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Introduction and problem formulation

Let us formulate the linear quadratic optimal control of conditional (also called
stochastic) McKean-Vlasov equation with random coefficients (LQCMKV in short
form). Consider the controlled stochastic McKean-Vlasov dynamics in R

d given by

dXt = bt

(
Xt,E[Xt |W 0], αt

)
dt + σt

(
Xt,E[Xt |W 0], αt

)
dWt

+ σ 0
t

(
Xt,E[Xt |W 0], αt

)
dW 0

t , 0 ≤ t ≤ T , X0 = ξ0. (1)

Here W, W 0 are two independent one-dimensional Brownian motions on some
probability space (�,F,P),F0 = (F0

t )0≤t≤T is the natural filtration generated by
W 0,F = (Ft )0≤t≤T is the natural filtration generated by (W, W 0), augmented with
an independent σ -algebra G, ξ0 ∈ L2(G;Rd) is a square-integrable G-measurable
random variable with values in R

d ,E[Xt |W 0] denotes the conditional expecta-
tion of Xt given the whole σ -algebra F0

T of W 0, and the control process α is
an F

0-progressively measurable process with values in A equal either to R
m or to

L(Rd ;Rm) the set of Lipschitz functions from R
d into R

m. This distinction of the
control sets will be discussed later in the introduction, but for the moment, one may
interpret roughly the case when A = R

m as the modeling for open-loop control
and the case when A = L(Rd ;Rm) as the modeling for closed-loop control. When
A = R

m, we require that α satisfies the square-integrability conditionL2(�×[0, T ]),
i.e., E

[∫ T

0 |αt |2dt
]

< ∞, and we denote byA the set of control processes. The coef-

ficients bt (x, x̄, a), σt (x, x̄, a), σ 0
t (x, x̄, a), 0 ≤ t ≤ T , are F

0-adapted processes
with values in R

d , for any x, x̄ ∈ R
d , a ∈ A, and of linear form:

bt (x, x̄, a) =
{

b0t + Btx + B̄t x̄ + Cta ifA = R
m

b0t + Btx + B̄t x̄ + Cta(x) ifA = L(Rd ;Rm)

σt (x, x̄, a) =
{

γt + Dtx + D̄t x̄ + Fta ifA = R
m

γt + Dtx + D̄t x̄ + Fta(x) ifA = L(Rd;Rm)

σ 0
t (x, x̄, a) =

{
γ 0
t + D0

t x + D̄0
t x̄ + F 0

t a ifA = R
m

γ 0
t + D0

t x + D̄0
t x̄ + F 0

t a(x) ifA = L(Rd;Rm),

(2)

where b0, γ, γ 0 are F
0-adapted processes vector-valued in R

d , satisfying a square-

integrability condition L2(�×[0, T ]): E
[∫ T

0 |bt |2 + |b0t |2 + |γt |2 + |γ 0
t |2dt

]
< ∞,

B, B̄, D, D̄, D0, D̄0 are essentially bounded F
0-adapted processes matrix-valued in

R
d×d , and C, F, F 0 are essentially bounded F

0-adapted processes matrix-valued in
R

d×m. For any α ∈ A, there exists a unique strong solution X = Xα to (1), which is
F-adapted, and satisfies the square-integrability condition S2(� × [0, T ]):

E

[
sup

0≤t≤T

|Xα
s |2

]
≤ Cα

(
1 + E|ξ0|2

)
< ∞, (3)

for some positive constant Cα depending on α: when A = R
m, Cα depends on α via

E

[∫ T

0 |αt |2dt
]

< ∞, and when A = L
(
R

d ;Rm
)
, Cα depends on α via its Lipschitz

constant.
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The cost functional to be minimized over α ∈ A is:

J (α) = E

[∫ T

0
ft

(
Xα

t ,E
[
Xα

t |W 0
]
, αt

)
dt + g

(
Xα

T ,E
[
Xα

T |W 0
])]

,

→ V0 := inf
α∈A

J (α),

where {ft (x, x̄, a), 0 ≤ t ≤ T }, is an F
0-adapted real-valued process, g(x, x̄) is a

F0
T -measurable random variable, for any x, x̄ ∈ R

d , a ∈ A, of quadratic form:

ft (x, x̄, a) =
{

xᵀQtx + x̄ᵀQ̄t x̄ + M
ᵀ
t x + aᵀNta ifA = R

m

xᵀQtx + x̄ᵀQ̄t x̄ + M
ᵀ
t x + a(x)ᵀNta(x) ifA = L(Rd;Rm)

g(x, x̄) = xᵀPx + x̄ᵀP̄ x̄ + Lᵀx,

(4)

where Q, Q̄ are essentially bounded F
0-adapted processes, with values in S

d the set
of symmetric matrices inRd×d , P, P̄ are essentially boundedF0

T -measurable random
matrices in Sd , N is an essentially bounded F0-adapted process, with values in Sm,M
is an F0-adapted process with values inRd , satisfying a square integrability condition
L2(� × [0, T ]), L is an F0

