-
dure. Nevertheless, this allows us to use the viscosity theory rather than classical
solutions of PDEs. However, this requires our viscosity semisolutions to have cer-
tain piecewise Markovian structure, which we will call pseudo-Markovian, thus our
comparison principle will be within a smaller class than that in (Ekren et al. 2016b).

There is another difficulty in the degenerate case, even for the viscosity theory of
PDEs. Notice that the PDEs (12) and (13) are on a bounded domain Q̂t

ε, not on the
whole space. As we see in the following example, in the degenerate case such a PDE
with a smooth boundary condition may not have a continuous viscosity solution.

Example 2.5 Consider the following degenerate PDE:

∂tv = 0, (t, x) ∈ Q̂0
ε; v(t, x) = t, (t, x) ∈ ∂Q̂0

ε

:= {
(t, x) : t = ε, |x| ≤ ε or t < ε, |x| = ε

}
.

Then clearly the candidate solution should be: v(t, x) = ε1Q̂0
ε
(t, x) + t1∂Q̂0

ε
(t, x),

which, unfortunately, is discontinuous on {(t, x) : t < ε, |x| = ε}.

Inspired by (Bayraktar and Yao 2016), we overcome this difficulty by modifying
the hitting times. While we will study the new hitting time in details in next section,
we present a special case here to see how it helps overcome the difficulty in the
example above. Consider the following hitting time:

Hε := inf{t ≥ 0 : t + |Bt | ≥ ε}, (15)

which would induce a domain, changing from a cylinder to a cone:

Qε := {
(t, x) ∈ [0, ε) × R

d : t + |x| < ε
}
,

∂Qε := {
(t, x) ∈ [0, ε) × R

d : t + |x| = ε
}
.

(16)

Example 2.6 Consider the following degenerate PDE:

∂tv = 0, (t, x) ∈ Qε; v(t, x) = t, (t, x) ∈ ∂Qε.

Then the solution is: v(t, x) = ε − |x|, which is continuous on the whole domain
Qε ∪ ∂Qε. �
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Pseudo-Markovian viscosity solutions

Our PPDE of interest is (1) with a terminal condition u(T , ω) = ξ(ω). We shall
assume the following standing assumptions.

Assumption 3.1 (i) The PPDE is parabolic, namely G is non-decreasing in γ ;
(ii) G is uniformly Lipschitz continuous in (y, z, γ ) with Lipschitz constant L;
(iii) G is continuous in (t, ω), G(·, 0, 0, 0) is bounded, and ξ ∈ C0

b(�).

Throughout the paper, for notational simplicity we denote: for any process ϕ and
s < t ,

L1 := L + 1, ϕs,t := ϕt − ϕs. (17)

Hitting times

As explained in Subsection “The degeneracy of G”, we shall introduce a new type of
hitting time, strongly motivated by the recent work (Bayraktar and Yao 2016). Given
R > 0, t ∈ [0, T ) and x ∈ R

d with |x| ≤ R, define

Ht,x,R
(
Bt·

) := inf
{
s ≥ t : |x + Bt

s | + L1(s − t) ≥ R
} ∧ T . (18)

This hitting time enjoys certain useful properties.

Lemma 3.2 For any (t, x, R), τ∈T t with τ≤Ht,x,R , and δ > 0, we have

Ht,x,R(Bt· ) = Hτ,x+Bt
τ ,R−L(τ−t)(Bt· − Bt

τ ), (19)

supP∈P t
L
P
(
Ht,0,R < (t + δ) ∧ T

) ≤ CRδ. (20)

Moreover, Ht,x,R is increasing in R, and has the following regularities:

EL

t

[
|Ht,x1,R1 − Ht,x2,R2 |

]
≤ |x1 − x2| + |R1 − R2| ,

|x1| ≤ R1, |x2| ≤ R2;
(21)

EL

t

[∣∣∣Ht,x,R(Bt ) − Hτ,x,R
(
Bt· − Bt

τ

)∣∣∣
]

≤ CEL

t

[√
τ − t

]
,

0 ≤ t ≤ τ ≤ Ht,x,R, |x| ≤ R.

(22)

Proof First, (19) and the monotonicity of Ht,x,R in R are obvious. Next, for any
δ > 0, if L1δ ≥ R

2 , then (20) becomes trivial. Now assume L1δ ≤ R
2 . For any

P ∈ P t
L,

P

(
Ht,0,R < (t + δ) ∧ T

)
≤ P

(
sup

t≤s≤t+δ

|Bt
s | + L1δ ≥ R

)
≤P

(
sup

t≤s≤t+δ

|Bt
s | ≥ R

2

)

≤ 4

R2
E
P

[
sup

t≤s≤t+δ

|Bt
s |2

]
≤ CRδ.
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By the arbitrariness of P, this implies (20). Moreover, (22) follows directly from (19),

(21), and the following simple estimate:EL
t

[|Bt
τ |
] ≤ CEL

t

[√
τ − t

]
.

To prove (21), we assume without loss of generality that t = 0 and denote τi :=
H0,xi ,Ri , i = 1, 2, and �ϕ := ϕ2 − ϕ1 for ϕ = x, R, τ . On {τ1 < τ2} ∈ Fτ1 and
under each P ∈ PL, we have

|x1 + Bτ1 | + L1τ1 = R1, |x2 + Bτ2 | + L1τ2 ≤ R2

⇒ �R ≥ E
P

τ1

[|x2 + Bτ2 | + L1τ2
] − [|x1 + Bτ1 | + L1τ1

]

≥ ∣∣x2 + E
P

τ1
[Bτ2]

∣∣ − |x1 + Bτ1 | + L1E
P

τ1
[�τ ]

≥ L1E
P

τ1
[�τ ] − |�x| − ∣∣EP

τ1
[Bτ1,τ2]

∣∣

≥ L1E
P

τ1
[�τ ] − |�x| − LEP

τ1
[�τ ] = E

P

τ1
[�τ ] − |�x|

⇒ E
P

τ1
[�τ ] ≤ |�x| + |�R|.

This implies that

E
P
[
(τ2 − τ1)1{τ1<τ2}

] ≤ [|�x| + |�R|]P(τ1 < τ2).

Similarly, we have E
P
[
(τ1 − τ2)1{τ2<τ1}

] ≤ [|�x| + |�R|]P(τ2 < τ1). Then
E
P[|�τ |] ≤ [|�x| + |�R|] , and (21) follows from the arbitrariness of P ∈ PL.

Remark 3.3 (i) The regularities (21) and (22) are in L
1-sense. The hitting time

Ĥ
t

ε in (7) shares these properties in the uniformly non-degenerate case, but does not
in the degenerate case. The work (Bayraktar and Yao 2016) introduced a different
hitting time which has stronger regulairty:

H∗
ε := inf

{
t ≥ 0 : t + sup

0≤s≤t

|Bs | ≥ ε
}
. (23)

One can easily show that H∗
ε is Lipschitz continuous in ω in the pathwise sense:

|H∗
ε(ω) − H∗

ε(ω̃)| ≤ ‖ω − ω̃‖T .

However, H∗
ε does not share the Markovian property in the sense of (19):

H∗
ε �= H∗,τ,Bτ

ε for τ < Ĥε, where Ĥ
∗,t,x

ε := inf
{
s ≥ t : s + sup

t≤r≤s
|x + Bt

r | ≥ ε
}
.

In this paper, we need both the regularity and the Markovian structure, in order to
utilize the viscosity theory of PDEs.

(ii) The regularities (21) and (22) are under nonlinear expectation. Under
standard (linear) expectation, such regularities have been well understood, see
e.g. (Mikulevicious 1987, Mikulevicius and Rozovskii 1999).

(iii) For any ε > 0, there exist 0 < ε1, ε2 < ε such that

Ĥ
t

ε1
≤ Ht,0,ε, Ht,0,ε2 ≤ Ĥ

t

ε. (24)

Then clearly Definition 2.2 remains equivalent if we replace the Ĥ
t

ε in (8) with H
t,0,ε.

Moreover, the optimal stopping problem, which is required in (Ekren et al. 2016a,
2016b) and proved in (Ekren et al. 2014b), becomes a lot easier if we use Ht,0,ε due
to the regularities in Lemma 3.2.
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The next property will be crucial to pass the local structure to a global one. Fix
ε > 0, define

Hε
0 := 0, Hε

n+1 := HHε
n,0,ε(B· − BHε

n
) = inf

{
t ≥ Hε

n : |BHε
n,t | + L1(t − Hε

n)

≥ ε
} ∧ T , n ≥ 0.

(25)

Lemma 3.4 For any ε > 0,

⋂

n≥1

{
Hε

n < T
} = ∅ and sup

P∈PL

P
[
Hε

n < T
] ≤ C

nε2
. (26)

Proof First, clearly Hε
n is nondecreasing, and thus H

ε∞ := limn→∞ Hε
n ≤ T exists.

Note that,

⋂

n≥1

{Hε
n < T } ⊂

⋂

n≥1

{
|BHε

n,Hε
n+1

| + L1
(
Hε

n+1 − Hε
n

) = ε
}

.

Since limn→∞ BHε
n

= BHε∞ , clearly the right side above is empty, then so is the left
side.

Next, for any n ≥ 1,

{
Hε

n < T
} ⊂

⋂

0≤k<n

{
|BHε

k,H
ε
k+1

| + L1
(
Hε

k+1 − Hε
k

) = ε
}

Note that

(
|BHε

k,H
ε
k+1

| + L1
(
Hε

k+1 − Hε
k

))2 ≤ 2|BHε
k,H

ε
k+1

|2 + C
(
Hε

k+1 − Hε
k

)
.

