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Abstract This paper studies the backward-forward linear-quadratic-Gaussian
(LQG) games with major and minor agents (players). The state of major agent fol-
lows a linear backward stochastic differential equation (BSDE) and the states of
minor agents are governed by linear forward stochastic differential equations (SDEs).
The major agent is dominating as its state enters those of minor agents. On the other
hand, all minor agents are individually negligible but their state-average affects the
cost functional of major agent. The mean-field game in such backward-major and
forward-minor setup is formulated to analyze the decentralized strategies. We first
derive the consistency condition via an auxiliary mean-field SDEs and a 3× 2 mixed
backward-forward stochastic differential equation (BFSDE) system. Next, we dis-
cuss the wellposedness of such BFSDE system by virtue of the monotonicity method.
Consequently, we obtain the decentralized strategies for major and minor agents
which are proved to satisfy the ε-Nash equilibrium property.
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Introduction

Recently, the dynamic optimization of (linear) large-population system has attracted
extensive research attentions from academic communities. Its most significant fea-
ture is the existence of numerous insignificant agents, denoted by {Ai}Ni=1, whose
dynamics and (or) cost functionals are coupled via their state-average. To design low-
complexity strategies for large-population system, one efficient method is mean-field
game (MFG) which enables us to derive the decentralized strategies. Interested read-
ers may refer to Lasry and Lions (2007), Guéant et al. (2010) for the motivation and
methodology, and Andersson and Djehiche (2011), Bardi (2012), Bensoussan et al.
(2016), Buckdahn et al. (2009a, 2009b, 2010, 2011), Carmona and Delarue (2013),
Huang et al. (2006, 2007, 2012), Li and Zhang (2008) for recent progress of MFG
theory. Our work is to consider the following large-population system involving a
major agent A0 and minor agents {Ai}Ni=1:

major agent A0 :
{

dx0(t) = [A0x0(t) + B0u0(t) + C0z0(t)] dt + z0(t)dW0(t),

x0(T ) =ξ,

and

minor agent Ai :
⎧⎨
⎩ dxi(t)=

[
Axi(t)+ Bui(t) + Dx(N)(t) + αx0(t)

]
dt+ σdWi(t),

xi(0) =xi0,

where x(N)(t) = 1
N

N∑
i=1

xi(t) is state-average of all minor agents. Moreover, A0 and

{Ai}1≤i≤N can be further coupled via their cost functionals J0, Ji as follows:

J0 =1

2
E

{∫ T

0

[
Q0

(
x0(t) − x(N)(t)

)2 + Q̃x2
0(t) + R0u

2
0(t)

]
dt + H0x

2
0(0)

}
,

Ji =1

2
E

{∫ T

0

[
Q
(
xi(t) − x(N)(t)

)2 + Ru2i (t)

]
dt + Hx2

i (T )

}
.

Formal assumptions on coefficients of states and costs will be given later. As
addressed in (Carmona and Delarue 2013) and (Nourian and Caines 2013), the
standard procedure of MFG (without A0) mainly consists of the following steps:

(Step i) Fix the state-average limit: limN−→+∞ x(N) by a frozen process x̄ and
formulate an auxiliary stochastic control problem for Ai which is parameterized
by x̄.

(Step ii) Solve the above auxiliary stochastic control problem to obtain the decen-
tralized optimal state x̄i (which should depend on the undetermined process x̄, hence
denoted by x̄i (x̄)).

(Step iii) Determine x̄ by the fixed-point argument: limN−→+∞ 1
N

∑N
i=1 x̄i

(x̄) = x̄.
As to the MFG with major-minor agent (A0,Ai ), Step (ii) can be further divided

into:



Probability, Uncertainty and Quantitative Risk  (2016) 1:8 Page 3 of 27

(Step ii-a) First, solve the decentralized control problem forA0 by replacing x(N)

using x̄. The related decentralized optimal state is denoted by x̄0(x̄) and optimal
control by ū0(x̄).

(Step ii-b) Second, given x̄0(x̄) and ū0(x̄) of A0, solve the auxiliary stochastic
control problem for Ai . The related decentralized states x̄i for Ai should depend on
(x̄, x̄0(x̄)), hence denoted by x̄i (x̄, x̄0(x̄)).

(Step iii) is thus revised to fixed-point argument: limN−→+∞ 1
N

∑N
i=1 x̄i

(x̄, x̄0(x̄)) = x̄.

The MFG with major-minor agent has been extensively studied: for exam-
ple, Huang (2010) discussed MFG with a major agent and heterogenous minor
agents parameterized by finite K classes; Nguyen and Huang (2012) further con-
sidered MFG with heterogenous minor agents parameterized by a continuum index
set; Nourian and Caines (2013) studied MFG for nonlinear large population sys-
tem involving major-minor agents; Buckdahn et al. (2014) discussed the MFG
with major-minor agents in weak formulation where the “feedback control against
feedback control” strategies are studied.

The modeling novelty of this paper, is to consider a major-minor agent system with
backward major, namely, the state of A0 satisfies a backward stochastic differential
equation (BSDE):{

dx0(t) = [A0x0(t) + B0u0(t) + C0z0(t)] dt + z0(t)dW0(t).

x0(T ) =ξ.

Unlike forward SDE with given initial condition x0, the terminal condition ξ is
pre-specified in BSDE as a priori and its solution becomes an adapted process pair
(x0, z0). The linear BSDEs were first introduced by Bismut (1978) and the general
nonlinear BSDE was first studied in Pardoux and Peng (1990). The BSDE has been
applied broadly in many fields such as mathematical economics and finance, decision
making and management science. One example is the representation of stochastic
differential recursive utility by a class of BSDE (Duffie and Epstein (1992), El Karoui
et al. (1997), Wang and Wu (2009), etc.). A BSDE coupled with a SDE in their
terminal conditions formulates the forward-backward stochastic differential equation
(FBSDE). The FBSDE has also been well studied and the interested readers may refer
Antonelli (1993), Cvitanić and Ma (1996), Hu and Peng (1995), Ma et al. (1994,
2015), Ma and Yong (1999), Peng and Wu (1999), Wu (2013), Yong (1997, 2010),
Yong and Zhou (1999), Yu (2012) and the references therein for more details of
FBSDEs.

The modeling of major agent by BSDE and minor agents by forward SDE, is
well motivated and can be illustrated by the following example. In a natural resource
exploitation industry, there exist a large number of small exploitation firms {Ai}Ni=1
which are more aggressive in their business activities. Accordingly, their cost func-
tionals are based on forward SDEs with given initial conditions. Here, these initial
conditions can be interpreted as their initial investments or deposits for exploitation
licenses. On the other hand, the major agentA0 acts as some dominating administra-
tion party such as local government or regulation bureau. As the administrator, A0
is more conservative hence its state can be modeled by a linear BSDE for which the



Page 4 of 27 J. Huang et al.

terminal condition is specified. Such terminal condition can be interpreted as a future
target or objective such as tax revenue from exploitation industry, or environmental
protection index related to natural resource.

The modeling of backward-major and forward-minors will yield a large-
population system with backward-forward stochastic differential equation (BFSDE),
which is structurally different to FBSDE in the following aspects. First, the forward
and backward equations will be coupled in their initial instead terminal conditions.
Second, unlike FBSDE, there is no feasible decoupling structure by the standard
Riccati equations, as addressed in Lim and Zhou (2001). This is mainly because some
implicit constraints in initial conditions should be satisfied in the possible decoupling.

The introduction of BFSDE also brings some technical differences to its MFG
studies. First, as addressed in (Step i), the state-average limit of minor agents will
be frozen. Then, by (ii-a), the optimal state of major agent should follow a BFSDE
system. This is because the major state follows some BSDE, thus its adjoint pro-
cess should be a forward SDE. These two equations will be further coupled in their
initial conditions. Therefore, we will get some BFSDE instead the classical FBSDE
from standard forward major-forward minor MFG. Next, as suggested by (ii-b), the
given minor agent will solve some optimal control problem with augmented state:
its own state, state-average limit, optimal state of major agent from (ii-a), which is a
BFSDE. The minor agent’s optimal control should involve some feedback of this aug-
mented state. In this way, the minor’s optimal state will be represented through some
coupled system of its own state, the major’s agent, the state-average limit as well
as one inhomogeneous equation (which is another BSDE because the state-average
limit depends on major’s agent, thus it should be a random process in general). Last,
as specified in (iii), taking summation of all individual minor agents’ states should
reduce to the state-average limit frozen in (i). Consequently, more complicated con-
sistency condition system should be derived in our current backward major-forward
minor setup.