T -measurable square integrable random vector in R
d , and

ᵀ denotes the transpose of any vector or matrix.
The above control formulation of stochastic McKean-Vlasov equations provides

a unified framework for some important classes of control problems. In particular, it
is motivated in particular by the asymptotic formulation of cooperative equilibrium
for a large population of particles (players) in mean-field interaction under common
noise (see, e.g., (Carmona and Zhu 2016; Carmona et al. 2013)) and also occurs when
the cost functional involves the first and second moment of the (conditional) law
of the state process, for example in (conditional) mean-variance portfolio selection
problem (see, e.g., (Basak and Chabakauri 2010; Borkar and Kumar 2010; Li and
Zhou 2000)). When A = L(Rd ;Rm), this corresponds to the problem of a (represen-
tative) agent, using a control α based on her/his current private state Xt at time t, and
of the information brought by the common noise F0

t , typically the conditional mean
E[Xt |W 0], which represents, in the large population equilibrium interpretation, the
limit of the empirical mean of the state of all the players when their number tend to
infinity from the propagation of chaos. In other words, the control α may be viewed
as a semi closed-loop control, i.e., closed-sloop w.r.t. the state process, and open-loop
w.r.t. the common noise W 0, or alternatively as a F0-progressively measurable ran-
dom field control α = {

αt (x), 0 ≤ t ≤ T , x ∈ R
d
}
. This class of semi closed-loop

control extends the class of closed-loop strategies for the LQ control of McKean-
Vlasov equations (or mean-field stochastic differential equations) without common
noise W 0, as recently studied in (Li et al. 2016) where the controls are chosen at any
time t in linear form w.r.t. the current state value Xt and the deterministic expected
value E[Xt ]. When A = R

m, the LQCMKV problem may be viewed as a special par-
tial observation control problem for a state dynamics like in 1 where the controls are
of open-loop form, and adapted w.r.t. an observation filtration FI = F

0 generated by
some exogenous random factor process I driven by W 0. In the case where σ = 0,
we see that the process X is F0-adapted, hence E[Xt |W 0] = Xt , and the LQCMKV
problem is reduced to the classical LQ control problem (see, e.g., (Yong and Zhou
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1999)) with random coefficients, with open-loop controls for A = R
m or closed-

loop controls for A = L(Rd ;Rm). Note that this distinction between open-loop and
closed-loop strategies for LQ control problems has been recently introduced in (Sun
and Yong 2014) where closed-loop controls are assumed of linear form w.r.t. the cur-
rent state value, while it is considered here a priori only Lipschitz w.r.t. the current
state value.

Optimal control of McKean-Vlasov equation is a rather new topic in the area
of stochastic control and applied probability, and addressed, e.g., in (Andersson
and Djehiche 2010; Bensoussan et al. 2013; Buckdahn et al. 2011; Carmona and
Delarue 2015; Pham and Wei 2015). In this McKean-Vlasov context, the class of lin-
ear quadratic optimal control, which provides a typical case for solvable applications,
has been studied in several papers, among them (Hu et al. 2012; Huang et al. 2015;
Sun 2015; Yong 2013) where the coefficients are assumed to be deterministic. It is
often argued that due to the presence of the law of the state in a nonlinear way (here
for the LQ problem, the square of the expectation), the problem is time-inconsistent
in the sense that an optimal control viewed from today is no more optimal when
viewed from tomorrow, and this would prevent a priori the use of the dynamic pro-
gramming method. To tackle time inconsistency, one then focuses typically on either
pre-commitment strategies, i.e. controls that are optimal for the problem viewed at
the initial time, but may be not optimal at future date, or game-equilibrium strate-
gies, i.e., control decisions considered as a game against all the future decisions the
controller is going to make.

In this paper, we shall focus on the optimal control for the initial value V0 of
the LQCMKV problem with random coefficients, but following the approach devel-
oped in (Pham and Wei 2016), we emphasize that time consistency can be actually
restored for pre-commitment strategies, provided that one considers as state variable
the conditional law of the state process instead of the state itself, therefore making
possible the use of the dynamic programming method. We show that the dynamic
version of the LQCMKV control problem defined by a random field value function,
has a quadratic structure with respect to the conditional law of the state process, lead-
ing to a characterization of the optimal control in terms of a decoupled system of
backward stochastic Riccati equations (BSREs) whose existence and uniqueness are
obtained in connection with a standard LQ control problem. The main ingredient for
such derivation is an Itô’s formula along a flow of conditional measures and a suit-
able notion of differentiability with respect to probability measures. We illustrate our
results with several financial applications. We first revisit the optimal trading and
benchmark tracking problem with price impact for general price and target processes,
and obtain closed-form solutions extending some known results in the literature. We
next solve a variation of the mean-variance portfolio selection problem in an incom-
plete market with random factor. Our last example considers an interbank systemic
risk model with random factor in a common noise environment.

The paper is organized as follows. “Preliminaries” section gives some key pre-
liminaries: we reformulate the LQCMKV problem into a problem involving the
conditional law of the state process as state variable for which a dynamic program-
ming verification theorem is stated and time consistency holds. We also recall the
Itô’s formula along a flow of conditional measures. “Backward stochastic Riccati
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equations” section is devoted to the characterization of the optimal control by means
of a system of BSREs in the case of both a control set A = R

m and A = L(Rd;Rm).
We develop in “Applications” section the applications.