Then
{
Hε

n < T
} ⊂

⋂

0≤k<n

{
2|BHε

k,H
ε
k+1

|2 + C
(
Hε

k+1 − Hε
k

) ≥ ε2
}

⊂
{

n−1∑

k=0

[
2|BHε

k,H
ε
k+1

|2 + C
(
Hε

k+1 − Hε
k

)] ≥ nε2

}

⊂
{
2

n−1∑

k=0

|BHε
k,H

ε
k+1

|2 + C ≥ nε2

}
.

Now for any P ∈ PL,

P
(
Hε

n < T
) ≤ 1

nε2
E
P

[
2

n−1∑

k=0

|BHε
k,H

ε
k+1

|2 + C

]
≤ C

nε2
.

By the arbitrariness of P ∈ PL we obtain the second claim immediately.
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Piecewise Markovian processes

For any t ∈ [0, T ] and ε > 0, denote

Qε
t := {

(s, x) ∈ (t, T ] × R
d : |x| + L1(s − t) < ε

};
∂Qε

t := {
(s, x) ∈ (t, T ] × R

d : |x| + L1(s − t) = ε
}

∪ {
(T , x) : |x| + L1(T − t) ≤ ε

};
Q̂ε

t := Qε
t ∪ ∂Qε

t ∪ {(t, 0)};
ε

n ={
πn = (ti , xi)1≤i≤n : 0= t0<t1< · · ·< tn < T, (ti , xi) ∈ ∂Qε

ti−1
, 1 ≤ i ≤ n

};
Dε

n+1 := {
(πn; t, x) : πn ∈ ε

n, (t, x) ∈ Q̂ε
tn

};
πε

n(ω) :=
(
Hε

i (ω), ωHε
i (ω) − ωHε

i−1(ω)

)

1≤i≤n
.

(27)
In light of (2), we introduce processes with the following piecewise Markovian

structure.

Definition 3.5 Let ε > 0. We say a process u ∈ L
0(�) is ε-Markovian, denoted as

u ∈ Mε(�), if there exist deterministic functions vn : Dε
n+1 → R, n ≥ 0, satisfying:

(i) (2) holds, namely

u(t, ω) =
∞∑

n=0

vn

(
πε

n(ω); t, ωt − ωHn(ω)

)
1{

Hε
n≤t<Hε

n+1 or Hε
n<Hε

n+1=T =t
} (28)

(ii) For all πn = (ti , xi)1≤i≤n ∈ ε
n and (t, x) ∈ ∂Qε

tn
, the following compatibility

condition holds

vn(πn; t, x) = vn+1(πn, (t, x); t, 0). (29)

(iii) Each vn, n ≥ 0, is continuous in Dε
n+1.

Remark 3.6 (i) The continuity of vn and compatibility (29) imply that u is
continuous in time.

(ii) We do not require vn(πn; ·) to be continuous on {(tn, x) : 0 < |x| ≤ ε}.
However, for any δ > 0 small, vn is (uniformly) continuous on the following compact
set

D
ε,δ
n+1 := {

(πn; t, x) ∈ Dε
n+1 : ti − ti−1 ≥ δ, i = 1, · · · , n, and t − tn ≥ δ

}
. (30)

It turns out that this uniform continuity and the continuity of vn(πn; ·) at (tn, 0) is
enough for our comparison result.

(iii) In (Ekren et al. 2016b) we imposed a technical condition Assumption 3.5 to
ensure the constructed vn will be uniformly continuous in Dε

n+1. This condition is not
needed here because of the introduction of our new hitting time. �

Moreover, we may extend all the notations to the shifted spaces: given 0 ≤ t < T ,
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Ht,ε
n , t,ε

n , πt,ε
n , Mε(�

t ), etc. (31)

Pseudo-Markovian viscosity solution

We provide the following notion of viscosity solutions.

Definition 3.7 We say u is a pseudo-Markovian PL-viscosity subsolution (resp.
Crandall-Lions viscosity subsolution) of PPDE (1) at (t, ω) ∈ [0, T ) × � if, for any
ε > 0, there exists ut,ω,ε ∈ Mε(�

t ) with corresponding {vn, n ≥ 1}, such that
(i) for each πn = (ti , xi)1≤i≤n ∈ 

t,ε
n , vn (πn; ·) is a PL-viscosity subsolution

(resp. Crandall-Lions viscosity subsolution) to the following PDE:

L
t,ω,πnvn (πn; s, x) := ∂tvn (πn; s, x) + G

(
s, ω ⊗t ωπn, vn, ∂xvn, ∂

2
xxvn

)

= 0, (s, x) ∈ Qε
tn
,

(32)

where ωπn is the linear interpolation of (t, 0),
(
ti ,

∑i
j=1 xj

)

1≤i≤n
,
(
T ,

∑n
j=1 xj

)
,

(ii) ut,ω,ε ≤ ut,ω on �t and limε→0 ut,ω,ε(t, 0) = u(t, ω).
We define a pseudo Markovian viscosity supersolution similarly , and we call u

a pseudo-Markovian viscosity solution if it is both a pseudo Markovian viscosity
subsolution and supersolution.

Remark 3.8 (i) Definition 2.2 is completely local. Definition 3.7 is in between
local and global. The ut,ω,ε may depend on (t, ω) and we require the convergence
of ut,ω,ε only at (t, ω). In this sense our definition is local. However, the viscosity
property of ut,ω,ε and the inequality ut,ω,ε ≤ ut,ω hold on �t and in this sense the
definition is global.

(ii) In Definition 3.7 the vn is required to satisfy the path frozen PDE (32), and
thus this definition relies heavily on the path frozen PDE. We will see in Proposition
3.9 below that, when G is uniformly continuous in ω, one can give an equivalent
definition using the original PPDE (1).

(iii) Both (Ekren et al. 2016b) and (Ren et al. 2016b) require the uniform continuity
of G in ω, which is not required in this paper. We remark that this uniform regularity
can be violated even in the semilinear case: G = 1

2σ
2(t, ω) : γ + f (t, ω, y, z).

In the following proposition we state an alternative definition which is equivalent
to Definiton 3.7 when the generator G is uniformly continuous in ω. The proof is
postponed to the Appendix.

Proposition 3.9 Let Assumption 3.1 hold true, and assume further that G is uni-
formly continuous in ω. Then u is a pseudo-Markovian PL-viscosity subsolution if
and only if, for any (t, ω) ∈ [0, T )×�, there exist ut,ω,ε ∈ Mε(�

t ), ε > 0, such that
(i) for all (t ′, ω′) ∈ [t, T ) × �t , ut,ω,ε is a viscosity subsolution of PPDE (1) at

(t ′, ω ⊗t ω′);
(ii) ut,ω,ε ≤ ut,ω on �t and limε→0 ut,ω,ε(t, 0) = u(t, ω).
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Comparison principle

The main result of this paper is the following comparison principle for pseudo-
Markovian Crandall-Lions viscosity solutions. Since a PL-viscosity semisolution
is always a Crandall-Lions viscosity semisolution, it also implies the comparison
principle for pseudo-Markovian PL-viscosity solutions.

Theorem 4.1 Let Assumption 3.1 hold. Assume u1 and u2 are pseudo-Markovian
Crandall-Lions viscosity subsolution and supersolution of PPDE (1), respectively. If
u1(T , ·) ≤ u2(T , ·), then u1 ≤ u2 on �.

Proof In this proof, viscosity semisolutions are always in Crandall-Lions sense.
Without loss of generality, we shall only prove u1(0, 0) ≤ u2(0, 0). For i = 1, 2,
let uε

i ∈ Mε(�) be the corresponding approximations with corresponding vi
n. By

Definition 3.7 (ii), it suffices to show that uε
1(0, 0) ≤ uε

2(0, 0) for all ε > 0. In the
rest of this proof we fix ε > 0 and denote wn := v1n − v2n.

Step 1.We first show that, for any n ≥ 0, πn = (ti , xi)1≤i≤n ∈ ε
n, it holds

w+
n (πn; tn, 0) ≤ EL

tn

[
eL(H−tn)w+

n

(
πn;H, B

tn
H

)]
where H := Htn,0,ε

1 . (33)

Without loss of generality it is enough to prove the statement for n = 0. That is,
denoting w := w0,

w+(0, 0) ≤ EL
[
eLHw+ (H, BH)

]
where H := Hε

1. (34)

For any δ > 0 small, by Remark 3.6 (ii), v10, v
2
0 are uniformly continuous viscosity

semisolutions of the following PDE:

∂tv + G
(
t, 0, v, ∂xv, ∂2xxv

)
= 0, (t, x) ∈ D

ε,δ
1 .

Following the arguments in (Ekren et al. 2016b), Lemma 6.1, or following an alter-
native argument in (Barles et al. 1997), Lemma 3.7, one can easily prove that for any
(t, x) ∈ D

ε,δ
1 ,

w+(t, x) ≤ EL

t

[
e
L
(
H

t,x,ε−L1 t

1 −t
)

w+
(
Ht,x,ε−L1t
1 , Bt

H
t,x,ε−L1 t

1

)]
.

In particular, this implies

w+ (δ, ωδ) ≤ EL

δ

[
e
L
(
H

δ,x,ε−L1δ

1 −δ
)

w+
(
Hδ,ωδ,ε−L1δ
1 , Bδ

H
δ,ωδ,ε−L1δ

1

)]
, if H(ω) > δ.