Based on the above step scheme, the related mean-field LQG games for backward-
major and forward-minor system will be proceeded rather differently, comparing
to the standard MFG analysis for forward major-minor systems. In particular, the
decentralized strategies for major and minor agents will be based on a new consis-
tency condition (see our analysis in Section “The limiting optimal control and NCE
equation system”). Accordingly, a stochastic process which relates to state of major
player is introduced here to approximate the state-average. An auxiliary mean-field
SDE and a 3 × 2 FBSDE system are introduced and analyzed. Here, the 3 × 2
FBSDE, which is also called a triple FBSDE, comprises three forward and three
backward equations. Applying the monotonic method in Peng and Wu (1999) and
Yu (2012), we obtain the wellposedness of this FBSDE. In addition, the decoupling
of backward-forward SDE using Riccati equation is also different to that of standard
forward-backwards SDE. The ε-Nash equilibrium property of decentralized control
strategy with ε = O(1/

√
N) is also derived.

The rest of this paper is organized as follows. Section “Preliminaries and prob-
lem formulation” formulates the large population LQG games of backward-forward
systems. In Section “The limiting optimal control and NCE equation system”, the
limiting optimal controls of the track systems and consistency conditions are derived.
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Section “ε-Nash equilibrium analysis” is devoted to the related ε-Nash equilibrium
property. “Conclusion and future work section” serves as a conclusion to our study.

Preliminaries and problem formulation

Throughout this paper, we denote by R
m the m-dimensional Euclidean space. Con-

sider a finite time horizon [0, T ] for a fixed T > 0. Suppose (�,F, {Ft }0≤t≤T , P )

is a complete filtered probability space on which a standard (d + m × N)-
dimensional Brownian motion {W0(t), Wi(t), 1 ≤ i ≤ N}0≤t≤T is defined. We
define Fw0

t := σ {W0(s), 0 ≤ s ≤ t},Fwi
t := σ {Wi(s), 0 ≤ s ≤ t},F i

t :=
σ {W0(s), Wi(s); 0 ≤ s ≤ t}. Here, {Fw0

t }0≤t≤T represents the information of
the major player, while {Fwi

t }0≤t≤T the individual information of ith minor player.
For a given filtration {Gt }0≤t≤T , let L2

Gt
(0, T ;Rm) denote the space of all Gt -

progressively measurable processes with values in R
m satisfying E

∫ T

0 |x(t)|2dt <

+∞; L2(0, T ;Rm) denote the space of all deterministic functions defined on [0, T ]
in R

m satisfying
∫ T

0 |x(t)|2dt < +∞; C(0, T ;Rm) denote the space of all continu-
ous functions defined on [0, T ] in R

m. For simplicity, in what follows we focus on
the 1-dimensional processes, which means d = m = 1.

Consider a large population system with (1 + N) individual agents, denoted by
A0 and {Ai}1≤i≤N, where A0 stands for the major player, while Ai stands for ith

minor player. For sake of illustration, we restate the states of major-minor agents as
follows, and give the necessary assumptions on coefficients. The dynamics of A0 is
given by a BSDE as follows:{

dx0(t) = [A0x0(t) + B0u0(t) + C0z0(t)] dt + z0(t)dW0(t),

x0(T ) =ξ,
(1)

where ξ ∈ Fw0
T satisfies E|ξ |2 < +∞. The state of minor player Ai is a SDE

satisfying⎧⎨
⎩ dxi(t) =

[
Axi(t) + Bui(t) + Dx(N)(t) + αx0(t)

]
dt + σdWi(t),

xi(0) =xi0,
(2)

where x(N)(t) = 1
N

N∑
i=1

xi(t) is the state-average of minor players; xi0 is the initial

value of Ai . Here, A0, B0, C0, A, B, D, α, σ are scalar constants. Assume that Ft is
the augmentation of σ {W0(s), Wi(s), xi0; 0 ≤ s ≤ t, 1 ≤ i ≤ N} by all the P-null
sets of F , which is the full information accessible to the large population system up
to time t. Let Ui, i = 0, 1, 2, . . . , N be subsets of R. The admissible control strategy
u0 ∈ U0, ui ∈ Ui , where

U0 :=
{
u0
∣∣u0(t) ∈ U0, 0 ≤ t ≤ T ; u0(·) ∈ L2

Fw0
t

(0, T ;R)
}

,

and

Ui :=
{
ui

∣∣ui(t) ∈ Ui, 0 ≤ t ≤ T ; ui(·) ∈ L2
Ft

(0, T ;R)
}

, 1 ≤ i ≤ N.
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Let u = (u0, u1, · · · , uN) denote the set of control strategies of all (1+N) agents;
u−0 = (u1, u2, · · · , uN) the control strategies except A0; u−i = (u0, u1, · · · , ui−1,

ui+1, · · · , uN) the control strategies except the ith agent Ai , 1 ≤ i ≤ N . The cost
functional for A0 is given by

J0(u0(·), u−0(·)) =1

2
E

{∫ T

0

[
Q0

(
x0(t) − x(N)(t)

)2 + Q̃x2
0(t) + R0u

2
0(t)

]

dt + H0x
2
0(0)

}
,

(3)

where Q0 ≥ 0, Q̃ ≥ 0, R0 > 0, H0 ≥ 0. The individual cost functional for Ai ,

1 ≤ i ≤ N , is

Ji(ui(·), u−i (·)) =1

2
E

{∫ T

0

[
Q
(
xi(t) − x(N)(t)

)2 + Ru2i (t)

]
dt + Hx2

i (T )

}
,

(4)
where Q ≥ 0, R > 0, H ≥ 0.

Remark 2.1 Unlike (Huang 2010, Nguyen and Huang 2012, Nourian and Caines
2013), the dynamics of the major agent in our work is a BSDE with a terminal con-
dition as a priori. The term H0x

2
0(0) is thus introduced in (3) to represent some

recursive evaluation. One of its practical implications is the initial hedging deposit
in the pension fund industry. For the sake of simplicity, behaviors of the major
agent (e.g., the government, as presented in the example above) affect the state of
minor agents (which can be understood as numerous individual and negligible firms
or producers). Moreover, the major and minor agents are further coupled via the
state-average.

Remark 2.2 The cost functional (3) takes some linear combination weighted by
Q0 and Q̃. Regarding this point, (3) enables us to represent some trade-off between

the absolute quadratic cost x2
0(t) and relative quadratic deviation

(
x0(t) − x(N)(t)

)2
.

This functional combination can be interpreted as some balance between the min-
imization of its own cost and the benchmark index tracking to the minor agents’
average. Moreover, such tracking can be framed into the relative performance set-
ting. Similar work can be found in Espinosa and Touzi (2015), where the relative

performance is formulated by some convex combination λ
(
xi(t) − x(N)(t)

)2+(1−λ)

x2
0(t), λ ∈ [0, 1].

We introduce the following assumption:

(H1) {xi0}Ni=1 are independent and identically distributed (i.i.d) with Exi0 = x,
E|xi0|2 < +∞, and also independent of {W0, Wi, 1 ≤ i ≤ N}.
It follows that (1) admits a unique solution for all u0 ∈ U0, (see Pardoux and Peng

(1990)). It is also well known that under (H1), (2) admits a unique solution for all
ui ∈ Ui , 1 ≤ i ≤ N . Now, we formulate the large population dynamic optimization
problem.
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Problem (I). Find a control strategies set ū = (ū0, ū1, · · · , ūN ) which satisfies

Ji(ūi(·), ū−i (·)) = inf
ui∈Ui

Ji(ui(·), ū−i (·)), 0 ≤ i ≤ N,

where ū−0 represents (ū1, ū2, · · · , ūN ) and ū−i represents (ū0, ū1, · · · , ūi−1,

ūi+1, · · · , ūN ), for 1 ≤ i ≤ N .

The limiting optimal control and NCE equation system

Combining the major’s state with forcing equation (BSDE with null terminal con-
dition), we naturally have the following formulation of limit representation. To
obtain the feedback control and the desired results, we assume Ui = R for
i = 0, 1, 2, . . . , N .