We end this introduction with some notations.
Notations. We denote by P2(R

d) the set probability measures μ on Rd , which are
square integrable, i.e., ‖μ‖2

2
:= ∫

Rd |x|2μ(dx) < ∞. For any μ ∈ P2(R
d), we denote

by L2
μ(Rq) the set of measurable functions ϕ : Rd → R

q , which are square integrable
with respect to μ, by L2

μ⊗μ(Rq) the set of measurable functions ψ : Rd ×R
d → R

q ,
which are square integrable with respect to the product measure μ ⊗ μ, and we set

μ(ϕ) :=
∫

ϕ(x)μ(dx), μ̄ :=
∫

xμ(dx), μ ⊗ μ(ψ) :=
∫

ψ(x, x′)μ(dx)μ(dx′).

We also define L∞
μ (Rq) (resp. L∞

μ⊗μ(Rq)) as the subset of elements ϕ ∈ L2
μ(Rq)

(resp. L2
μ⊗μ(Rq)) which are bounded μ (resp. μ ⊗ μ) a.e., and ‖ϕ‖∞ is their essen-

tial supremum. For any random variable X on (�,F,P), we denote by L(X) its
probability law (or distribution) under P, by L(X|W 0) its conditional law given
F0

T , and we shall assume w.l.o.g. that G is rich enough in the sense that P2(R
d) ={

L(ξ) : ξ ∈ L2(G;Rd)
}
.

Preliminaries

For any α ∈ A, and Xα = (Xα
t )0≤t≤T the solution to (1), we define ρα

t = L(Xα
t |W 0)

as the conditional law of Xα
t given F0

T for 0 ≤ t ≤ T . Since Xα is F-adapted,
and W 0 is a (P,F)-Wiener process, we notice that ρα

t (dx) = P
[
Xα

t ∈ dx|F0
T

]
= P

[
Xα

t ∈ dx|F0
t

]
, and thus

{
ρα

t , 0 ≤ t ≤ T
}
admits an F

0-progressively measur-
able modification (see, e.g., Theorem 2.24 in (Bain and Crisan 2009)), that will be
identified with itself in the sequel, and is valued in P2(R

d) by (3), namely:

E

[
sup

0≤t≤T

‖ρα
t ‖2

2

]
≤ Cα

(
1 + E|ξ0|2

)
. (5)

Moreover, we mention that the process ρα = (ρα
t )0≤t≤T has continuous trajec-

tories as it is valued in P2(C([0, T ];Rd) the set of square integrable probability
measures on the space C([0, T ];Rd) of continuous functions from [0, T ] into Rd .

Now, by the law of iterated conditional expectations, and recalling that α ∈ A is
F
0-progressively measurable, we can rewrite the cost functional as

J (α) = E

[∫ T

0
E

[
ft

(
Xα

t , ρ̄α
t , αt

) ∣∣∣F0
t

]
dt + E

[
g
(
Xα

T , ρ̄α
T

)∣∣F0
T

]]

= E

[∫ T

0
ρα

t

(
ft

(
., ρ̄α

t , αt

))
dt + ρα

T

(
g
(
., ρ̄α

T

))]

= E

[∫ T

0
f̂t

(
ρα

t , αt

)
dt + ĝ

(
ρα

T

)]
, (6)
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where we used in the second equality the fact that {ft (x, x̄, a), x, x̄ ∈ R
d , a ∈ A, 0 ≤

t ≤ T }, is a random field F
0-adapted process, g(x) is F0

T -measurable, and the F
0-

adapted process
{
f̂t (μ, a), 0 ≤ t ≤ T

}
, the F0

T -measurable random variable ĝ(μ),

for μ ∈ P2(R
d), a ∈ A, are defined by
{

f̂t (μ, a) := μ (ft (., μ̄, a)) = ∫
ft (x, μ̄, a)μ(dx)

ĝ(μ) := μ (g(., μ̄)) = ∫
g(x, μ̄)μ(dx).

From the quadratic forms of f, g in (4), the random fields f̂t (μ, a) and
ĝ(μ), (t, μ, a) ∈ [0, T ] × P2(R

d) × A, are given by

f̂t (μ, a) =

⎧⎪⎪⎨
⎪⎪⎩

Var(μ, Qt) + v2(μ, Qt + Q̄t )

+ v1(μ, Mt) + aᵀNta ifA = R
m

Var(μ, Qt) + v2(μ, Qt + Q̄t )

+ v1(μ, Mt) + ∫ [a(x)ᵀNta(x)]μ(dx) ifA = L
(
R

d;Rm
)
,

ĝ(μ) = Var(μ, P ) + v2(μ, P + P̄ ) + v1(μ, L),

(7)

where we define the functions on P2(R
d) × S

d and P2(R
d) × R

d by:

Var(μ, k) :=
∫

(x − μ̄)ᵀk(x − μ̄)μ(dx), μ ∈ P2

(
R

d
)

, k ∈ S
d ,

v2(μ, 
) := μ̄ᵀ
μ̄, μ ∈ P2

(
R

d
)

, 
 ∈ S
d

v1(μ, y) := yᵀμ̄, μ ∈ P2

(
R

d
)

, y ∈ R
d .