By the uniform regularity of w, and using (19) we see that

EL [
w+(δ, Bδ)1{H>δ}

] ≤ EL
[
eL(H−δ)w+ (H, BH) 1{H>δ}

]
≤ EL

[
eLHw+ (H, BH)

]
.
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Then, noting that |w| ≤ C,

w+(0, 0) − EL
[
eLHw+ (H, BH)

]
≤ w+(0, 0) − EL [

w+(δ, Bδ)1{H>δ}
]

≤ EL [|w+(δ, Bδ) − w+(0, 0)|] + CEL [
1{H>δ}

]

≤ EL
[
|w+(δ, Bδ) − w+(0, 0)|1{|Bδ |≤δ

1
3 }

]

+ CEL
[
1{|Bδ |>δ

1
3 }

]
+ CEL [

1{H>δ}
]→0, asδ→0,

where the first convergence is due to the continuity of w+ at (0, 0), the second one is
due to standard estimates, and the third one is due to (20).

Step 2.We next show that, for any n ≥ 0,

EL
[
eLHε

nw+
n

(
πε

n(B);Hε
n, 0

)] ≤ EL
[
eLHε

n+1w+
n+1(π

ε
n+1(B);Hε

n+1, 0)
]
. (35)

Indeed, for any ω, by (33) and (29) we have: denoting Hω,ε
n+1 := (Hε

n+1)
Hε

n(ω),ω,

eLHε
n(ω)w+

n

(
πε

n(ω);Hε
n(ω), 0

)

≤ EL

Hε
n(ω)

[
eLHω,ε

n+1w+
n+1

(
πε

n(ω),

(
Hω,ε

n+1, B
Hε

n

Hω,ε
n+1

)
;Hω,ε

n+1, 0

)]
,

Now for any δ > 0 and P ∈ P , by the uniform regularity in Remark 3.6 (ii), it follows
from the arguments in (Ekren et al. 2016b) (5.5) that,

eLHε
nw+

n

(
πε

n;Hε
n, 0

)
1∩n

i=1{Hε
i −Hε

i−1≥δ}

≤ P

esssup
P′∈PL(P,Hε

n)

E
P

′ [
eLHε

n+1w+
n+1

(
πε

n+1(B);Hε
n+1, 0

)
1∩n

i=1{Hε
i −Hε

i−1≥δ}
∣∣∣FHε

n

]
, P-a.s.

where PL(P,Hε
n) := {P′ ∈ PL : P = P

′on FHε
n
}. This implies

EL
[
eLHε

nw+
n

(
πε

n(B);Hε
n, 0

)
1∩n

i=1{Hε
i −Hε

i−1≥δ}
]

≤ EL
[
eLHε

n+1w+
n+1(π

ε
n+1(B);Hε

n+1, 0)1∩n
i=1{Hε

i −Hε
i−1≥δ}

]
.

Recall (20) and send δ → 0, we obtain (35) immediately.
Step 3. Applying Step 2 repeatedly, we have

w+(0, 0)≤ EL
[
eLHε

nw+
n (πε

n(B);Hε
n, 0)

]
≤eLT EL [

w+
n (πε

n(B);Hε
n, 0)

]
, ∀n ≥ 0.

(36)
Note that w+

n (πε
n(B);Hε

n, 0) = 0 on {Hε
n = T }. Send n → ∞ and apply Lemma 3.4,

we have

w+(0, 0) ≤ CeLT EL [
1{Hε

n<T }
] → 0.

This completes the proof.
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Existence

In this section, we provide a generic existence result.

A bounding equation

We first investigate a bounding equation which will be crucial for our existence result:

Lv(t, x) := ∂tv(t, x) + g (v, ∂xv, ∂xxv) = 0,
g(y, z, γ ) := 1

2 sup
0≤σ≤√

2LId

[
σ 2 : γ

] + L [|y| + |z|] + C0, (37)

where the control σ takes values in Sd . We start with a local result:

Lemma 5.1 Let t0 < T , ε > 0, and h ∈ C0
b

(
∂Qε

t0

)
. Then the PDE

Lv(t, x) = 0, (t, x) ∈ Qε
t0
; v(t, x) = h(t, x), (t, x) ∈ ∂Qε

t0
,

has a PL-viscosity solution v ∈ C0
b(Q̂ε

t0
):

v(t, x) := sup
b∈L0

L(Ft )

EL

t

[
e
∫ Ht,x

t br drh
(
Ht,x, x + Bt

Ht,x

) + C0

∫ Ht,x

t

e
∫ Ht,x

s br drds

]
,

where Ht,x := Ht,x,ε−L1(t−t0), L
0
L(Ft ) := {b ∈ L

0(Ft ) : |b| ≤ L}.
(38)

Proof Assume t0 = 0 for simplicity. First, it is clear that |v| ≤ C. For any 0 <

δ < ε∧T
L1

, denote

Q
ε,δ

0 := {
(t, x) ∈ Q̂ε

t0
: t ≥ δ

}
.

Note that ∂Qε
0∩Q

ε,δ

0 is compact, then h is uniformly continuous on it. By Lemma 3.2

one may easily show that the v defined by (38) is (uniformly) continuous inQ
ε,δ

0 . Pro-
vided this regularity, it follows from standard arguments that v satisfies the dynamical
programming principle, which implies further that v is a viscosity solution of PDE

(37) in Qε
0 ∩ Q

ε,δ

0 . By the arbitrariness of δ, we see that v is continuous in Qε
0 ∩ ∂Qε

0
and is a viscosity solution of PDE (37) in Qε

0.
It remains to prove the continuity at (0, 0). Let (t, x) ∈ Qε

0 and denote δ := t+|x|.
Let

H := H0,0,ε, H̃ := inf
{
s ≥ t : |x + Bs − Bt | + L1(s − t) ≥ ε − L1t

} ∧ T .

Then one can easily see that

v(0, 0) := sup
b∈L0

L(F)

EL
[
e
∫ H
0 brdrh (H, BH) + C0

∫ H

0
e
∫ H
s br drds

]
;

v(t, x) := sup
b∈L0

L(F)

EL

[
e
∫ H̃
t br drh

(
H̃, x + B

t,H̃

)
+ C0

∫ H̃

t

e
∫ H̃
s br drds

]
.
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Let δ0 > 0 be a constant which will be specified later and assume δ ≤ δ0. Denote

v′(0, 0) := sup
b∈L0

L(F)

EL
[
e
∫ H
0 brdrh(H ∨ δ0, BH) + C0

∫ H

0
e
∫ H
s br drds

]
;

v′(t, x) := sup
b∈L0

L(F)

EL

[
e
∫ H̃
t br drh

(
H̃ ∨ δ0, x + Bt,H̃

)
+ C0

∫ H̃

t

e
∫ H̃
s br drds

]
.

Here h(δ0, x) := h(δ0,
ε−L1δ0|x| x) when |x| > ε − L1δ0. Then, for δ ≤ ε

2 ∧ δ0, by
(20) we have

|v′(0, 0) − v(0, 0)| ≤ C sup
P∈PL

P(H ≤ δ0) ≤ Cεδ0; |v′(t, x) − v(t, x)|

≤ C sup
P∈PL

P(H̃ ≤ δ0) ≤ Cεδ0.

Notice that h is uniformly continuous on Q
ε,δ0
0 , by Lemma 3.2 one can easily prove

that

|v′(0, 0) − v′(t, x)| ≤ Cρδ0(δ),

where the modulus of continuity function ρδ0 may depend on δ0. Thus, for any
δ0 > 0,

|v(0, 0) − v(t, x)| ≤ Cρδ0(δ) + Cεδ0.

This implies lim
δ→0

|v(0, 0) − v(t, x)| ≤ Cεδ0. Since δ0 is arbitrary, we obtain

lim
δ→0

v(t, x) = v(0, 0).

We next extend the above construction to a global one on [0, T ]. Our construction
is similar to that in (Ekren et al. 2016a), Section “Path dependent Isaacs equation”.
Given (πn, t, x) ∈ Dε

n+1, define

Ht,x
1 := Ht,x,ε−L1(t−tn), Ht,x

m+1 := HHt,x
m ,0,ε(Bt· − Bt

Ht,x
m

), m ≥ 1, (39)

and let Bε,πn,t,x be the linear interpolation of: denoting t0 := 0,
⎛

⎝ti ,

i∑

j=1

xj

⎞

⎠

0≤i≤n

,

(
Ht,x

m ,

n∑

i=1

xi + x + Bt

Ht,x
m

)

m≥1

. (40)

We then define

θ
ε

n (πn; t, x) := sup
b∈L0

L(Ft )

EL
[
e
∫ T
t brdr ξ

(
Bε,πn,t,x

) + C0

∫ T

t

e
∫ T
s brdrds

]
. (41)

Our main result of this subsection is:

Lemma 5.2 For any ξ ∈ UCb(�), θ
ε

n is bounded and continuous in Dε
n+1.
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We remark that in general θ
ε

n may not be continuous on the closure of Dε
n+1. The

proof of Lemma 5.2 relies heavily on the regularity of the hitting times established in
Lemma 3.2. It is quite lengthy and we postpone it to Appendix.

A general existence result

We shall make the following assumption.

Assumption 5.3 For any ε > 0, πn ∈ ε
n, and h ∈ C0

b(∂Qε
tn
), the PDE (32) with

boundary condition h has a PL-viscosity solution (resp. Crandall-Lions viscosity
solution) vn ∈ C0

b(Q̂ε
tn
).