Suppose x(N)(·) is approximated by x̄(·) as N → +∞. Introduce the follow-
ing auxiliary dynamics of major and minor players, still denoted by x0(·), xi(·),
respectively:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx0(t) = [A0x0(t) + B0u0(t) + C0z0(t)] dt + z0(t)dW0(t),

x0(T ) = ξ,

dx̄(t) = [
Ā(t)x̄(t) + B̄(t)x0(t) + C̄(t)k(t)

]
dt,

x̄(0) = x,

dk(t) =
[
Ã(t)k(t) + B̃(t)x̄(t) + C̃(t)x0(t)

]
dt + θ(t)dW0(t),

k(T ) = 0

(5)

and {
dxi(t) = [Axi(t) + Bui(t) + Dx̄(t) + αx0(t)] dt + σdWi(t),

xi(0) =xi0.
(6)

Note that the coefficients (Ā(·), B̄(·), C̄(·), Ã(·), B̃(·), C̃(·)) ∈ L2(0, T ;R6) are
still to be determined. The associated limiting cost functionals become

J̄0(u0(·)) =1

2
E

{∫ T

0

[
Q0 (x0(t) − x̄(t))2 + Q̃x2

0(t) + R0u
2
0(t)

]
dt + H0x

2
0(0)

}
(7)

and

J̄i (ui(·)) =1

2
E

{∫ T

0

[
Q(xi(t) − x̄(t))2 + Ru2i (t)

]
dt + Hx2

i (T )

}
. (8)

Thus, we formulate the limiting LQG game (II) as follows.

Problem (II). For ith agent Ai , i = 0, 1, 2, · · · , N, find ūi ∈ Ui satisfying

J̄i (ūi (·)) = inf
ui∈Ui

J̄i (ui(·)). (9)

ūi satisfying (9) is called an optimal control for (II).
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Remark 3.1 Since x̄(t) is regarded as the approximated process of state average
x(N)(t), we replace x(N)(t) by x̄(t) in Problem (II). In what follows, (II) is called
the limiting problem of (I) as N → +∞. As referred to at the beginning of this
section, we are going to deal with this limiting problem first. Then, we will focus on
the ε−Nash equilibrium between (I) and (II), which is the biggest difference with the
usual Nash equilibrium problem.

Remark 3.2 By noting that each minor player’s state xi(t) in (2) depends on the
major player’s state x0(t) explicitly, we claim that the limiting process x̄(t) also
depends on x0(t) explicitly. In fact, the third process k(t) is also meaningful, which is
a stochastic process introduced in decoupling the Hamilton system. Hereinafter, we
will show it.

Remark 3.3 Since the state-average of minor players appears only in the cost
functional of the major player, the first equation in (5) has the same form as (1),
actually. However, for regularity, we still write it out.

To get the optimal control of Problem (II), we should obtain the optimal control
of A0 first. We have the following lemma.

Lemma 3.1 Corresponding to the forward-backward system (5) and (7), the
optimal control of A0 for (II) is given by

ū0(t) = −B0R
−1
0 p0(t), (10)

where the adjoint process p0(·) and the corresponding optimal trajectory
(x̂0(·), ẑ0(·)) satisfy the following Hamilton system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂0(t) =
[
A0x̂0(t) − B2

0R
−1
0 p0(t) + C0ẑ0(t)

]
dt + ẑ0(t)dW0(t),

dx̄(t) = [
Ā(t)x̄(t) + B̄(t)x̂0(t) + C̄(t)k(t)

]
dt,

dk(t) =
[
Ã(t)k(t) + B̃(t)x̄(t) + C̃(t)x̂0(t)

]
dt + θ(t)dW0(t),

dp0(t) =
[
−A0p0(t) − Q0(x̂0(t) − x̄(t)) − Q̃x̂0(t) − B̄(t)p(t) − C̃(t)q(t)

]
dt

− C0p0(t)dW0(t),

dp(t) =
[
−Ā(t)p(t) + Q0(x̂0(t) − x̄(t)) − B̃(t)q(t)

]
dt + θ̄ (t)dW0(t),

dq(t) =
(
−Ã(t)q(t) − C̄(t)p(t)

)
dt,

x̂0(T ) = ξ, x̄(0) = x, k(T ) = 0, p0(0) = −H0x̂0(0), p(T ) = 0, q(0) = 0,
(11)

where θ(·), θ̄ (·) ∈ L2
Fw0 (0, T ;R).

Proof For the variation of control δu0(·) ∈ L2
Fw0 (0, T ;R), which is an arbitrary

control process such that u0(·) = ū0(·) + δ · δu0(·) ∈ L2
Fw0 (0, T ;R), introduce the

following variational equations:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dδx0(t) = [A0δx0(t) + B0δu0(t) + C0δz0(t)] dt + δz0(t)dW0(t),

dδx̄(t) = [
Ā(t)δx̄(t) + B̄(t)δx0(t) + C̄(t)δk(t)

]
dt,

dδk(t) =
[
Ã(t)δk(t) + B̃(t)δx̄(t) + C̃(t)δx0(t)

]
dt + δθ(t)dW0(t),

δx0(T ) = 0, δx̄(0) = 0, δk(T ) = 0.

(12)

Applying Itô’s formula to p0(t)δx0(t) + p(t)δx̄(t) + q(t)δk(t) and noting the
associated first-order variation of cost functional:

0 = δJ̄0(ū0) := d

dδ
J̄0(ū0 + δ · δu0)|δ=0

=E

{∫ T

0

[
Q0
(
x̂0(t) − x̄(t)

)
(δx0(t) − δx̄(t)) + Q̃x̂0(t)δx0(t) + R0ū0(t)δu0(t)

]

dt + H0x̂0(0)δx0(0)

}
,

we obtain the optimal control (10). Combining all state equations and adjoint
equations, and applying ū0(·) to A0, we get the Hamilton system (11).

After obtaining the optimal control of major playerA0, in what follows we aim to
get the optimal control ūi of minor player Ai , with corresponding optimal trajectory
x̂i (·).

Lemma 3.2 Under (H1), the optimal control of Ai for (II) is

ūi (t) = −BR−1pi(t), (13)

where the adjoint process pi(·) and the corresponding optimal trajectory x̂i (·) satisfy
BSDE{

dpi(t) = [−Api(t) − Q
(
x̂i (t) − x̄(t)

)]
dt + θ0(t)dW0(t) + θi(t)dWi(t),

pi(T ) =Hx̂i(T )
(14)

and SDE⎧⎨
⎩ dx̂i(t) =

[
Ax̂i(t) − B2R−1pi(t) + Dx̄(t) + αx̂0(t)

]
dt + σ(t)dWi(t),

x̂i(0) =xi0.
(15)

Here θ0(·), θi(·) ∈ L2
F i (0, T ;R); x̂0(·), and x̄(·) are given by (11). The proof is

similar to that of Lemma 3.1 and omitted. For the coupled BFSDE (14) and (15),
we are going to decouple it and try to derive the Nash certainty equivalence (NCE)
system satisfied by the decentralized control policy. Then we have the following
lemma.

Lemma 3.3 Suppose P(·) is the unique solution of the following Riccati equation{
Ṗ (t) + 2AP(t) − B2R−1P 2(t) + Q = 0,

P (T ) = H,
(16)
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then we obtain the following Hamilton system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂0(t) =
[
A0x̂0(t) − B2

0R
−1
0 p0(t) + C0ẑ0(t)

]
dt + ẑ0(t)dW0(t),

dx̄(t) =
[(

A + D − B2R−1P(t)
)
x̄(t) − B2R−1k(t) + αx̂0(t)

]
dt,

dk(t) =
[(

−A + B2R−1P(t)
)

k(t) + (Q − DP(t)) x̄(t) − αP (t)x̂0(t)
]

dt + θ0(t)dW0(t),

dp0(t) =
[
−A0p0(t) − Q0(x̂0(t) − x̄(t)) − Q̃x̂0(t) − αp(t) + αP (t)q(t)

]
dt

− C0p0(t)dW0(t),

dp(t) =
[
−
(
A + D − B2R−1P(t)

)
p(t) +Q0(x̂0(t)− x̄(t)) −(Q−DP(t))q(t)

]
dt

+ θ̄ (t)dW0(t),

dq(t) =
[(

A − B2R−1P(t)
)

q(t) + B2R−1p(t)
]
dt,

x̂0(T ) = ξ, x̄(0) = x, k(T ) = 0, p0(0) = −H0x̂0(0), p(T ) = 0, q(0) = 0,
(17)

which is a 3 × 2 FBSDE.

Proof Suppose

pi(t) = Pi(t)x̂i(t) + fi(t), 1 ≤ i ≤ N,

where Pi(·), fi(·) are to be determined. Here, Pi(·) is differentiable and fi(·) is an
Itô process. The terminal condition pi(T ) = Hx̂i(T ) implies that

Pi(T ) = H, fi(T ) = 0.