We shall make the following assumptions on the coefficients of the model:
(H1) Q, Q + Q̄, P, P + P̄ , N are nonnegative a.s.;

(H2) One of the two following conditions holds:

(i) N is uniformly positive definite i.e. Nt ≥ δIm, 0 ≤ t ≤ T , a.s. for some δ > 0;
(ii) P or Q is uniformly positive definite, and F is uniformly nondegenerate, i.e.

|Ft | ≥ δ, 0 ≤ t ≤ T , a.s., for some δ > 0.

Let us define the dynamic formulation of the stochastic McKean-Vlasov control
problem. For any t ∈ [0, T ], ξ ∈ L2

(
G;Rd

)
, and α ∈ A, there exists a unique strong

solution, denoted by {Xt,ξ,α
s , t ≤ s ≤ T }, to the Eq. 1 starting from ξ at time t,

and by noting that Xt,ξ,α is also unique in law, we see that the conditional law of
X

t,ξ,α
s given F0

T depends on ξ only through its law L(ξ) = L
(
ξ |W 0

)
(recall that G

is independent of W 0). Then, recalling also that G is rich enough, the relation

ρt,μ,α
s := L

(
Xt,ξ,α

s |W 0
)

, t ≤ s ≤ T , μ = L(ξ),

defines for any t ∈ [0, T ], μ ∈ P2(R
d), and α ∈ A, an F

0-progressively measur-

able continuous process (up to a modification)
{
ρ

t,μ,α
s , t ≤ s ≤ T

}
, with values in

P2(R
d), and as a consequence of the pathwise uniqueness of the solution {Xt,ξ,α

s , t ≤
s ≤ T }, we have the flow property for the conditional law (see Lemma 3.1 in (Pham
and Wei 2016) for details):
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ρα
s = ρ

t,ρα
t ,α

s , t ≤ s ≤ T , α ∈ A. (8)

We then consider the conditional cost functional

Jt (μ, α) = E

[∫ T

t

f̂s

(
ρt,μ,α

s , αs

)
ds+ĝ

(
ρ

t,μ,α
T

)∣∣∣F0
t

]
, t ∈[0, T ],μ∈P2(R

d), α∈A,

which is well-defined by (5) and under the boundedness assumptions on the weight-
ing matrices of the quadratic cost function. We next define the F

0-adapted random
field value function

vt (μ) = ess inf
α∈A

Jt (μ, α), t ∈ [0, T ], μ ∈ P2

(
R

d
)

,

so that

V0 := inf
α∈A

J (α) = v0(L(ξ0)), (9)

which may take a priori for the moment the value −∞. We shall see later that the
Assumptions (H1) and (H2) will ensure that V0 is finite and there exists an optimal
control. The dynamic counterpart of (9) is given by

V α
t := ess inf

β∈At (α)
Jt (ρ

α
t , β) = vt (ρ

α
t ), t ∈ [0, T ], α ∈ A, (10)

where At (α) = {β ∈ A : βs = αs, s ≤ t}, and the second equality in (10) follows
from the flow property (8) and the observation that ρβ

t = ρα
t for β ∈ At (α).

By using general results in (El Karoui ) for dynamic programming, one can
show (under the condition that the random field v(μ) is finite) that the process{
vt (ρ

α
t ) + ∫ t

0 f̂s(ρ
α
s , αs)ds, 0 ≤ t ≤ T

}
is a (P,F0)-submartingale, for any α ∈ A,

and α∗ ∈A is an optimal control for V0 if and only if {vt (ρ
α∗
t )+∫ t

0 f̂s(ρ
α∗
s , α∗

s )ds, 0 ≤
t ≤ T } is a (P,F0)-martingale. We shall use a converse result, namely a dynamic
programming verification theorem, which takes the following formulation in our
context.

Lemma 2.1 Suppose that one can find an F
0-adapted random field {wt(μ), 0 ≤

t ≤ T , μ ∈ P2(R
d)} satisfying the quadratic growth condition

|wt(μ)| ≤ C‖μ‖2
2
+ It , μ ∈ P2(R

d), 0 ≤ t ≤ T , a.s. (11)

for some positive constant C, and nonnegative F
0-adapted process I with

E
[
sup0≤t≤T |It |

]
< ∞, such that

(i) wT (μ) = ĝ(μ), μ ∈ P2

(
R

d
)
;

(ii)
{
wt(ρ

α
t ) + ∫ t

0 f̂s

(
ρα

s , αs

)
ds, 0 ≤ t ≤ T

}
is a (P,F0) local submartingale, for

any α ∈ A;

(iii) there exists α̂ ∈ A such that
{
wt(ρ

α̂
t ) + ∫ t

0 f̂s

(
ρα̂

s , α̂s

)
ds, 0 ≤ t ≤ T

}
is a

(P,F0) local martingale.

Then α̂ is an optimal control for V0, i.e. V0 = J (α̂), and

V0 = w0(L(ξ0)).
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Moreover, α̂ is time consistent in the sense that

V α̂
t = Jt

(
ρα̂

t , α̂
)

, ∀0 ≤ t ≤ T .