The following lemma is crucial.

Lemma 5.4 Let Assumptions 3.1 and 5.3 hold. Then there exists uε ∈ Mε(�)

with corresponding θε
n := vn such that

(i) θε
n(πn; ·) is a PL-viscosity solution (resp. Crandall-Lions viscosity solution) to

PDE (32);

(ii) uε(T , ω) = ξ

(
ω

(
Hε

n,ωHε
n
−ωHε

n−1

)

n≥1

)
.

Proof We follow the arguments in (Ekren et al. 2016b), Lemma 6.3. By Lemmas
5.1 and 5.2 we see that θ

ε

n(πn; ·) is a viscosity solution of PDE (37) in Qε
tn

∪ ∂Qε
tn
,

for any given πn ∈ ε
n. Introduce similarly

θε
n(πn; t, x) := inf

b∈L0
L(F)

EL

[
e
∫ T
t brdr ξ

(
Bε,πn,t,x

) − C0

∫ T

t

e
∫ T
s brdrds

]
, (42)

which corresponds to the lower bounding equation:

Lv(t, x) := ∂tv(t, x) + g(v, ∂xv, ∂xxv) = 0,
g(y, z, γ ) := 1

2 inf
0≤σ≤√

2LId

[σ 2 : γ ] − L[|y| + |z|] − C0. (43)

For each m ≥ 1, define two functions on Dε
m+1:

θ
ε,m

m (πm; t, x) := θ
ε

m(πm; t, x), θε,m
m (πm; t, x) := θε

m(πm; t, x).

We next define θ
ε,m

i (πi; ·) ∈ C0(Q̂ε
ti
) and θ

ε,m
i (πi; ·) ∈ C0

(
Q̂ε

ti

)
, i = m − 1, · · · , 0,

backwardly as the unique viscosity solutions of the following PDE:

∂tv(s, x) + G
(
s, ωπi , v, ∂xv, ∂2xxv

)
= 0, (s, x) ∈ Qε

ti
, (44)

with boundary conditions θ
ε,m

i+1(πi, (t, x); t, 0) and θ
ε,m
i+1(πi, (t, x); t, 0), respectively.

Here the existence of such viscosity solution is due to Assumption 5.3, while
the comparison principle and the uniqueness of viscosity solutions are implied by
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Assumption 3.1. Clearly θε
m+1 ≤ θ

ε

m+1. Since g ≤ G(t, ω, ·) ≤ g, by the comparison
principle for the PDE (44) we see that

θε,m
m ≤ θε,m+1

m ≤ θ
ε,m+1
m ≤ θ

ε,m

m .

Then, we repeatedly apply the comparison principle for the PDE (44) on Qε
ti
,

backwardly in i, to obtain

θε
i ≤ θ

ε,m
i ≤ θ

ε,m+1
i ≤ θ

ε,m+1
i ≤ θ

ε,m

i ≤ θ
ε

i , 1 ≤ i ≤ m. (45)

Denote w
ε,m
i := θ

ε,m

i − θ
ε,m
i and recall the notations in (39). Since both θ

ε,m

i

and θ
ε,m
i are viscosity solutions of PDE (44) (with different boundary conditions), it

follows from the proof of Theorem 4.1, in particular (36), that

0 ≤ w
ε,m
i (πi; t, x)

≤ CEL

t

[
wε,m

m

(
πi,

(
Ht,x
1 , x + Bt

H1

)
,

(
Ht,x

i , Bt

Ht,x
i

− Bt

Ht,x
i−1

)

2≤i≤m−i

;Ht,x
m−i , 0

)]
.

It is clear that wε,m
m (πm; tm, 0) = 0 when tm = T . Then, by Lemma 3.4,

0 ≤ w
ε,m
i (πi; t, x) ≤ C sup

P∈P t
L

P
(
Ht,x

m−i < T
) ≤ C

(m − i)2ε2
→ 0, as m → ∞.

Together with the monotonicity (in m) in (45), this implies the following limits exist
and are equal:

θε
n := lim

m→∞ θ
ε,m

n = lim
m→∞ θε,m

n ,

where the first limit is decreasing and the second one increasing. Since θ
ε,m

n and θε,m
n

are continuous in D̂ε
n+1, then as their monotone limit θε

n is both upper semicontin-
uous and lower semicontinuous, and consequently θε

n is also continuous in D̂ε
n+1.

The viscosity property of θε
n follows from the standard stability result, and all other

properties can be straightforwardly verified.

Our main existence result is as follows.

Theorem 5.5 Let Assumptions 3.1 and 5.3 hold, and uε be as in Lemma 5.4. If uε

converges to u uniformly, then u is a pseudo-Markovian PL-viscosity solution (resp.
Crandall-Lions viscosity solution) of PPDE (1) with terminal condition ξ .

Proof Without loss of generality, we may assume G is non-increasing in y. Denote

ρ(ε) := ‖uε − u‖∞, θε,+
n := θε

n + ρ(ε), uε,+

:= uε + ρ(ε), θε,−
n := θε

n − ρ(ε), uε,− := uε − ρ(ε).

Then uε,− ≤ u ≤ uε,+, and limε→0 uε,+ = u = limε→0 uε,−. It is straightforward
to show that θ

ε,+
n (πn; ·) and θ

ε,−
n (πn; ·) are viscosity supersolution and viscosity

subsolution of PDE (32), respectively. This implies that u is a pseudo-Markovian
viscosity solution of PPDE (1). Finally, it is obvious that u(T , ·) = ξ .
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Stochastic HJB equations

The stochastic HJB equation is introduced in (Peng 1992) to characterize the value
function for an optimization problem with random coefficients. Let U be an arbitrary
measurable set, U t be the set of Ft -progressively measurable andU-valued processes.
Given (t, ω, x) ∈ [0, T ) × � × R

d ′
for some dimension d ′ and α ∈ U t , consider the

following controlled decoupled FBSDE:

Xs = x + ∫ s

t
bt,ω

(
r, Bt , Xr , αr

)
dr + ∫ s

t
σ t,ω

(
r, Bt , Xr , αr

)
dBt

r ;
Ys = gt,ω

(
Bt , XT

) + ∫ T

s
f t,ω

(
r, Bt , Xr , Yr , Zr , αr

)
dr − ∫ T

s
ZrdBr ; t ≤ s ≤ T , P

t
0-a.s.

(46)
Here Y is a scalar process. b, σ, f, and g have appropriate dimensions. b, σ , and f

are F-progressively measurable in all variables, and g is FT × B(Rd ′
)-measurable.

We shall assume

Assumption 6.1 (i) b(t, ω, x, α), σ(t, ω, x, α), f (t, ω, x, 0, 0, α), and g(ω, x)

are bounded;
(ii) b and σ are uniformly Lipschitz continuous in x, and f is uniformly Lipschitz

continuous in (y, z);
(iii) b and σ are uniformly continuous in ω; and f and g are uniformly continuous

in (ω, x);
(iv) b, σ and f are continuous in t .

Under the above conditions, it is clear that the decoupled FBSDE (46) has a
unique solution, denoted as (Xt,ω,x,α, Y t,ω,x,α, Zt,ω,x,α). We now introduce the
optimization problem:

u0(t, ω, x) := sup
α∈U t

Y
t,ω,x,α
t . (47)

To characterize the above random field u0, (Peng 1992) introduced the following
stochastic HJB equation (in a simpler case) with F-progressively measurable solution
pair (u, q):

du(t, ω, x) = − sup
α∈U

[
1

2
∂xxu : σσ�(t, ω, x, α) + ∂xq : σ (t, ω, x, α)

+∂xub(t, ω, x, α) + f (t, ω, x, u, q + ∂xuσ(t, ω, x, α), α)] + q(t, ω, x)dBt ;
u(T , ω, x) = g(ω, x).

(48)
This is a special type of backward SPDE. When σ does not depend on α, namely
there is no diffusion control, (Peng 1992) established its wellposedness in Sobolev
solutions sense. The recent work (Qiu 2016) extended the result to the general case
with diffusion control, also in terms of Sobolev solutions.
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We shall view the Eq. (48) as a PPDE, as shown in (Ekren et al. 2016a), Section
“Stochastic HJB equations”:

Lu(t, ω, x) = 0, u(T , ω, x) = g(ω, x), where

Lu(t, ω, x) := ∂tu + 1

2
tr (∂ωωu) + supα∈U

[
1

2
∂xxu : σ 2 (t, ω, x, α) + ∂xωu : σ (t, ω, x, α)

+∂xub(t, ω, x, α) + f (t, ω, x, u, ∂ωu + ∂xuσ(t, ω, x, α), α)

]
.

(49)
Indeed, if u is smooth, by comparing (48) and the functional Itô formula (5) and
noting that d〈B〉t = Iddt , P0-a.s., one may obtain q = ∂ωu and then (49) follows
immediately. In general, of course, u0 is not smooth. Our goal is to characterize u0 as
the unique pseudo-Markovian viscosity solution of (49). We remark that, the Sobolev
theory in (Peng 1992, Qiu 2016) requires the special structure of HJB equation, and
may not be easy to extend to more general cases like Isaacs equations induced from
games. Our viscosity solution characterization, however, can easily be extended as
we will see in next section.

The PPDE (48) is slightly different from (1) due to the involvement of the addi-
tional variable x. In (Ekren et al. 2016a) we view x as the current value of another
path ω̃, namely we increase the dimension of the canonical space with canonical paths
(ω, ω̃), and consider only viscosity solutions in the form u(t, ω·, ω̃t ). We emphasize
that this PPDE is always degenerate, and thus is not covered by the comparison result
in (Ekren et al. 2016b). The results in this paper apply to this case, and u0 is indeed
the unique pseudo-Markovian viscosity solution of PPDE (49).