Applying Itô’s formula to Pi(t)x̂i(t) + fi(t), we have

dpi(t) =
[
Ṗi(t) + APi(t) − B2R−1P 2

i (t)
]
x̂i (t)dt

+
[
DPi(t)x̄(t) − B2R−1Pi(t)fi(t) + αPi(t)x̂0(t)

]
dt

+ dfi(t) + σPi(t)dWi(t).

Comparing the coefficients with (14), we get θi(t) = σPi(t),{
Ṗi(t) + 2APi(t) − B2R−1P 2

i (t) + Q = 0,

Pi(T ) = H
(18)

and⎧⎪⎪⎨
⎪⎪⎩

dfi(t) =
[(

−A + B2R−1Pi(t)
)

fi(t) + (Q − DPi(t)) x̄(t) − αPi(t)x̂0(t)
]
dt

+ θ0(t)dW0(t),

fi(T ) =0.
(19)

Noting that Riccati Eq. (18) is symmetric, it is well known that (18) admits a
unique nonnegative bounded solution Pi(·) (see (Ma and Yong 1999)). Further we get
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that P1(·) = P2(·) = · · · = PN(·) := P(·). Thus, (18) coincides with (16). Besides,
for given x̄(·), x̂0(·) ∈ L2

Fw0 (0, T ;R), the linear BSDE (19) admits a unique solution
fi(·) ∈ L2

Fw0 (0, T ;R). We denote fi(·) := f (·), i = 1, 2, · · · , N.

Therefore, the decentralized feedback strategy for Ai , 1 ≤ i ≤ N is written as

ui(t) = −BR−1 (P (t)xi(t) + f (t)) , (20)

where xi(·) is the state of minor player Ai . Plugging (20) into (2) implies the
centralized closed-loop state:⎧⎨
⎩dxi(t)=

[(
A−B2R−1P(t)

)
xi(t)−B2R−1f(t)+Dx(N)(t) + αx0(t)

]
dt+ σdWi(t),

xi(0) =xi0.

(21)
Taking the summation, dividing by N, and letting N → +∞, we get⎧⎨
⎩ dx̄(t) =

[(
A + D − B2R−1P(t)

)
x̄(t) − B2R−1f (t) + αx0(t)

]
dt,

x̄(0) =x.
(22)

Comparing the coefficients with the second equation of (5), we have

Ā(·) = A + D − B2R−1P(·), B̄(·) = α, C̄(·) = −B2R−1, k(·) = f (·).
Then we obtain⎧⎪⎪⎨
⎪⎪⎩

dk(t) =
[(

−A + B2R−1P(t)
)

k(t) + (Q − DP(t)) x̄(t) − αP (t)x0(t)
]

dt + θ0(t)dW0(t),

k(T ) =0.

Noting the third equation of (5), it follows that

Ã(·) = −A + B2R−1P(·), B̃(·) = Q − DP(·), C̃(·) = −αP (·), θ(·) = θ0(·).
Then (17) is obtained, which completes the proof.

Remark 3.4 The proof of Lemma 3.3 implies that k(·) = f (·). Thus, k(·), which
is first introduced in (5), has some specific meaning that it is indeed a force function
when decoupling (14) and (15).

To get the wellposedness of (17), we give the following assumption.

(H2) B0 �= 0, H0 > 0, Q̃ > 0.

Theorem 3.1 Under (H2), FBSDE (17) is uniquely solvable.

Proof Uniqueness.
It is easily checked that (16) admits a unique nonnegative bounded solution (see

(Ma and Yong 1999)). For the sake of notational convenience, in (17) we denote
by b(φ), σ (φ) the coefficients of drift and diffusion terms, respectively, for φ =
p0, x̄, q; denote by f (ψ) the generator for ψ = x̂0, p, k.
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Define � := (p0, x̄, q, x̂0, p, k, ẑ0, θ̄ , θ0), similar to the notation in (Peng andWu
1999), we denote by

A(t, �) := (−f (x̂0),−f (p), −f (k), b(p0), b(x̄), b(q), σ (p0), σ (x̄), σ (q)
)
,

which implies A(t, �) =
(
A0x̂0 − B2

0R
−1
0 p0 + C0ẑ0, −

(
A + D − B2R−1P(t)

)
p + Q0(x̂0 − x̄) − (Q − DP(t)) q,

(−A + B2R−1P(t)
)
k + (Q − DP(t)) x̄−

αP (t)x̂0, −A0p0 − Q0(x̂0 − x̄) − Q̃x̂0 − αp + αP (t)q,
(
A + D − B2R−1P(t)

)
x̄−

B2R−1k + αx̂0,
(
A − B2R−1P(t)

)
q + B2R−1p, −C0p0, 0, 0

)
.

Then for any �i = (pi
0, x̄

i , qi, x̂i
0, p

i, ki, ẑi
0, θ̄

i , θ i
0), i = 1, 2, we have

〈A(t, �1) − A(t, �2), �1 − �2〉
= − B2

0R
−1
0 (p1

0 − p2
0)

2 − Q0

[
(x̄1 − x̄2) − (x̂1

0 − x̂2
0)
]2 − Q̃(x̂1

0 − x̂2
0)

2

≤ − B2
0R

−1
0 (p1

0 − p2
0)

2 − Q̃(x̂1
0 − x̂2

0)
2

:= − β1(p
1
0 − p2

0)
2 − β2(x̂

1
0 − x̂2

0)
2.

In the following, we are first going to show that (17) admits at most one adapted
solution. Suppose � and �

′ = (p′
0, x̄

′, q ′, x̂′
0, p

′, k′, ẑ′
0, θ̄

′
, θ

′
0) are two solutions of

(17). Setting �̂ = (p̂0, ˆ̄x, q̂, ˆ̂x0, p̂, k̂, ˆ̂z0, ˆ̄θ, θ̂0) = (p0 − p′
0, x̄ − x̄′, q − q ′, x̂0 −

x̂′
0, p − p′, k − k′, ẑ0 − ẑ′

0, θ̄ − θ̄
′
, θ0 − θ

′
0) and applying Itô’s formula to 〈p̂0, ˆ̂x0〉 +

〈 ˆ̄x, p̂〉 + 〈q̂, k̂〉, we have

−E〈p̂0(0), x̂0(0)〉 = E

∫ T

0
〈A(s, �) − A(s, �

′
), �̂〉ds

≤ −β1E

∫ T

0
(p0(s) − p

′
0(s))

2ds − β2E

∫ T

0
(x̂0(s) − x̂

′
0(s))

2ds.

It follows that

β1E

∫ T

0
|p̂0(s)|2ds + β2E

∫ T

0

∣∣ ˆ̂x0(s)∣∣2ds + H0E

∣∣∣x̂0(0)∣∣∣2 ≤ 0.

By (H2), we get β1 > 0 and β2 > 0. Then p̂0(s) ≡ 0, x̂0(s) ≡ 0. Further
ˆ̂z0(s) ≡ 0. Applying the basic technique to ˆ̄x(s) and k̂(s), and using Gronwall’s
inequality, we obtain ˆ̄x(s) ≡ 0, k̂(s) ≡ 0 and θ̂0(s) ≡ 0. Similarly, we have q̂(s) ≡ 0,

p̂(s) ≡ 0, and ˆ̄θ(s) ≡ 0. Therefore, (17) admits at most one adapted solution.
Existence. In order to prove the existence of the solution, we first consider the

following family of FBSDEs parameterized by γ ∈ [0, 1]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp
γ

0 (t) =
[
−(1 − γ )x̂

γ

0 (t)β2 + γ b(p
γ

0 ) + ϕ1
t

]
dt + [

γ σ(p
γ

0 ) + λt

]
dW0(t),

dx̂
γ

0 (t) =
[
−(1 − γ )p

γ

0 (t)β1 − γf (x̂
γ

0 ) + κ1
t

]
dt + ẑ

γ

0 (t)dW0(t),

dx̄γ (t) =
[
γ b(x̄γ ) + ϕ2

t

]
dt,

dpγ (t) =
[
−γf (pγ ) + κ2

t

]
dt + θ̄ γ (t)dW0(t),

dqγ (t) =
[
γ b(qγ ) + ϕ3

t

]
dt,

dkγ (t) =
[
−γf (kγ ) + κ3

t

]
dt + θ

γ

0 (t)dW0(t),

p
γ

0 (0) = −(1 − γ )x̂
γ

0 (0) − γH0x̂
γ

0 (0) + a, x̂
γ

0 (T ) = γ ξ, x̄γ (0)= γ x,pγ (T )= 0,

qγ (0) = 0, kγ (T ) = 0,
(23)

where (ϕ1, ϕ2, ϕ3, λ, κ1, κ2, κ3) ∈ L2
Fw0 (0, T ;R7), a ∈ L2(�,Fw0

0 , P ;R).
Clearly, when γ = 1, the existence of (23) implies that of (17). When γ = 0, it is
easy to obtain that (23) admits a unique solution (actually, the 2-dim FBSDE is very
similar to the Hamiltonian system of (Lim and Zhou 2001)).