Proof By the local submartingale property in condition (ii), there exists a nonde-
creasing sequence of F0-stopping times (τn)n, τn ↗ T a.s., such that

E

[
wτn

(
ρα

τn

) +
∫ τn

0
f̂t

(
ρα

t , αt

)
dt

]
≥ w0

(
ρα
0

) = w0(L(ξ0)), ∀α ∈ A (12)

From the quadratic form of f in (4), we easily see that for all n,

E

[∣∣∣∣
∫ τn

0
f̂t

(
ρα

t , αt

)
dt

∣∣∣∣
]

≤ Cα

(
1 + E

[
sup

0≤t≤T

‖ρα
t ‖2

2

])
,

for some positive constant Cα depending on α (when A = R
m, Cα depends on α via

E

[∫ T

0 |αt |2dt
]

< ∞, and when A = L(Rd ;Rm), Cα depends on α via its Lipschitz

constant). Together with the quadratic growth condition of w, and from (5), one can
then apply dominated convergence theorem by sending n to infinity into (12), and get

w0(L(ξ0)) ≤ E

[
wT

(
ρα

T

) +
∫ T

0
f̂t

(
ρα

t , αt

)
dt

]
= E

[
ĝ
(
ρα

T

) +
∫ T

0
f̂t

(
ρα

t , αt

)
dt

]
= J (α)

where we used the terminal condition (i), and the expression (6) of the cost functional.
Since α is arbitrary in A, this shows that w0(L(ξ0)) ≤ V0. The equality is obtained
with the local martingale property for α̂ in condition (iii).

From the flow property (8), and since ρ
β
t = ρα̂

t for β ∈ At (α̂), we notice that the
local submartingale and martingale properties in (ii) and (iii) are formulated on the
interval [t, T ] as:
•

{
ws

(
ρ

t,ρα̂
t ,β

s

)
+ ∫ s

t
f̂u

(
ρ

t,ρα̂
t ,β

u , βu

)
du, t ≤ s ≤ T

}
is a (P,F0) local sub-

martingale, for any β ∈ At (α̂);

•
{
ws

(
ρ

t,ρα̂
t ,α̂

s

)
+ ∫ s

t
f̂u

(
ρ

t,ρα̂
t ,α̂

u , α̂u

)
du, t ≤ s ≤ T

}
is a (P,F0) local martin-

gale.

By the same arguments as for the initial date, this implies that V α̂
t = Jt

(
ρα̂

t , α̂
)

=
wt(ρ

α̂
t ), which means that α̂ is an optimal control over [t, T ], once we start at time t

from the initial state ρα̂
t , i.e., the time consistency of α̂.

The practical application of Lemma 2.1 consists in finding a random field{
wt(μ), μ ∈ P2(R

d), 0 ≤ t ≤ T
}
, smooth (in a sense to be precised), so that one can

apply an Itô’s formula to
{
wt(ρ

α
t ) + ∫ t

0 f̂s

(
ρα

s , αs

)
ds, 0 ≤ t ≤ T

}
, and check that

the finite variation term is nonnegative for any α ∈ A (the local submartingale con-
dition), and equal to zero for some α̂ ∈ A (the local martingale condition). For this
purpose, we need a notion of derivative with respect to a probability measure, and
shall rely on the one introduced by P.L. Lions in his course at Collège de France
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(Lions 2012). We briefly recall the basic definitions and refer to (Cardaliaguet 2012)
for the details, see also (Buckdahn et al. 2014, Chassagneux et al. 2015). This notion
is based on the lifting of functions u defined on P2(R

d) into functions U defined on
L2(G;Rd) by setting U(X) = u(L(X)). We say that u is differentiable (resp. C1) on
P2(R

d) if the lift U is Fréchet differentiable (resp. Fréchet differentiable with con-
tinuous derivatives) on L2(G;Rd). In this case, the Fréchet derivative viewed as an
element DU(X) of L2(G;Rd) by Riesz’s theorem can be represented as

DU(X) = ∂μu(L(X))(X),

for some function ∂μu(L(X)) : Rd → R
d , which is called derivative of u at μ =

L(X). Moreover, ∂μu(μ) ∈ L2
μ(Rd) for μ ∈ P2(R

d) = {
L(X) : X ∈ L2(G;Rd)

}
.

Following (Chassagneux et al. 2015), we say that u is fully C2 if it is C1, the mapping
(μ, x) ∈ P2(R

d) × R
d → ∂μu(μ)(x) is continuous and

(i) for each fixed μ ∈ P2(R
d), the mapping x ∈ R

d → ∂μu(μ)(x) is differentiable
in the standard sense, with a gradient denoted by ∂x∂μu(μ)(x) ∈ R

d×d , and s.t.
the mapping (μ, x) ∈ P2(R

d) × R
d → ∂x∂μu(μ)(x) is continuous;

(ii) for each fixed x ∈ R
d , the mapping μ ∈ P2(R

d) → ∂μu(μ)(x) is differen-
tiable in the above lifted sense. Its derivative, interpreted thus as a mapping
x′ ∈ R

d → ∂μ

[
∂μu(μ)(x)

]
(x′) ∈ R

d×d in L2
μ(Rd×d), is denoted by x′ ∈ R

d

→ ∂2μu(μ)(x, x′), and s.t. the mapping (μ, x, x′) ∈ P2(R
d) × R

d × R
d →

∂2μu(μ)(x, x′) is continuous.

We say that u ∈ C2b(P2(R
d)) if it is fully C2, ∂x∂μu(μ) ∈ L∞

μ (Rd×d), ∂2μu(μ) ∈
L∞

μ⊗μ(Rd×d) for any μ ∈ P2(R
d), and for any compact set K of P2(R

d), we have

sup
μ∈K

[∫

Rd

∣∣∂μu(μ)(x)
∣∣2 μ(dx) + ∥∥∂x∂μu(μ)‖∞+∥∥ ∂2μu(μ)‖∞

]
< ∞.