However, in this subsection we shall treat (49) in an alternative way. Note that the
main feature of our new notion is the Markovian structure. Since the x part is already
Markovian, there is no need to introduce an additional path ω̃ and then discretize
it. So we shall discretize ω only and deal with x directly. For notational clarity, we
will use x̄ to denote the variable induced from the discretization of ω. Recall the
notations in (25) and (27) corresponding to the discretization of ω. Analogous to
Definitions 3.5 and 3.7, we define:

Definition 6.2 Let ε > 0. We say u ∈ L
0(� × R

d ′
) is ε-Markovian, denoted as

u ∈ Mε(� × R
d ′

), if there exist deterministic functions vn : Dε
n+1 × R

d ′ → R,
n ≥ 0, satisfying:

(i) (2) holds, namely

u(t, ω, x) =
∞∑

n=0

vn

(
πε

n(ω); t, ωt − ωHε
n(ω), x

)

1{
Hε

n(ω)≤t<Hε
n+1(ω) or Hε

n(ω)<Hε
n+1(ω)=T =t

}.

(50)

(ii) For all πn = (ti , xi)1≤i≤n ∈ ε
n and (t, x̄, x) ∈ ∂Qε

tn
× R

d ′
, the following

compatibility condition holds

vn (πn; t, x̄, x) = vn+1 (πn, (t, x̄); t, 0, x) . (51)
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(iii) Each vn, n ≥ 0, is continuous in Dε
n+1 × R

d ′
.

Definition 6.3 We say u is a pseudo-Markovian PL-viscosity subsolution (resp.
Crandall-Lions viscosity subsolution) of PPDE (49) at (t, ω, x) ∈ [0, T )×�×R

d ′
if

there exist ut,ω,ε ∈ Mε(�
t × R

d ′
) with corresponding {vn, n ≥ 1}, ε > 0, such that

(i) for each πn = (ti , xi)1≤i≤n ∈ 
t,ε
n , vn(πn; ·) is a PL-viscosity subso-

lution (resp. Crandall-Lions viscosity subsolution) to the following PDE: at
(πn, s, x̄, x) ∈ 

t,ε
n × Qε

tn
× R

d ′
,

L
t,ω,πn vn := ∂t vn + 1

2
∂2x̄x̄ vn : Id + sup

α∈U

[
1

2
∂xxu : σ 2 (t, ω ⊗t ωπn , x, α

) + ∂xx̄u : σ
(
t, ω ⊗t ωπn , x, α

)

+∂xub(t, ω ⊗t ωπn , x, α) + f (t, ω ⊗t ωπn , x, u, ∂x̄u, ∂xu, α)

]
= 0.

(52)
where ωπn is the linear interpolation of (t, 0), (ti ,

∑i
j=1 xj )1≤i≤n, (T ,

∑n
j=1 xj ),

(ii) ut,ω,ε ≤ ut,ω on �t × R
d ′
and limε→0 ut,ω,ε(t, 0, x) = u(t, ω, x).

We define a pseudo-Markovian viscosity supersolution similarly , and we call u

a pseudo-Markovian viscosity solution if it is both a pseudo-Markovian viscosity
subsolution and supersolution.

Our main result of this section is:

Theorem 6.4 Let Assumption 6.1 hold and L > 0 be large enough. Then the u0

defined by (47) is the unique pseudo-Markovian viscosity solution (both in PL-sense
and in Crandall-Lions sense) of PPDE (49).

Proof Clearly Assumption 6.1 implies Assumption 3.1, with the state space raised
to (ω, x) due to the involvement of x. Then the comparison principle follows the same
arguments as in Theorem 4.1, which implies the uniqueness immediately. So it suf-
fices to verify that u0 is indeed a pseudo-Markovian viscosity solution. Without loss
of generality, we shall only verify the viscosity property at (0, 0). We note that, due
to the representation (47), we shall construct the functions θε

n in Lemma 5.4 directly,
without referring to Assumption 5.3. We next verify the uniform convergence of the
corresponding uε, and then the existence follows from Theorem 5.5.

Our construction of the functions θε
n is similar to that in Subsection “A bounding

equation”. Fix ε > 0, and let (πn, t, x̄, x) ∈ Dε
n+1 ×R

d ′
. Recall the notations in (39)

and (40), and denote

H0 := tn, Hm := Ht,x̄
m , m ≥ 1, B̂ := Bε,πn,t,x̄ . (53)

We then define

θε
n(πn; t, x̄, x) := sup

α∈U t

Y
πn,t,x̄,x,α
t , (54)
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where (Xπn,t,x̄,x,α, Y πn,t,x̄,x,α, Zπn,t,x̄,x,α) is the solution to the following decoupled
FBSDE on [t, T ]:

Xs = x + ∫ s

t

∞∑
m=0

[
b(r, B̂·∧Hm,Xr , αr )1[Hm,Hm+1)dr + σ

(
r, B̂·∧Hm,Xr , αr

)
1[Hm,Hm+1)dBt

r

] ;

Ys = g(B̂,XT ) + ∫ T

s

∞∑
m=0

f
(
r, B̂·∧Hm,Xr , Yr , Zr , αr

)
1[Hm,Hm+1)dr − ∫ T

s
ZrdBr , P

t
0-a.s.

(55)
While it is not completely trivial, it follows from similar arguments in Lemmas 5.1
and 5.2 that θε

n satisfies all the requirements in Lemma 5.4. We leave the details to
interested readers.

Moreover, as in (50) we denote

uε(t, ω, x) :=
∞∑

n=0

θε
n

(
πε

n(ω); t, ωt − ωHε
n(ω), x

)

1{
Hε

n(ω)≤t<Hε
n+1(ω) or Hε

n(ω)<Hε
n+1(ω)=T =t

}.

(56)

It remains to verify that uε converges to u0 uniformly. Indeed, for any (t, ω, x) and
ε > 0, fix the n such that Hε

n(ω) ≤ t < Hε
n+1(ω). For πn := πε

n(ω), we have

sup
t≤r≤T

‖ω ⊗t Bt −
∞∑

m=0

B̂·∧Hm1[Hm,Hm+1)(r)‖r = sup
m≥0

sup
Hm∨t≤r≤Hm+1

‖ω ⊗t Bt − B̂·∧Hm‖r ≤ ε.

Since, b and σ are uniformly continuous in ω, by standard SDE arguments we have

E
P

t
0

[
‖Xπn,t,x̄,x,α − Xt,ω,x,α‖2T

]
≤ Cρ1(ε),

for some modulus of continuity function ρ1. Moreover, since f and g are uniformly
continuous in (ω, x), by standard BSDE arguments we obtain

E
P

t
0

[
‖Yπn,t,x̄,x,α − Y t,ω,x,α‖2T +

∫ T

t

|Zπn,t,x̄,x,α
r − Zt,ω,x,α

r |2dr

]
≤ Cρ2(ε),

for some modulus of continuity function ρ2. By the arbitrariness of α, this implies
that

|uε(t, ω, x) − u0(t, ω, x)| ≤ Cρ2(ε).

Now by Theorem 5.5 we see that u0 is a pseudo-Markovian viscosity solution of
PPDE (49).
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Path dependent Isaacs equation

In this section, we study the path-dependent Isaacs equation, which is the PPDE (1)
with generator:

G(t, ω, y, z, γ )

:= inf
β∈V sup

α∈U

[
1

2
σσ�(t, ω, α, β) : γ + f (t, ω, y, zσ (t, ω, α, β) , α, β)

]
,

(57)

whereU andV are two measurable sets, and σ and f are F-progressively measurable.
We shall make the following assumption.

Assumption 7.1 (i) σ(t, ω, α, β), f (t, ω, 0, 0, α, β), and ξ are bounded;
(ii) σ is uniformly Lipschitz continuous in ω, and f is uniformly Lipschitz

continuous in (y, z);
(iii) f and ξ are uniformly continuous in ω;
(iv) σ and f are continuous in t .

Under Assumption 7.1, clearly G satisfies Assumption 3.1. Then it follows
from Theorem 4.1 that the path-dependent Isaacs Eq. (1)–(57) has at most one
pseudo-Markovian viscosity solution. We remark that (Pham and Zhang 2014) estab-
lished the comparison principle for viscosity solutions of this PPDE in the sense
of Definition 2.2. However, it followed the approach in (Ekren et al. 2016b) and
requires that: (i) σ is uniformly non-degenerate; (ii) σ does not depend on ω, and
(iii) the dimension d ≤ 2. None of these additional assumptions is needed in this
paper.

The goal of this section is to construct a pseudo-Markovian viscosity solution. It
is well known that Isaacs equation is induced from zero-sum stochastic differential
games. There are three possible formulations for the game problem: (i) control ver-
sus control in strong formulation; (ii) strategy versus control in strong formulation;
and (iii) control versus control in weak formulation. We refer to (Pham and Zhang
2014) for detailed discussions on the three formulations. In particular, under the first
approach the value function does not satisfy the dynamic programming principle and
thus does not provide a representation for the PPDE. As discussed in (Pham and
Zhang 2014), the weak formulation in (iii) has some advantages from practical point
of view. However, when following this approach, it is more difficult to obtain the
desired regularity of the value function. Since our focus here is not the game prob-
lem, but to provide a representation for the solution to the PPDE, we shall use the
strong formulation (ii) which is easier for regularity. This approach was initiated by
(Fleming and Souganidis 1989) for PDEs.