If, a priori, for each
(
ϕ1, ϕ2, ϕ3, λ, κ1, κ2, κ3

) ∈ L2
Fw0 (0, T ;R7) and a certain

number γ0 ∈ [0, 1) there exists a unique tuple (p
γ0
0 , x̄γ0, qγ0, x̂

γ0
0 , pγ0 , kγ0 ,

ẑ
γ0
0 , θ̄ γ0 , θ

γ0
0 ) of (23), then for each

us = (
p0(s), x̄(s), q(s), x̂0(s), p(s), k(s), ẑ0(s), θ̄ (s), θ0(s)

) ∈ L2
Fw0

s

(
0, T ;R9

)
,

there exists a unique tupleUs = (P0(s), X̄(s), Q(s), X̂0(s), P (s), K(s), Ẑ0(s), �̄(s),

�0(s)) ∈ L2
Fw0

s

(0, T ;R9) satisfying the following FBSDEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP0(t) =
[
−(1 − γ0)X̂0(t)β2 + γ0b(P0) + δ(x̂0(t)β2 + b(p0)) + ϕ1

t

]
dt

+ [γ0σ(P0) + λt ] dW0(t),

dX̂0(t) =
[
−(1 − γ0)P0(t)β1 − γ0f (X̂0) + δ(p0(t)β1 − f (x̂0)) + κ1

t

]
dt + Ẑ0(t)dW0(t),

dX̄(t) =
[
γ0b(X̄) + δb(x̄) + ϕ2

t

]
dt,

dP (t) =
[
−γ0f (P ) − δf (p) + κ2

t

]
dt + �̄(t)dW0(t),

dQ(t) =
[
γ0b(Q) + δb(q) + ϕ3

t

]
dt,

dK(t) =
[
−γ0f (K) − δf (k) + κ3

t

]
dt + �0(t)dW0(t),

P0(0) = −(1 − γ0)X̂0(0) − γ0H0X̂0(0) + δ(1 − H0)x̂0(0) + a, X̂0(T )

= γ0ξ + δξ,

X̄(0) = γ0x + δx, P (T ) = 0, Q(0) = 0, K(T ) = 0.

(24)
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In the following, we aim to prove that the mapping defined by

Iγ0+δ(u × x̂0(0)) = U × X̂0(0) : L2
Fw0 (0, T ;R9) × L2(�,Fw0

0 , P ) →
L2
Fw0 (0, T ;R9) × L2(�,Fw0

0 , P )

is a contraction.
Introduce u′ = (p′

0, x̄
′, q ′, x̂ ′

0, p
′, k′, ẑ′

0, θ̄
′, θ ′

0) ∈ L2
Fw0 (0, T ;R9), U ′ × X̂′

0(0) =
Iγ0+δ(u

′ × x̂
′
0(0)) and set

û = (p̂0, ˆ̄x, q̂, ˆ̂x0, p̂, k̂, ˆ̂z0, ˆ̄θ, θ̂0)

= (p0 − p
′
0, x̄ − x̄

′
, q − q

′
, x̂0 − x̂

′
0, p − p′, k − k′, ẑ0 − ẑ′

0, θ̄ − θ̄
′
, θ0 − θ

′
0)

Û = (P̂0,
ˆ̄X, Q̂,

ˆ̂
X0, P̂ , K̂,

ˆ̂
Z0,

ˆ̄�, �̂0)

= (P0 − P
′
0, X̄ − X̄′, Q − Q′, X̂0 − X̂

′
0, P − P ′, K − K ′, Ẑ0 − Ẑ

′
0, �̄

− �̄
′
, �0 − �

′
0).

Applying Itô’s formula to 〈P̂0, X̂0〉 + 〈 ˆ̄X, P̂ 〉 + 〈Q̂, K̂〉, we have

(γ0H0 + (1 − γ0))E

∣∣∣ ˆ̂
X0(0)

∣∣∣2 + E

∫ T

0

(
β1
∣∣P̂0(s)

∣∣2 + β2
∣∣ ˆ̂
X0(s)

∣∣2) ds

≤δC1E

∫ T

0

(
|ûs |2 + |Ûs |2

)
ds + δC1E

∣∣∣ ˆ̂x0(0)∣∣∣2.
(25)

On the other hand, since P0 and P ′
0 are solutions of SDEs with Itô’s type, applying

the usual technique, the estimate for the difference P̂0 = P0 − P ′
0 is obtained by

E

∫ T

0
|P̂0(s)|2ds ≤ C1T δE

∫ T

0
|ûs |2ds + C1TE

∣∣∣ ˆ̂
X0(0)

∣∣∣2 + C1T δE

∣∣∣ ˆ̂x0(0)∣∣∣2
+ C1TE

∫ T

0

(
|X̂0(s)|2 + | ˆ̄X(s)|2 + |P̂ (s)|2 + |Q̂(s)|2

)
ds.

(26)

Similarly, estimates for the difference ˆ̄X = X̄ − X̄′ and Q̂ = Q − Q′ are given by

sup
0≤s≤r

E
∣∣ ˆ̄X(s)

∣∣2 ≤ C1δE

∫ r

0
|ûs |2ds + C1E

∫ r

0

(
|K̂(s)|2 + | ˆ̂

X0(s)|2
)

ds (27)

and

sup
0≤s≤r

E
∣∣Q̂(s)

∣∣2 ≤ C1δE

∫ r

0
|ûs |2ds + C1E

∫ r

0

(
|K̂(s)|2 + |P̂ (s)|2

)
ds, (28)

respectively, for ∀0 ≤ r ≤ T . In the same way, for the difference of the solutions

(
ˆ̂
X0,

ˆ̂
Z0) = (X̂0 − X̂

′
0, Ẑ0 − Ẑ

′
0), (P̂ , ˆ̄�) = (P − P ′, �̄ − �̄′) and (K̂, �̂0) =

(K − K ′, �0 − �
′
0), applying the usual technique to the BSDEs, we have

E

∫ T

0

(
| ˆ̂
X0(s)|2 + | ˆ̂

Z0(s)|2
)

ds ≤ C1δE

∫ T

0
|ûs |2ds + C1E

∫ T

0
|P̂0(s)|2ds, (29)
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E

∫ r

0

(
|P̂ (s)|2 + | ˆ̄�(s)|2

)
ds ≤C1δE

∫ r

0
|ûs |2ds

+ C1E

∫ r

0

(
|X̂0(s)|2 + | ˆ̄X(s)|2 + |Q̂(s)|2

)
ds

(30)
and

E

∫ r

0

(
|K̂(s)|2 + |�̂0(s)|2

)
ds ≤C1δE

∫ r

0
|ûs |2ds + C1E

∫ r

0

(
|X̂0(s)|2 + | ˆ̄X(s)|2

)
ds

(31)
for ∀ 0 ≤ r ≤ T . Here the constant C1 depends on the coefficients of (1)–(2),
P(·), β1, β2, and T . γ0H0 + (1 − γ0) ≥ μ, μ = min(1, H0) > 0.

Under (H2), combining (25), (27)–(28), (30)–(31), and applying Gronwall’s
inequality, we obtain

E

∫ T

0
|Ûs |2ds + E

∣∣∣ ˆ̂
X0(0)

∣∣∣2 ≤ C2δ

(
E

∫ T

0
|ûs |2ds + E

∣∣ ˆ̂x0(0)∣∣2
)

,

where C2 depends on C1, μ, and T. Choosing δ0 = 1
2C2

, we get that for each fixed
δ ∈ [0, δ0], the mapping Iγ0+δ is a contraction in the sense that

E

∫ T

0
|Ûs |2ds + E

∣∣∣ ˆ̂
X0(0)

∣∣∣2 ≤ 1

2

(
E

∫ T

0
|ûs |2ds + E

∣∣ ˆ̂x0(0)∣∣2
)

.