We next need an Itô’s formula along a flow of conditional measures proved in
(Carmona and Delarue 2014) for processes with common noise. In our context, for
the flow of the conditional law ρα

t , 0 ≤ t ≤ T , α ∈ A, it is formulated as follows. Let
u ∈ C2b(P2(R

d)). Then, for all t ∈ [0, T ], we have

u(ρα
t ) = u(L(ξ0)) +

∫ t

0
ρα

t

(
L

αt
t u(ρα

t )
) + ρα

t ⊗ ρα
t

(
M

αt
t u(ρα

t )
)
dt

+
∫ t

0
ρα

t

(
D

αt
t u(ρα

t )
)
dW 0

t , (13)

where for (t, μ, a) ∈ [0, T ] ×P2(R
d) × A,La

t u(μ),Da
t u(μ) are the F0

t -measurable
random functions in L2

μ(R) defined by

L
a
t u(μ)(x) := bt (x, μ̄, a).∂μu(μ)(x) + 1

2
tr
(
∂x∂μu(μ)(x)

(
σtσ

ᵀ
t + σ 0

t (σ 0
t )ᵀ

)
(x, μ̄, a)

)
,

D
a
t u(μ)(x) := ∂μu(μ)(x)ᵀσ 0

t (x, μ̄, a),

andMa
t u(μ) is the F0

t -measurable random function in L2
μ⊗μ(R) defined by

M
a
t u(μ)(x, x′) := 1

2
tr
(
∂2μu(μ)(x, x′)σ 0

t (x, μ̄, a)(σ 0
t )ᵀ(x′, μ̄, a)

)
.
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The dynamic programming verification result in Lemma 2.1 and Itô’s for-
mula (13) are valid for a general stochastic McKean-Vlasov equation (beyond
the LQ framework), and by combining with an Itô-Kunita type formula for ran-
dom field processes, similar to the one in (Kunita 1982), one could apply it to{
wt(ρ

α
t ) + ∫ t

0 f̂s

(
ρα

s , αs

)
ds, 0 ≤ t ≤ T

}
in order to derive a form of stochastic

Hamilton-Jacobi-Bellman, i.e., a backward stochastic partial differential equation
(BSPDE) for wt(μ), as done in (Peng 1992) for controlled diffusion processes with
random coefficients. We postpone this general approach for further study and, in
the next sections, return to the important special case of LQCMKV problem[s] for
which we show that BSPDE[s] are reduced to backward stochastic Riccati equations
(BSRE) as in the classical LQ framework.

Backward stochastic Riccati equations

We search for an F
0-adapted random field solution to the LQCMKV problem in the

quadratic form

wt(μ) = Var(μ, Kt ) + v2(μ, �t ) + v1(μ, Yt ) + χt , (14)

for some F0-adapted processes (K, �, Y, χ), with values in S
d × S

d × R
d × R, and

in the backward SDE form
⎧⎪⎪⎨
⎪⎪⎩

dKt = K̇tdt + ZK
t dW 0

t , 0 ≤ t ≤ T , KT = P

d�t = �̇tdt + Z�
t dW 0

t , 0 ≤ t ≤ T , �T = P + P̄

dYt = Ẏt dt + ZY
t dW 0

t , 0 ≤ t ≤ T , YT = L

dχt = χ̇t + Z
χ
t dW 0

t , 0 ≤ t ≤ T , χT = 0,

(15)

for some F
0-adapted processes K̇, �̇, ZK, Z� with values in S

d , Ẏ , ZY with val-
ues in R

d , and χ̇ , Zχ with values in R. Notice that the terminal conditions in (15)
ensure by (7) that w in (14) satisfies: wT (μ) = ĝ(μ), and we shall next determine
the generators K̇, �̇, Ẏ , and χ̇ in order to satisfy the local (sub)martingale condi-
tions of Lemma 2.1. Notice that the functions Var, v2, v1 are smooth w.r.t. both their
arguments, and we have

∂μVar(μ, k)(x) = 2k(x − μ̄), ∂x∂μVar(μ, k)(x) = 2k = −∂2μVar(μ, k)(x, x′),
∂kVar(μ, k) = Var(μ) := ∫

(x − μ̄)(x − μ̄)ᵀμ(dx)

∂μv2(μ, 
)(x) = 2
μ̄, ∂x∂μv2(μ, 
)(x) = 0, ∂2μv2(μ, 
)(x, x′) = 2
,
∂
v2(μ, 
) = μ̄μ̄ᵀ

∂μv1(μ, y) = y, ∂x∂μv1(μ, y) = 0 = ∂2μv1(μ, y)(x, x′), ∂yv1(μ, y) = μ̄.