To this end, let U t , V t denote the sets of F
t -measurable U-valued, V-valued

processes, respectively, and Bt the set of adapted strategies λ : V t → U t , here
adaptedness means: for any τ ∈ T t ,

if v1, v2 ∈ V t such that v1s = v2s , t ≤ s ≤ τ, then λ(v1)s = λ(v2)s, t ≤ s ≤ τ.

(58)
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For any (t, ω) ∈ � and (α, β) ∈ U t × V t , consider the following path-dependent
decoupled FBSDEs:

Xs = ωt + ∫ s

t
σ t,ω (r, X·, αr , βr ) dBt

r ,

Ys = ξ t,ω(X·) + ∫ T

s
f t,ω (r, X·, Yr , Zr , αr , βr ) dr − ∫ T

s
ZrdBt

r ,
t ≤ s ≤ T , P

t
0-a.s.

(59)
Under Assumption 7.1, clearly the above FBSDE is wellposed, and we shall denote
its unique solution as (Xt,ω,α,β, Y t,ω,α,β, Zt,ω,α,β). We then define

u0(t, ω) := sup
λ∈Bt

inf
β∈V t

Y
t,ω,λ(β),β
t . (60)

Remark 7.2 In (60), the controls (λ(β), β) do not depend on the variable ω, due
to its strong formulation. Then, given (t, ωi), i = 1, 2, we have

|u0
(
t, ω1

)
− u0

(
t, ω2

)
| ≤ sup

λ∈Bt

sup
β∈V t

|Y t,ω1,λ(β),β
t − Y

t,ω2,λ(β),β
t |, (61)

and thus the regularity of u0 (in ω) follows from standard SDE/BSDE estimates.
Under the weak formulation in (Pham and Zhang 2014), the controls α, β are feed-
back type and thus depend on ω1, ω2. Then we don’t have a simple estimate like (61),
and the regularity of u0 is indeed more difficult to establish.

Our main result of this section is:

Theorem 7.3 Under Assumption 7.1, the u0 defined by (60) is the unique pseudo-
Markovian viscosity solution of PPDE (1)-(57) with terminal condition ξ .

Proof Similar to Theorem 6.4, it suffices to construct the desired functions θε
n and

show that the corresponding process uε converges to u0 uniformly. Again, we will
only verify the viscosity property at (0, 0).

Fix ε > 0, and let (πn, t, x) ∈ Dε
n+1. Recall (32) that ωπn denote the linear inter-

polation of (0, 0), (ti ,
∑i

j=1 xj )1≤i≤n, and (T ,
∑n

j=1 xj ). For any (α, β), to adapt to

the strong formulation, we defineX := Xπn,t,x,α,β and Hm := Hπn,t,x,α,β
m recursively

as follows. First,

X1
s :=

n∑

i=1

xi + x +
∫ s

t

σ
(
r, ωπn, αr , βr

)
dBt

r , t ≤ s ≤ T , P
t
0-a.s.

H1 := inf

{
s ≥ t :

∣∣∣∣∣X
1
s −

n∑

i=1

xi

∣∣∣∣∣ + L1(s − t) ≥ ε − L1(t − tn)

}
∧ T ; (62)

Xs := X1
s , t ≤ s ≤ H1.
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Next, for m ≥ 1,

X̂m := linear interpolation of (0, 0),

⎛

⎝ti ,

i∑

j=1

xj

⎞

⎠

1≤i≤n

,

(
Hi , XHi

)
1≤i≤m

,
(
T , XHm

) ;
Xm+1

s := XHm +
∫ s

Hm

σ
(
r, X̂m, αr , βr

)
dBt

r , Hm ≤ s ≤ T , P
t
0-a.s.

Hm+1 := inf
{
s ≥ Hm :

∣∣∣Xm+1
s − XHm

∣∣∣ + L1(s − Hm) ≥ ε
}

∧ T ;
Xs := Xm+1

s , Hm ≤ s ≤ Hm+1.

(63)

Denote H0 := tn, X̂ := limm→∞ Xm, and let (Y πn,t,x,α,β, Zπn,t,x,α,β) be the unique
solution of the following BSDE:

Ys = ξ(X̂) +
∫ T

s

∞∑

m=0

f
(
r, X̂·∧Hm, Yr , Zr, αr , βr

)

1[Hm,Hm+1)dr −
∫ T

s

ZrdBt
r , P

t
0-a.s.

(64)

We then define

θε
n(πn; t, x) := sup

λ∈Bt

inf
β∈V t

Y
πn,t,x,λ(β),β
t . (65)

In the spirit of (61), combined with standard SDE/BSDE estimates, one may fol-
low the arguments in Lemma 5.2 to show that θε

n ∈ C0
b(Dε

n+1). Moreover, provided
the above regularity and by standard arguments, see e.g. (Fleming and Souganidis
1989), one can prove the dynamic programming principle for θε

n(πn; ·), which leads
to the desired viscosity property immediately. We again leave the details to interested
readers.

Finally we prove the convergence of uε
0 = θε

0 (0, 0) with uniform rate. That is, in
(62) and (63) we shall set n = 0 and (t, x) = (0, 0). Then we have

Xs =
∫ s

0

∞∑

m=0

σ
(
r, X̂·∧Hm, αr , βr

)
1[Hm,Hm+1)(r)dBr, 0 ≤ s ≤ T , P0-a.s. (66)

and, by the construction of the hitting times Hm,

‖X − X̂‖T ≤ ε. (67)

Compare (66) with the SDE of X0,0,α,β in (59), it follows from standard SDE
arguments that

E
P0

[∥∥∥X − X0,0,α,β
∥∥∥
2

T

]
≤ CE

P0
[∥∥X − X̂

∥∥2
T

]
≤ Cε2. (68)
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Moreover, let ρ denote the modulus of continuity function of f and ξ in terms of
ω. Then, compare (64) with the BSDE of Y 0,0,α,β in (59), it follows from standard
BSDE arguments that

E
P0

[∥∥∥Y − Y 0,0,α,β
∥∥∥
2

T

]
≤ CE

P0
[
ρ(

∥∥∥X̂ − X0,0,α,β
∥∥∥

T
)2
]

≤ CE
P0

[
ρ
(∥∥X̂ − X

∥∥
T

+
∥∥∥X − X0,0,α,β

∥∥∥
T

)2]≤ Cρ′(ε)2,
(69)

for a possibly different modulus of continuity function ρ′ which does not depend on
the controls (α, β). This implies that, for the Y corresponding to (α, β) = (λ(β), β),

|uε
0 − u00| ≤ sup

λ∈B0
sup

β∈V0
|Y0 − Y

0,0,λ(β),β

0 | ≤ Cρ′(ε), (70)

which provides the desired convergence of uε
0 and thus completes the proof.

We conclude the section with an application on the zero sum game. Denote byA0

the set of adapted strategies λ : U0 → V0.

Corollary 7.4 Let Assumption 7.1 hold and assume further the following Isaacs
condition:

G(t, ω, y, z, γ ) = G̃(t, ω, y, z, γ )

:= sup
α∈U

inf
β∈V

[
1

2
σ 2(t, ω, α, β) : γ + f (t, ω, y, zσ (t, ω, α, β), α, β)

]
.

(71)
Then the value of the stochastic differential game exists, namely

u00 = ũ00 := inf
λ∈A

sup
α∈U

Y
0,0,α,λ(α)
0 . (72)

Proof Define ũ0(t, ω) in the same spirit as ũ00. Following the same arguments as
in Theorem 7.3, we see that ũ0 is the unique pseudo-Markovian viscosity solution
of the PPDE (1) with generator G̃ and terminal condition ξ . Since G = G̃, by the
uniqueness of the pseudo-Markovian viscosity solution we obtain u0 = ũ0.

Appendix

Proof of Proposition 3.9

We shall only prove the equivalence at (0, 0). The proof for general (t, ω) follows the
same argument. Let ρ denote the modulus of continuity function of G in terms of ω.
Moreover, by the change variable formula in (Ekren et al. 2016a), Proposition 3.14,
we may assume without loss of generality that

G is non-increasing in y. (73)
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We first assume u satisfies the subsolution property stated at Proposition 3.9
at (0, 0). Let uε ∈ Mε(�) be the approximation given by this property, with
corresponding {vn : n ≥ 0}. Denote

ũε(t, ω) := uε(t, ω) − ρ(ε)[T − t],
ṽn (πn; t, x) := vn (πn; t, x) − ρ(ε)[T − t]. (74)

One may straightforwardly check that

ũε ∈ Mε(�) with corresponding ṽn, ũ
ε ≤ u, and limε→0 uε(0, 0) = u(0, 0).

Then it remains to prove that ṽn(πn; ·) is a PL-viscosity subsolution of the PDE (32),
which in this case becomes:

L
πn ṽn(πn; t, x) := ∂t ṽn(πn; t, x) + G

(
s, ωπn, ṽn, ∂x ṽn, ∂̃

2
xxvn

)

= 0, (t, x) ∈ Qε
tn
.

(75)

To see this, we fix (t, x) ∈ Qε
tn
. For any ϕ̃ ∈ ALũε(t, ωπn,(t,x)), namely

ϕ̃ ∈ C1,2(�t ), ϕ̃(t, 0) − ṽn(πn; t, x) = 0

= inf
τ∈T t

EL
t

[
ϕ̃τ∧H − ṽn(πn; τ ∧ H, Bτ∧H)

]
,

where we assume without loss of generality that

H ≤ Hε := inf{s > t : |x + Bt
s | + L1(s − t) ≥ ε} ∧ T .