Then it follows that there exists a unique fixed point

Uγ0+δ =
(
P

γ0+δ

0 , X̄γ0+δ, Qγ0+δ, X̂
γ0+δ

0 , P γ0+δ, Kγ0+δ, Ẑ
γ0+δ

0 , �̄γ0+δ, �
γ0+δ

0

)
,

which is the solution of (23) for γ = γ0 + δ. Since δ0 depends only on (C1, μ, T ),
we can repeat this process N times with 1 ≤ Nδ0 < 1 + δ0.

Then it follows that, in particular, as γ = 1 corresponding to ϕi
t ≡ 0, λt ≡

0, κi
t ≡ 0, a = 0 (i = 1, 2, 3), (23) admits a unique solution, which implies the

wellposedness of (17) (also (11)). The proof is complete.

Remark 3.5 In what follows, (17) is called the Nash certainty equivalence (NCE)
equation system (see (Huang 2010, Huang et al. 2007, 2012, Huang et al.
2006)). By Theorem 3.1, we know that there exists a unique 9-tuple solution
(p0, x̄, q, x̂0, p, k, ẑ0, θ̄ , θ0) which can be obtained off-line. Thus, it is equivalent
with the fixed-point principle. To the best of our knowledge, this is the first paper to
focus on the well-posedness of coupled FBSDE in large population problems.

ε-Nash equilibrium analysis

In above sections, we obtained the optimal control ūi (·), 0 ≤ i ≤ N of Problem
(II) through the consistency condition system. Now, we turn to verify the ε-Nash
equilibrium of Problem (I). To start, we first present the definition of ε-Nash
equilibrium.
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Definition 4.1 A set of controls uk ∈ Uk, 0 ≤ k ≤ N, for (N +1) agents is called
to satisfy an ε-Nash equilibrium with respect to the costs Jk, 0 ≤ k ≤ N, if there
exists ε ≥ 0 such that for any fixed 0 ≤ i ≤ N , we have

Ji(ui, u−i ) ≤ Ji(u
′
i , u−i ) + ε (32)

when any alternative control u′
i ∈ Ui is applied by Ai .

If ε = 0, then Definition 4.1 is reduced to the usual Nash equilibrium. Now, we
state the main result of this paper and its proof will be given later.

Theorem 4.1 Under (H1)–(H2), (ũ0, ũ1, ũ2, · · · , ũN ) satisfies the ε-Nash equi-
librium of (I). Here, ũ0 is given by

ũ0(t) = −B0R
−1
0 p0(t), (33)

where p0(·) is obtained off-line by (17); while for 1 ≤ i ≤ N, ũi is

ũi (t) = −BR−1P(t)x̃i(t) − BR−1k(t), (34)

where x̃i (·), the state trajectory for Ai , satisfies (21).

The proof of above theorem needs several lemmas which are presented later.
Denote by (x̃0(·), z̃0(·)) the centralized state trajectory; (x̂0(·), ẑ0(·)) the decentral-
ized one. Applying ũ0(·) to A0 and using the notations above, it is easy to know that
(x̃0(·), z̃0(·)) ≡ (x̂0(·), ẑ0(·)). Further, (x̄(·), k(·))x̃0 = (x̄(·), k(·))x̂0 . Hereafter, for
any hj (·) ∈ L2

F (0, T ;R), j = 1, 2, 3; denote by (h1(·), h2(·))h3 the stochastic pro-
cess pair (h1(·), h2(·)) which is determined by h3(·). The cost functionals for (I) and
(II) are given by

J0(ũ0(·), ũ−0(·)) =1

2
E

{∫ T

0

[
Q0

(
x̃0(t) − x̃(N)(t)

)2 + Q̃x̃2
0(t) + R0ũ

2
0(t)

]

dt + H0x̃
2
0(0)

} (35)

and

J̄0(ū0(·)) =1

2
E

{∫ T

0

[
Q0
(
x̂0(t) − x̄(t)x̂0

)2 + Q̃x̂2
0(t) + R0ū

2
0(t)

]
dt + H0x̂

2
0(0)

}
,

(36)
respectively. For Ai , 1 ≤ i ≤ N , we have the following closed-loop system⎧⎪⎪⎨
⎪⎪⎩

dx̃i(t) =
[
(A − B2R−1P(t))x̃i(t) − B2R−1k(t)x̃0 + Dx̃(N)(t) + αx̃0(t)

]
dt + σdWi(t),

x̃i(0) =xi0

(37)
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with the cost functional

Ji(ũi(·), ũ−i (·)) =1

2
E

{∫ T

0

[
Q
(
x̃i (t) − x̃(N)(t)

)2 + Rũ2i (t)

]
dt + Hx̃2

i (T )

}
,

(38)

where x̃(N)(t) = 1
N

N∑
i=1

x̃i (t). The auxiliary system (limiting problem) is given by

⎧⎪⎪⎨
⎪⎪⎩

dx̂i(t) =
[
(A − B2R−1P(t))x̂i(t) − B2R−1k(t)x̂0 + Dx̄(t)x̂0 + αx̂0(t)

]
dt + σdWi(t),

x̂i(0) =xi0

(39)

with the cost functional

J̄i (ūi (·)) =1

2
E

{∫ T

0

[
Q
(
x̂i (t) − x̄(t)x̂0

)2 + Rū2i (t)
]
dt + Hx̂2

i (T )

}
, (40)

where (x̄(t)x̂0 , k(t)x̂0) satisfies (17). We have

Lemma 4.1

sup
0≤t≤T

E

∣∣∣x̃(N)(t) − x̄(t)x̂0

∣∣∣2 = O

(
1

N

)
, (41)

∣∣∣J0(ũ0, ũ−0) − J̄0(ū0)

∣∣∣ = O

(
1√
N

)
. (42)

Proof By (37), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx̃(N)(t) =
[(

A + D − B2R−1P(t)
)

x̃(N)(t) − B2R−1k(t)x̃0 + αx̃0(t)
]

dt + 1

N

N∑
i=1

σdWi(t),

x̃(N)(0) =x
(N)
0 ,

where x
(N)
0 := 1

N

N∑
i=1

xi0. Noting that

E

∣∣∣x(N)
0 − x

∣∣∣2 ∼ E

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

σdWi(s)

∣∣∣∣∣
2

= O

(
1

N

)
,

by (17) and Gronwall’s inequality, we obtain (41).



Page 18 of 27 J. Huang et al.

It is easy to get that sup
0≤t≤T

E
∣∣x̂0(t) − x̄(t)x̂0

∣∣2 < +∞. Applying the Cauchy–

Schwarz inequality, we have

sup
0≤t≤T

E

∣∣∣∣∣x̃0(t) − x̃(N)(t)
∣∣2 − ∣∣x̂0(t) − x̄(t)x̂0

∣∣2∣∣∣
≤ sup

0≤t≤T

E
∣∣x̃0(t) − x̃(N)(t) − x̂0(t) + x̄(t)x̂0

∣∣2
+ 2 sup

0≤t≤T

E

[∣∣x̂0(t) − x̄(t)x̂0

∣∣∣∣x̃0(t) − x̃(N)(t) − x̂0(t) + x̄(t)x̂0

∣∣]

≤ sup
0≤t≤T

E
∣∣x̃0(t) − x̂0(t) −

(
x̃(N)(t) − x̄(t)x̂0

) ∣∣2

+ 2

(
sup

0≤t≤T

E
∣∣x̂0(t) − x̄(t)x̂0

∣∣2)
1
2
(

sup
0≤t≤T

E
∣∣x̃0(t)−x̂0(t)−

(
x̃(N)(t) − x̄(t)x̂0

)∣∣2)
1
2

=O

(
1√
N

)
.

(43)
In addition, by (10) and (33), we have ũ0(·) = û0(·). Thus, (42) is obtained.

For minor agents, we have

Lemma 4.2

sup
1≤i≤N

[
sup

0≤t≤T

E

∣∣∣x̃i (t) − x̂i (t)

∣∣∣2
]

= O
(

1
N

)
, (44)

sup
1≤i≤N

[
sup

0≤t≤T

E

∣∣∣ũi (t) − ūi (t)

∣∣∣2
]

= O
(

1
N

)
, (45)

∣∣∣Ji(ũi , ũ−i ) − J̄i (ūi )

∣∣∣ = O
(

1√
N

)
, 1 ≤ i ≤ N. (46)

Proof For ∀ 1 ≤ i ≤ N, applying Gronwall’s inequality, we get (44) from
(41), (37) and (39). (45) follows from (44) and (34), obviously. Using the same
technique as (43) and noting sup

0≤t≤T

E
∣∣x̂i (t) − x̄(t)x̂0

∣∣2 < +∞, sup
0≤t≤T

E
∣∣ūi (t)

∣∣2 <

+∞, sup
0≤t≤T

E
∣∣x̂i (t)

∣∣2 < +∞, we obtain (46).