(16)
Let us denote, for any α ∈ A, by Sα the F

0-adapted process equal to Sα
t =

wt(ρ
α
t ) + ∫ t

0 f̂s(ρ
α
s , αs)ds, 0 ≤ t ≤ T , and observe then by Itô’s formula (13) that it

is of the form

dSα
t = Dα

t dt + �α
t dW 0

t ,
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with a drift term Dα
t = Dt

(
ρα

t , αt , Kt , �t , Yt

)
given by

Dt (μ, a, k, 
, y) = f̂t (μ, a) + μ
(
L

a
t Var(μ, k) + L

a
t v2(μ, 
) + L

a
t v1(μ, y)

)

+ μ ⊗ μ
(
M

a
t Var(μ, k) + M

a
t v2(μ, 
) + M

a
t v1(μ, y)

)

+ tr
(
∂kVar(μ, k)ᵀK̇t

) + tr
(
∂
v2(μ, 
)ᵀ�̇t

) + ∂yv1(μ, y)ᵀẎt + χ̇t

+ tr
(
∂kμ

(
D

a
t Var(μ, k)

)ᵀ
ZK

t

)
+ tr

(
∂
μ

(
D

a
t v2(μ, 
)

)ᵀ
Z�

t

)

+ ∂yμ
(
D

a
t v1(μ, 
)

)ᵀ
ZY

t ,

for all t ∈ [0, T ], μ ∈ P2

(
R

d
)
, k, 
 ∈ S

d , y ∈ R
d , a ∈ A. (The second-order deriva-

tives terms w.r.t. k, 
 and y do not appear since the functions v2,Var and v1 are linear,
respectively, in k, 
 and y, respectively). From the derivatives expression of Var, v2
and v1 in (16), we then have

Dt (μ, a, k, 
, y) = f̂t (μ, a) +
∫

bt (x, μ̄, a)ᵀ [2k(x − μ̄) + 2
μ̄ + y]μ(dx)

+
∫ [

σt (x, μ̄, a)ᵀkσt (x, μ̄, a) + σ 0
t (x, μ̄, a)ᵀkσ 0

t (x, μ̄, a)
]
μ(dx)

+
(∫

σ 0
t (x, μ̄, a)μ(dx)

)ᵀ
(
 − k)

(∫
σ 0

t (x, μ̄, a)μ(dx)

)

+ Var(μ, K̇t ) + v2(μ, �̇t ) + v1(μ, Ẏt ) + χ̇t

+
∫

σ 0
t (x, μ̄, a)ᵀ

[
2ZK

t (x − μ̄) + 2Z�
t μ̄ + ZY

t

]
μ(dx).

(17)

We now distinguish between the cases when the control set A is Rm (LQCMKV1)
or L(Rd;Rm) (LQCMKV2).

Control set A = R
m

From the linear form of bt , σt , σ
0
t in (2), and the quadratic form of f̂t in (7), after

some straightforward calculations, we have:

Dt (μ, a, k, 
, y) = Var
(
μ, �t

(
k, ZK

t

)
+ K̇t

)
+ v2

(
μ, �t

(
k, 
, Z�

t

) + �̇t

)

+ v1

(
μ, �t

(
k, 
, Z�

t , y, ZY
t

)
+ Ẏt

)
+ �t

(
k, 
, y, ZY

t

)
+ χ̇t

+ aᵀ�t(k, 
)a +
[
2Uᵀ

t

(
k, 
, Z�

t

)
μ̄ + Rt

(
k, 
, y, ZY

t

)]ᵀ
a

with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t

(
k, ZK

t

) = Qt + B
ᵀ
t k + kBt + D

ᵀ
t kDt + (

D0
t

)ᵀ
kD0

t + (
D0

t

)ᵀ
ZK

t + ZK
t D0

t

�t

(
k, 
, Z�

t

) = Qt + Q̄t +
(
Dt +D̄t

)ᵀ
k
(
Dt + D̄t

) +
(
D0

t + D̄0
t

)ᵀ


(
D0

t + D̄0
t

)

+ (Bt +B̄t )
ᵀ
 + 
(Bt + B̄t )+

(
D0

t +D̄0
t

)ᵀ
Z�

t +Z�
t

(
D0

t + D̄0
t

)

�t

(
k, 
, Z�

t , y, ZY
t

) = Mt +(Bt +B̄t )
ᵀy+2
b0t + 2(Dt + D̄t )

ᵀkγt +2
(
D0

t + D̄0
t

)ᵀ

γ 0

t

+
(
D0

t + D̄0
t

)ᵀ
ZY

t + 2Z�
t γ 0

t

�t

(
k, 
, y, ZY

t

) = yᵀb0t + γ
ᵀ
t kγt + (

γ 0
t

) ᵀ
γ 0
t + (

ZY
t

)ᵀ
γ 0
t

�t (k, 
) = Nt + F
ᵀ
t kFt + (

F 0
t

)ᵀ

F 0

t

Ut

(
k, 
, Z�

t

) = (Dt + D̄t )
ᵀkFt +

(
D0

t + D̄0
t

)ᵀ

F 0

t + 
Ct + Z�
t F 0

t

Rt

(
k, 
, y, ZY

t

) = 2Fᵀ
t kγt + 2

(
F 0

t

)ᵀ

γ 0

t + C
ᵀ
t y + (

F 0
t

)ᵀ
ZY

t .