Now denote ϕ(s, ω) := ϕ̃(s, ω) + ρ(ε)[T − s]. Then obviously ϕ ∈
ALuε(t, ωπn,(t,x)), and thus

∂tϕ(t, 0) + Gt,ωπn,(t,x)
(
t, 0, ϕ, ∂ωϕ, ∂2ωωϕ

)
≥ 0.

Note that
∂tϕ = ∂t ϕ̃ − ρ(ε), ∂ωϕ = ∂ωϕ̃, ∂2ωωϕ = ∂2ωωϕ̃,

and

ϕ(t, 0) = ϕ̃(t, 0) + ρ(ε)T .

Then, by (73) and evaluating ϕ, ϕ̃ and their derivatives at (t, 0), we obtain

∂t ϕ̃ (t, 0) + G
(
t, ωπn, ϕ̃, ∂ωϕ̃, ∂̃2ωωϕ

)

= ∂tϕ(t, 0) + ρ(ε) + G
(
t, ωπn, ϕ − ρ(ε)T , ∂ωϕ, ∂2ωωϕ

)

≥ −G
(
t, ωπn,(t,x), ϕ, ∂ωϕ, ∂2ωωϕ

)
+ ρ(ε) + G

(
t, ωπn, ϕ, ∂ωϕ, ∂2ωωϕ

)

≥ ρ(ε) − ρ
(
‖ωπn − ωπn,(t,x)‖t

)
≥ 0.

This implies that ṽn(πn; ·) is an PL-viscosity subsolution of the PDE (75), and thus
u is a pseudo-Markovian PL-viscosity subsolution at (0, 0).

Similarly, if u is a pseudo-Markovian PL-viscosity subsolution at (0, 0)
with approximation uε ∈ Mε(�) in Definition 3.7, one can show that
u satisfies the property in Proposition 3.9 at (0, 0) with approximation
ũε(t, ω) := uε(t, ω) − ρ(ε)[T − t].
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Proof of Lemma 5.2

Our proof here relies heavily on the regularity results in Lemma 3.2. Notice that the
time regularity (22) requires a shift of canonical process. To facilitate our proof, we
extend the canonical space to � := {ω ∈ C([0, 2T ],Rd) : ω0 = 0}, and still denote
B, F, and PL, etc. in an obvious sense. Given (πn, t, x) ∈ Dε

n+1, define

H1 := inf {s ≥ t : |x + Bs−t | + L1(s − t) ≥ ε − L1(t − tn)} ∧ T ,

Hm+1:= inf
{
s ≥ Hm : |BHm+(T −H1),s+(T −H1)| + L1(s − Hm) ≥ ε

} ∧ T , m ≥ 1;
N := inf{m ≥ 1 : Hm = T }.

(76)
and let Bε· (πn, t, x) be the path which is the linear interpolation of

(ti , Xi)0≤i≤n, (Hm, Xn+m)m≥1 , where t0 := 0;
Xi :=

∑i

j=1
xj , 0 ≤ i ≤ n; Xn+m := Xn + x + BH1−t + BT,T +Hm−H1 , m ≥ 1.

(77)

One can easily show that the function θ
ε

n defined at (41) also satisfies

θ
ε

n(πn; t, x) = sup
b∈L0

L(F)

EL
[
e
∫ T
t brdr ξ(Bε· (πn, t, x))+C0

∫ T

t
e
∫ T
s brdrds

]
, (78)

where br := br−t1[t,H1)(r) + bT +r−H11[H1,T ](r).

Fix (πn, t, x) ∈ Dε
n+1. For arbitrary (π ′

n, t
′, x′) ∈ Dε

n+1, define H
′
m, b

′
, and N ′ in

the obvious way. The advantage of (76)-(78) is the fact that under this representation
one may easily check that,

bt+r = bt ′+r , 0 ≤ r ≤ (H1 − t) ∧ (
H′
1 − t ′

) ;
bH1+r = bH′

1+r , 0 ≤ r ≤ (T − H1) ∧ (T − H′
1);

Bε
H1,H1+r (πn, t, x) = Bε

H′
1,H

′
1+r

(
π ′

n, t
′, x′) , r ≤ (HN−1 − H1) ∧ (

H′
N−1 − H′

1

)
,

Hm+1 − Hm = H′
m+1 − H′

m, 1 ≤ m ≤ N ∧ N ′ − 2;
N ′ ≤ N on {H1 ≤ H′

1}, N ≤ N ′ on {H′
1 ≤ H1}.

(79)
Denote

δ := max
1≤i≤n

[|ti − t ′i | + |xi − x′
i |
] ∨ [|t − t ′| + |x − x′|] , (80)

and for notational simplicity,

H̃1 := H1 − t, H̃
′
1 := H′

1 − t ′, T̃ := T − H1, T̃ ′ := T − H′
1. (81)

Note that H1 = (
t + H0,x,ε−L1(t−tn)

) ∧ T , H′
1 :=

(
t ′ + H0,x′,ε−L1(t ′−t ′n)

)
∧ T . By

Lemma 3.2,

EL [∣∣H1 − H′
1

∣∣] ≤ Cδ, which implies sup
P∈PL

P

(∣∣H1 − H′
1

∣∣ >
√

δ
)

≤ C
√

δ.

(82)
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Now let ρ denote the modulus of continuity of ξ . By (78) we have
∣∣∣θε

n(πn; t, x) − θ
ε

n

(
π ′

n; t ′, x′)
∣∣∣ ≤ C sup

b∈L0
L(F)

[I1(b) + I2(b) + I3] , (83)

where

I1(b) := EL
[∣∣∣e

∫ T
t brdr − e

∫ T
t ′ b

′
r dr

∣∣∣
]
;

I2(b) := EL
[∣∣∣∣
∫ T

t

e
∫ T
s brdrds −

∫ T

t ′
e
∫ T
s b

′
r drds

∣∣∣∣

]
;

I3 := EL [
ρ
(∥∥Bε· (πn, t, x) − B ′ε·

(
π ′

n, t
′, x′)∥∥

T

)]
.

(84)

Recall (80). Note that, by (79) and (82),

I1(b) ≤ CEL
[∣∣∣∣
∫ T

t

brdr −
∫ T

t ′
b

′
rdr

∣∣∣∣

]

= CEL

[∣∣∣∣∣

∫ H̃1

0
bt+rdr −

∫ H̃
′
1

0
b

′
t ′+rdr +

∫ T̃

0
bH1+rdr −

∫ T̃ ′

0
b

′
H′
1+rdr

∣∣∣∣∣

]

≤ CEL
[∣∣∣H̃1 − H̃

′
1

∣∣∣ +
∣∣∣T̃ − T̃ ′

∣∣∣
]

≤ CEL [|t − t ′| + ∣∣H1 − H′
1

∣∣] ≤ Cδ;

I2(b) = EL

[∣∣∣∣∣

∫ H̃1

0
e
∫ T
t+s br drds−

∫ H̃
′
1

0
e
∫ T
t ′+s b

′
r drds+

∫ T̃

0
e

∫ T
H1+s br dr

ds −
∫ T̃ ′

0
e

∫ T

H′
1+s

b
′
r dr

ds

∣∣∣∣∣

]

≤ CEL

[∣∣∣∣∣

∫ H̃1∧H̃′
1

0

[
e
∫ T
t+s br dr − e

∫ T
t ′+s b

′
r dr

]
ds +

∣∣∣H̃1 − H̃
′
1

∣∣∣

+
∫ T̃ ∧T̃ ′

0

[
e

∫ T
H1+s br dr − e

∫ T

H′
1+s

b
′
r dr

]
ds

∣∣∣∣∣ +
∣∣∣T̃ − T̃ ′

∣∣∣

]

≤ Cδ+ CEL

[∫ H̃1∧H̃′
1

0

∣∣∣∣∣

∫ T

t+s

brdr −
∫ T

t ′+s

b
′
rdr|ds +

∫ T̃ ∧T̃ ′

0

∣∣∣∣∣

∫ T

H1+s

brdr −
∫ T

H′
1+s

b
′
rdr|ds

]

≤ Cδ,

where the last estimate follows similar arguments as for I1(b). Then
∣∣∣θε

n(πn; t, x) − θ
ε

n

(
π ′

n; t ′, x′)
∣∣∣ ≤ Cδ + CI3. (85)

The estimate for I3 is more involved. We first consider the case that t > tn. Denote

δ0 := min
1≤i≤n

[ti − ti−1] ∧ [t − tn] > 0, (86)

and let δ1 ≤ 1
2δ0 which will be specified later. Consider δ ≤ δ1, then

min
1≤i≤n

[
t ′i − t ′i−1

] ∧ [
t ′ − t ′n

] ≥ δ1.
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For any m ≥ 1, by Lemma 3.4 we see that

sup
P∈PL

P
(
�c

m

) ≤ Cε

m
,

where �m:={N ≤ m} ∩ {N ′ ≤ m}∩{
sup

0≤s1<s2≤2T

|Bs1,s2 |
(s2 − s1)

1
3

≤ m
} ∩ {‖B‖2T ≤ m},

(87)
and the constant Cε is independent of (πn, t, x) and (π ′

n, t
′, x′). Moreover, by (20)

we have

sup
P∈PL

[
P (Hi+1 − Hi < δ1,Hi+1 < T ) + P

(
H′

i+1 − H′
i < δ1,H

′
i+1 < T

)] ≤ Cεδ1, i ≥ 1.