Until now, we have studied some estimates of states and costs corresponding to
control ũi and ūi , 0 ≤ i ≤ N . Next, we will focus on the ε-Nash equilibrium for (I).
Consider a perturbed control u0 ∈ U0 for A0 and introduce the dynamics

{
dl0(t) = [A0l0(t) + B0u0(t) + C0q0(t)] dt + q0(t)dW0(t),

x0(T ) =ξ,
(47)
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whereas minor players keep the control ũi , 1 ≤ i ≤ N, i.e.,⎧⎪⎪⎨
⎪⎪⎩

dli(t) =
[
(A − B2R−1P(t))li(t) − B2R−1k(t)l0 + Dl(N)(t) + αl0(t)

]
dt + σdWi(t),

li(0) =xi0,

(48)

where l(N)(t) = 1
N

N∑
k=1

lk(t); k(t)l0 associated with l0 satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dk(t)l0 =
[(

−A + B2R−1P(t)
)

k(t)l0 + (Q − DP(t)) x̄(t)l0 − αP (t)l0(t)
]
dt

+ θ0(t)l0dW0(t),

dx̄(t)l0 =
[(

A + D − B2R−1P(t)
)
x̄(t)l0 − B2R−1k(t)l0 + αl0(t)

]
dt,

k(T )l0 = 0, x̄(0)l0 = x.

(49)
And for any fixed i, 1 ≤ i ≤ N , consider a perturbed control ui ∈ Ui for Ai ,

whereas the major and other minor players keep the control ũj , 0 ≤ j ≤ N, j �= i.

Introduce the dynamics⎧⎨
⎩ dmi(t) =

[
Ami(t) + Bui(t) + Dm(N)(t) + αx̃0(t)

]
dt + σdWi(t),

mi(0) =xi0

(50)

and for 1 ≤ j ≤ N, j �= i,⎧⎪⎪⎨
⎪⎪⎩

dmj (t) =
[
(A − B2R−1P(t))mj (t) − B2R−1k(t)x̃0 + Dm(N)(t) + αx̃0(t)

]
dt + σdWj (t),

mj (0) =xj0,

(51)

where m(N)(t) = 1
N

N∑
k=1

mk(t); k(t)x̃0 satisfies (17) due to x̃0(·) = x̂0(·).
If ũj , 0 ≤ j ≤ N is an ε-Nash equilibrium with respect to cost Jj , it holds that

Jj (ũj , ũ−j ) ≥ inf
uj ∈Uj

Jj (uj , ũ−j ) ≥ Jj (ũj , ũ−j ) − ε.

Then, when making the perturbation, we just need to consider uj ∈ Uj such that
Jj (uj , ũ−j ) ≤ Jj (ũj , ũ−j ), which implies

1

2
E

∫ T

0
Ru2j (t)dt ≤ Jj (uj , ũ−j ) ≤ Jj (ũj , ũ−j ) = J̄j (ūj ) + O

(
1√
N

)
.

In the limiting cost functional J̄j , by the optimality of (x̄j , ūj ), we get that (x̄j , ūj )

is L2-bounded. Then we obtain the boundedness of J̄j (ūj ), i.e.,

E

∫ T

0
u2j (t)dt ≤ C3, 0 ≤ j ≤ N, (52)
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where C3 is a positive constant and independent of N. Then we have the following
proposition.

Proposition 4.1 sup
0≤t≤T

E
∣∣l0(t)∣∣2, sup

1≤k≤N

[
sup

0≤t≤T

E
∣∣lk(t)∣∣2

]
, sup
1≤k≤N

[
sup

0≤t≤T

E
∣∣mk(t)

∣∣2]

are bounded.

Proof By (52), applying the usual technique of BSDE, we get the boundedness of
sup

0≤t≤T

E
∣∣l0(t)∣∣2. It follows from (48) that

E

[
N∑

k=1

|lk(t)|2
]

≤ C4

{
E

[
N∑

k=1
|xk0|2

]
+ E

∫ t

0

[
N∑

k=1
|lk(s)|2 + N |k(s)l0 |2 + N |l0(s)|2

]
ds

+
N∑

k=1
E

∣∣∣∫ t

0σdWk(s)

∣∣∣2} .

From (50) and (51), it holds that

E

[
N∑

k=1

|mk(t)|2
]

≤C5

⎧⎨
⎩E

[
N∑

k=1

|xk0|2
]

+ E

∫ t

0

⎡
⎣ N∑

k=1

|mk(s)|2 + |ui(s)|2 +
N∑

k=1,k �=i

|ũk(s)|2

+N |x̃0(s)|2
]
ds +

N∑
k=1

E

∣∣∣∫ t

0
σdWk(s)

∣∣∣2
}

.

Here, C4 and C5 are both positive constants. Since sup
0≤t≤T

E
∣∣l0(t)∣∣2 is bounded, we

get the boundedness of sup
0≤t≤T

E
∣∣k(t)l0

∣∣2 by (49). It follows from (52) that E|ui(·)|2

is bounded. Besides, the optimal controls ũk(·), k �= i is L2-bounded. Then by
Gronwall’s inequality, it follows that

sup
0≤t≤T

E

[
N∑

k=1

|lk(t)|2
]

∼ sup
0≤t≤T

E

[
N∑

k=1

|mk(t)|2
]

= O(N).

Thus, for any 1 ≤ k ≤ N, sup
0≤t≤T

E|lk(t)|2 and sup
0≤t≤T

E|mk(t)|2 are bounded.

Hence the result.

Correspondingly, the dynamics for agentA0 under control u0 for (II) is as follows{
dl′0(t) = [A0l

′
0(t) + B0u0(t) + C0q

′
0(t)

]
dt + q ′

0(t)dW0(t),

x′
0(T ) =ξ

(53)

and for agent Ai , 1 ≤ i ≤ N ,⎧⎪⎪⎨
⎪⎪⎩

dl̂i(t) =
[
(A − B2R−1P(t))l̂i (t) − B2R−1k(t)l′0 + Dx̄(t)l′0 + αl′0(t)

]
dt + σdWi(t),

l̂i (0) =xi0,

(54)



Probability, Uncertainty and Quantitative Risk  (2016) 1:8 Page 21 of 27

where (k(t)l′0 , x̄(t)l′0) associated with l′0 satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dk(t)l′0 =
[(

−A + B2R−1P(t)
)

k(t)l′0 + (Q − DP(t)) x̄(t)l′0 − αP (t)l′0(t)
]
dt

+ θ0(t)l′0dW0(t),

dx̄(t)l′0 =
[(

A + D − B2R−1P(t)
)

x̄(t)l′0 − B2R−1k(t)l′0 + αl′0(t)
]
dt,

k(T )l′0 = 0, x̄(0)l′0 = x.

(55)
Then we have

Lemma 4.3

sup
0≤t≤T

E

∣∣∣l(N)(t) − x̄(t)l′0

∣∣∣2 = O

(
1

N

)
, (56)

∣∣∣J0(u0, ũ−0) − J̄0(u0)

∣∣∣ = O

(
1√
N

)
. (57)

Proof From (47) and (53), by the existence and uniqueness of BSDE, for the same
perturbed control u0(·), we have (l

′
0, q

′
0) = (l0, q0). Further, noting FBSDE (49) and

(55), we get (k(t)
l
′
0
, x̄(t)l′0) = (k(t)l0 , x̄(t)l0).

It follows from (48) that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dl(N)(t) =
[(

A + D − B2R−1P(t)
)

l(N)(t) − B2R−1k(t)l0 + αl0(t)
]

dt + 1

N

N∑
i=1

σdWi(t),

l(N)(0) =x
(N)
0 .

Noting (55) and

E

∣∣∣x(N)
0 − x0

∣∣∣2 ∼ E

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

σdWi(s)

∣∣∣∣∣
2

= O

(
1

N

)
,

and applying Gronwall’s inequality, we get (56). Using the same technique as
Lemma 4.1 and noting sup

0≤t≤T

E
∣∣l ′0(t) − x̄(t)

l
′
0

∣∣2 < +∞, we obtain (57).