(88)
This implies

sup
P∈PL

P

⎛

⎝
[

N−2⋃

i=1

{Hi+1 − Hi <δ1} ∩ {N ≤ m}
]
⋃

⎡

⎣
N ′−2⋃

i=1

{H′
i+1 − H′

i <δ1} ∩ {N ′ ≤ m}
⎤

⎦

⎞

⎠

≤ Cεmδ1.

Thus, by (82) and assuming
√

δ ≤ δ1,

sup
P∈PL

P
(
�c

m,δ1

) ≤ Cε

[
1

m
+ mδ1

]
, where

�m,δ1:=�m

⋂
{|H1 − H′

1|≤
√

δ}
⋂

(
N−2⋂

i=1

{Hi+1−Hi ≥ δ1}
)
⋂

⎛

⎝
N ′−2⋂

i=1

{H′
i+1 − H′

i ≥ δ1}
⎞

⎠ .

(89)
Denote τ0 := 0, τi := ti , 1 ≤ i ≤ n, τn+i := Hi , 1 ≤ i ≤ m, and define τ ′

i similarly.
Note that t − tn ≥ δ1, t ′ − t ′n ≥ δ1, and Hi −H′

i = H1 −H′
1, 1 ≤ i < N ∧ N ′, thanks

to the third line of (79). Then, assuming m ≥ ∑n
i=1

[|xi | + |x′
i |
] + |x| + |x′| + n, on

�m,δ1 it holds that

inf
1≤i<n+N

[
τi − τi−1

] ≥ δ1, inf
1≤i<n+N ′

[
τ ′
i − τ ′

i−1

] ≥ δ1, sup
1≤i<n+N∧N ′

|τi − τ ′
i | ≤ √

δ;
sup

1≤i≤N

|Xi | ≤ 2m, sup
1≤i≤N ′

|X′
i | ≤ 2m, sup

1≤i<n+N∧N ′
|Xi − X′

i | ≤ Cmδ
1
6 .

(90)
We now estimate I 3s := |Bε

s (πn, t, x) − Bε
s (π ′

n, t
′, x′)| on the set �m,δ1 . Without

loss of generality we assume
√

δ ≤ δ1
2 , H

′
1 ≤ H1 and thus N ≤ N ′. We estimate I 3s

in several cases.
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Case 1. s ∈ [τi + √
δ, τi+1 − √

δ] for some 0 ≤ i ≤ n + N − 2. Then, noting that
|τj − τ ′

j | ≤ √
δ for j = i, i + 1, we have s ∈ [τ ′

i , τ
′
i+1] and thus

I 3s =
∣∣∣∣∣Xi + s − τi

τi+1 − τi

[
Xi+1 − Xi

] − X′
i − s − τ ′

i

τ ′
i+1 − τ ′

i

[
X′

i+1 − X′
i

]
∣∣∣∣∣

=
∣∣∣∣∣
[
Xi − X′

i

] + s − τ ′
i

τ ′
i+1 − τ ′

i

[
(Xi+1 − Xi) − (

X′
i+1 − X′

i

)]
(91)

+
[[

s − τi

τi+1 − τi

− s − τ ′
i

τi+1 − τi

]
+

[
s − τ ′

i

τi+1 − τi

− s − τ ′
i

τ ′
i+1 − τ ′

i

]]
[Xi+1 − Xi]

∣∣∣∣∣ .

Now by (90) we can easily see that I 3s ≤ Cmδ
1
6 + Cm

δ1

√
δ.

Case 2. |s − τi | ≤ √
δ for some 0 ≤ i < n + N . Then |s − τ ′

i | ≤ 2
√

δ, and

I 3s ≤ ∣∣Bε
s (πn, t, x) − Bε

τi
(πn, t, x)

∣∣ + ∣∣Xi − X′
i

∣∣ +
∣∣∣Bε

τ ′
i

(
π ′

n, t
′, x′) − Bε

s

(
π ′

n, t
′, x′)

∣∣∣ .
(92)

Case 2.1. Assume 0 ≤ i ≤ n. Then (92) and (90) lead to

I 3s ≤ Cm

δ1

[|s − τi | + |s − τ ′
i |
] + Cmδ

1
6 ≤ Cmδ

1
6 + Cm

δ1

√
δ

Case 2.2. Assume n < i < n + N . Note that, when s > τi ,

|Bε
τi ,s

(πn, t, x)|= s − τi

τi+1 − τi

|Xi+1 − Xi |≤ s − τi

τi+1 − τi

m(τi+1 − τi)
1
3 ≤ m(s − τi)

1
3 ≤ mδ

1
6 .

Similarly we have the other related estimates. Then (92) and (90) lead to I 3s ≤ Cmδ
1
6 .

Case 3. s ∈ [τn+N−1 + √
δ, T ] and T − τn+N−1 ≤ δ

1
4 . Then s − τn+N−1 ≤ δ

1
4

and 0 ≤ s − τ ′
n+N−1 ≤ δ

1
4 + √

δ ≤ 2δ
1
4 . When N ′ = N , then of course s ∈

[τ ′
n+N−1, τ

′
n+N ]. When N < N ′, then τ ′

n+N − τ ′
n+N ′−1 ≥ δ1 and thus we still have

s ∈ [τ ′
n+N−1, τ

′
n+N ] whenever 2δ 1

4 ≤ δ1. Following the arguments in Case 2.2, by

(92) and (90) we can easily see that I 3s ≤ Cmδ
1
12 .

Case 4. s ∈ [τn+N−1 + √
δ, T ] and T − τn+N−1 ≥ δ

1
4 . Denote i := n + N − 1

for notational simplicity, then τi+1 = T . Similar to (79), by (76) one can easily see
that τ ′

i+1 − τ ′
i ≥ τi+1 − τi . Then, together with (90) we have

τ ′
i+1 − τ ′

i ≥ T − τi ≥ δ
1
4 , τi+1 − τ ′

i+1

≤ τi − τ ′
i ≤ √

δ, τ ′
i+1 − τ ′

i ≤ T − τi + √
δ.

(93)

Case 4.1. Assume s ∈ [τ ′
i , τ

′
i+1]. Then, by (91), (90), and the first two inequalities

of (93), we have I 3s ≤ Cmδ
1
6 + Cm

δ
1
4

√
δ ≤ Cmδ

1
4 .

Case 4.2. Assume s /∈ [τ ′
i , τ

′
i+1]. In this case, we must have N ′ > N and thus

τ ′
i+1 − τ ′

i ≥ δ1. By the second inequality of (93) we see that T − τ ′
i+1 ≤ √

δ < δ1,
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then we must have N ′ = N + 1 and thus s ∈ [τ ′
i+1, τ

′
i+2]. By (90) and (93) again we

can see that

T − τi ≥ δ1 − √
δ, 0 ≤ s − τ ′

i+1 ≤ T − τ ′
i+1 ≤ √

δ, T − s ≤ T − τ ′
i+1 ≤ √

δ,

Then, recalling the notations in (81),

I 3s =
∣∣∣∣∣Xi + B

T̃ +τi ,T̃ +T
− T − s

T − τi

B
T̃ +τi ,T̃ +T

− X′
i − B

T̃ ′+τ ′
i ,T̃

′+τ ′
i+1

− s − τ ′
i+1

T − τ ′
i+1

B
T̃ ′+τ ′

i+1,T̃
′+T

∣∣∣∣∣

≤ Cmδ
1
6 + T − s

T − τi

|B
T̃ +τi ,T̃ +T

| + |B
T̃ +τi ,T̃ +T

− B
T̃ ′+τ ′

i ,T̃
′+τ ′

i+1
| + Cm|T − τ ′

i+1|
1
3

≤ Cmδ
1
6 + Cm

√
δ

δ1 − √
δ

+ C

[∣∣∣T̃ − T̃ ′
∣∣∣
1
3 + ∣∣τi − τ ′

i

∣∣ 13 + ∣∣T − τ ′
i+1

∣∣ 13
]

≤ Cmδ
1
6 + Cm

√
δ

δ1
.

Combining all the cases together, we have

I 3s ≤ Cmδ
1
12 + Cm

√
δ

δ1
on �m,δ1 ∩ {H′

1 ≤ H1}.

We may get the same estimate on �m,δ1 ∩ {H1 ≤ H′
1}. Plug this and (89) into (85),

we obtain
∣∣∣θε

n(πn; t, x) − θ
ε

n

(
π ′

n; t ′, x′)
∣∣∣ ≤ Cδ + Cε

m
+ Cεmδ1 + Cmδ

1
12 + Cm

√
δ

δ1
.

Set δ1 := 1
m2 ∧ δ0

2 . Then, whenever δ ≤ 1
m48 ,

∣∣∣θε

n(πn; t, x) − θ
ε

n

(
π ′

n; t ′, x′)
∣∣∣ ≤ Cε

m
+ Cεm

3δ
1
12 ≤ Cε

m
.

Since m ≥ 1 is arbitrary, we see that θ
ε

n is continuous at (πn, t, x), in the case that
t > tn.

In the case t = tn and thus x = 0, we modify (86) as

δ0 := min
1≤i≤n

[ti − ti−1] > 0.

Note that, in this case the inequality |x′| ≤ δ holds and one can easily see that (88)
still holds true for i = 0. Following almost the same arguments as in previous case
we may prove that θ

ε

n is continuous at (πn, tn, 0).
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