Now, we will focus on the difference of states and cost functionals for the per-
turbed control and optimal control of minor agents. Given the system of Ai under
control ui for (II){

dm′
i (t) = [Am′

i (t) + Bui(t) + Dx̄(t)x̂0 + αx̂0(t)
]
dt + σdWi(t),

m′
i (0) =xi0

(58)
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and for agent Aj , 1 ≤ j ≤ N, j �= i,⎧⎪⎪⎨
⎪⎪⎩

dm̂j (t) =
[
(A − B2R−1P(t))m̂j (t) − B2R−1k(t)x̂0 + Dx̄(t)x̂0 + αx̂0(t)

]
dt + σdWj (t),

m̂j (0) =xj0,

(59)
where (x̄(t)x̂0 , k(t)x̂0) satisfies (17).

In order to give necessary estimates in (I) and (II), we need to introduce some
intermediate states as⎧⎨
⎩ dm̌i(t) =

[
Am̌i(t) + Bui(t) + N − 1

N
Dm̌(N−1)(t) + αx̃0(t)

]
dt + σdWi(t),

m̌i(0) =xi0
(60)

and for 1 ≤ j ≤ N, j �= i,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dm̌j (t) =
[(

A − B2R−1P(t)
)

m̌j (t) − B2R−1k(t)x̃0 + N − 1

N
Dm̌(N−1)(t) + αx̃0(t)

]
dt

+ σdWj (t),

m̌j (0) =xj0,

(61)

where m̌(N−1)(t) = 1
N−1

N∑
j=1,j �=i

m̌j (t).

Define m(N−1)(t) := 1
N−1

N∑
j=1,j �=i

mj (t), x
(N−1)
0 := 1

N−1

N∑
j=1,j �=i

xj0. By (51)

and (61), we get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dm(N−1)(t) =
[(

A − B2R−1P(t)+ N − 1

N
D

)
m(N−1)(t) −B2R−1k(t)x̃0 + αx̃0(t)

+D

N
mi(t)

]
dt + 1

N − 1

N∑
j=1,j �=i

σdWj (t),

m(N−1)(0) =x
(N−1)
0

(62)
and⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dm̌(N−1)(t)=
[(

A −B2R−1P(t) + N − 1

N
D

)
m̌(N−1)(t)−B2R−1k(t)x̃0+ αx̃0(t)

]
dt

+ 1

N − 1

N∑
j=1,j �=i

σdWj (t),

m̌(N−1)(0) =x
(N−1)
0 .

(63)
Then we have the following proposition.
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Proposition 4.2

sup
0≤t≤T

E

∣∣∣m(N−1)(t) − m̌(N−1)(t)

∣∣∣2 = O
(

1
N2

)
, (64)

sup
0≤t≤T

E

∣∣∣m(N)(t) − m(N−1)(t)

∣∣∣2 = O
(

1
N

)
, (65)

sup
0≤t≤T

E

∣∣∣m̌(N−1)(t) − x̄(t)x̂0

∣∣∣2 = O
(

1
N

)
. (66)

Proof From (62)–(63), applying Proposition 4.1 and Gronwall’s inequality, the
assertion (64) holds. (65) follows from (H1) and the L2-boundness of con-
trols ui(·) and ũj (·), j �= i. From (63) and (17), noting (x̄(t)x̃0 , k(t)x̃0 , x̃0) =
(x̄(t)x̂0 , k(t)x̂0 , x̂0), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
(
m̌(N−1)(t) − x̄(t)x̂0

)
=
[
N − 1

N
D
(
m̌(N−1)(t) − x̄(t)x̂0

)
− D

N
x̄(t)x̂0

]
dt

+ 1

N − 1

N∑
j=1,j �=i

σdWj (t),

m̌(N−1)(0) − x̄(0)x̂0 =x
(N−1)
0 − x.

Therefore (66) is obtained.

Based on Proposition 4.2, we obtain more direct estimates to prove Theorem 4.1.

Lemma 4.4 For fixed i, 1 ≤ i ≤ N , we have

sup
0≤t≤T

E

∣∣∣m(N)(t) − x̄(t)x̂0

∣∣∣2 = O
(

1
N

)
, (67)

sup
0≤t≤T

E

∣∣∣mi(t) − m′
i (t)

∣∣∣2 = O
(

1
N

)
, (68)

∣∣∣Ji(ui, ũ−i ) − J̄i (ui)

∣∣∣ = O
(

1√
N

)
. (69)

Proof (67) follows from Proposition 4.2 directly. From (50) and (58), we get (68)
by applying (67). Further, we have

sup
0≤t≤T

E

∣∣∣|mi(t)|2 − |m′
i (t)|2

∣∣∣ = O

(
1√
N

)
.
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In addition,

sup
0≤t≤T

E

∣∣∣∣(mi(t) − m(N)(t)
)2 −

(
m

′
i (t) − x̄(t)x̂0

)2∣∣∣∣
≤ sup

0≤t≤T

E

∣∣∣mi(t) − m
′
i (t) −

(
m(N)(t) − x̄(t)x̂0

) ∣∣∣2

+ 2

(
sup

0≤t≤T

E
∣∣m′

i (t)−x̄(t)x̂0

∣∣2)
1
2
(

sup
0≤t≤T

E
∣∣mi(t)−m

′
i (t)−

(
m(N)(t)−x̄(t)x̂0

) ∣∣2)
1
2

= O

(
1√
N

)
.

Then we have∣∣∣Ji(ui, ũ−i ) − J̄i (ui)

∣∣∣
≤ 1

2
E

∫ T

0
Q

∣∣∣ (mi(t) − m(N)(t)
)2 − (

m′
i (t) − x̄(t)x̂0

)2 ∣∣∣dt

+ 1

2
HE

∣∣∣m2
i (T ) − (

m′
i (T )

)2 ∣∣∣
= O

(
1√
N

)
,

which implies (69).

Proof of Theorem 4.1: Now, we consider the ε-Nash equilibrium for A0 and
Ai , 1 ≤ i ≤ N . Combining (42) and (57), we have

J0(ũ0, ũ−0) = J̄0(ū0) + O

(
1√
N

)

≤ J̄0(u0) + O

(
1√
N

)

= J0(u0, ũ−0) + O

(
1√
N

)
.

It follows from (46) and (69) that

Ji(ũi , ũ−i ) = J̄i (ūi ) + O

(
1√
N

)

≤ J̄i (ui) + O

(
1√
N

)

= Ji(ui, ũ−i ) + O

(
1√
N

)
.

Thus, Theorem 4.1 follows by taking ε = O
(

1√
N

)
.
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Conclusion and future work

In this paper, we have studied the mean-field linear-quadratic (LQ) games with major
and minor agents in a backward-forward setup. The main features of our work are
as follows. Unlike other mean-field game literature: (1) Here, the major and minor
agents are endowed with different objective patterns: the major agent (say, the local
government) aims to fulfill some prescribed future target, thus it is facing a “back-
ward” LQ problem by minimizing the initial endowment. On the other hand, the
minor agents (say, the individual producers or firms) are still facing a family of
“forward” LQ problems, but their state-average is affected by the major agent’s
state. (2) Accordingly, the state dynamics of the major agent satisfies some back-
ward stochastic differential equation (BSDE) while the minor agents are modeled
by some (forward) stochastic differential equations (SDEs). (3) To derive the decen-
tralized strategies, the mean-field game is formulated in the backward-forward and
the major-minor framework. An auxiliary mean-field SDE and a mixed backward-
forward stochastic differential equation (BFSDE) are thus introduced and analyzed.
An essential feature to BFSDE, compared to the forward-backward SDE (FBSDE),
is that there is no feasible decoupling structure via the traditional Riccati equations.
This feature brings some technical difficulties to our analysis and new structure to
our strategies (specifically, the major’s strategy is open-looped, whereas the minors’
are still closed-looped). (4) In contrast to other mean-field games, the consistency
condition is not directly analyzed via fixed-point analysis and contraction mapping.
Instead, it is connected to the well-posedness of the mixed BFSDE system and is
obtained under some weak monotonic conditions. The decentralized strategies are
also verified to satisfy the ε-Nash equilibrium property. For this purpose, some
estimates of BFSDE are applied.

In the future, one possible direction is that state-average appears in the dynamics
of the major player, which may bring lots of trouble to prove the ε-Nash equilib-
rium property. The well-posedness of the corresponding 3× 2 mixed FBSDE system
is also worth research. Another direction is that the dynamics of minor players are
formulated by BSDEs. In this case, the consistent condition analysis may be more
complicated and technical difficulties may arise. Numerical computation and other
applications in finance will also be investigated in future work.
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Huang, M, Caines, P, Malhamé, R: Large-population cost-coupled LQG problems with non-uniform

agents: individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Autom. Control
52, 1560–1571 (2007)
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