(18)
Then, after square completion under the condition that �t(k, 
) is positive definite

in S
m, we have

Dt (μ, a, k, 
, y) = Var
(
μ, �t

(
k, ZK

t

)
+ K̇t

)

+ v2

(
μ, �t

(
k, 
, Z�

t

) − Ut

(
k, 
, Z�

t

)
�−1

t (k, 
)U
ᵀ
t

(
k, 
, Z�

t

) + �̇t

)

+ v1

(
μ,�t

(
k, 
, Z�

t , y, ZY
t

)
−Ut

(
k, 
, Z�

t

)
�−1

t (k, 
)Rt

(
k, 
, y, ZY

t

)
+Ẏt

)

+ �t

(
k, 
, y, ZY

t

)
− 1

4
R

ᵀ
t

(
k, 
, y, ZY

t

)
�−1

t (k, 
)Rt

(
k, 
, y, ZY

t

)
+ χ̇t

+ (
a − ât (μ̄, k, 
, y)

)ᵀ
�t (k, 
)

(
a − ât (μ̄, k, 
, y)

)
,

where

ât (μ̄, k, 
, y) = −�−1
t (k, 
)

[
U

ᵀ
t

(
k, 
, Z�

t

)
μ̄ + 1

2
Rt

(
k, 
, y, ZY

t

)]
.

Therefore, whenever

K̇t + �t

(
Kt, Z

K
t

)
= 0,

�̇t + �t

(
Kt, �t , Z

�
t

) − Ut

(
Kt, �t , Z

�
t

)
�−1

t (Kt , �t )U
ᵀ
t

(
Kt, �t , Z

�
t

) = 0,

Ẏt + �t

(
Kt, �t , Z

�
t , Ys, Z

Y
t

)
− Ut

(
Kt, �t , Z

�
t

)
�−1

t (Kt , �t )Rt

(
Kt, �t , Yt , Z

Y
t

)
= 0,

χ̇t +�t

(
Kt, �t , Yt , Z

Y
t

)
− 1

4
R

ᵀ
t

(
Kt , �t , Yt , Z

Y
t

)
�−1

t (Kt , �t , Yt ) Rt

(
Kt, �t , Yt , Z

Y
t

)
= 0,

holds for all 0 ≤ t ≤ T , we have

Dα
t = Dt (ρ

α
t , αt , Kt , �t , Yt ) (19)

= (
αt − ât

(
ρ̄α

t , Kt , �t , Yt

))ᵀ
�t(Kt , �t )

(
αt − ât

(
ρ̄α

t , Kt , �t , Yt

))
,

which implies that Dα
t ≥ 0, 0 ≤ t ≤ T , for all α ∈ A, i.e. Sα

t = wt(ρ
α
t ) +∫ t

0 f̂s(ρ
α
s , αs)ds, 0 ≤ t ≤ T satisfies the

(
P,F0

)
-local submartingale property for all

α ∈ A. We are then led to consider the system of BSDEs:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dKt = −�t

(
Kt, Z

K
t

)
dt + ZK

t dW 0
t , 0 ≤ t ≤ T , KT = P

d�t = −
[
�t(Kt , �t , Z

�
t ) − Ut

(
Kt, �t , Z

�
t

)
�−1

t (Kt , �t )U
ᵀ
t

(
Kt, �t , Z

�
t

)]
dt

+ Z�
t dW 0

t , 0 ≤ t ≤ T , �T = P + P̄

dYt = −
[
�t

(
Kt, �t , Z

�
t , Yt , Z

Y
t

)−Ut

(
Kt, �t , Z

�
t

)
�−1

t (Kt , �t )Rt

(
Kt, �t , Yt , Z

Y
t

)]
dt

+ ZY
t dW 0

t , 0 ≤ t ≤ T , YT = L,

dχt = −
[
�t

(
Kt, �t , Yt , Z

Y
t

)− 1
4R

ᵀ
t

(
Kt, �t , Yt , Z

Y
t

)
�−1

t (Kt , �t )Rt

(
Kt , �t , Yt , Z

Y
t

)]
dt

+ Z
χ
t dW 0

t , 0 ≤ t ≤ T , χT = 0.
(20)

Definition 3.1 A solution to the system of BSDE (20) is a quadruple of pair
(K, ZK), (�, Z�), (Y, ZY ), (χ, Zχ) of F0-adapted processes, with values, respec-
tively, in S

d × S
d , Sd × S

d ,Rd × R
d ,R × R, respectively, such that

∫ T

0 |ZK
t |2 +

|Z�
t |2 + |ZY

t |2 + |Zχ
t |2dt < ∞ a.s., the matrix process �(K, �) with values in S

m

is positive definite a.s., and the following relation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kt = P + ∫ T

t
�s(Ks, Z

K
s )ds − ∫ T

t
ZK

s dW 0
s ,

�t = P + P̄ + ∫ T

t
�s(Ks, �s, Z

�
s ) + Us

(
Ks, �s, Z

�
s

)
�−1

s (Ks, �s)U
ᵀ
s

(
Ks, �s, Z

�
s

)
ds

− ∫ T

t
Z�

s dW 0
s ,

Yt = L+∫ T

t
�s

(
Ks, �s, Z

�
s , Ys, Z

Y
s

)−Us

(
Ks, �s, Z

�
s

)
�−1

s (Ks, �s)Rs

(
Ks,�s,Ys,Z

Y
s

)
ds

− ∫ T

t
ZY

s dW 0
s ,

χt = ∫ T

t
�s(Ks, �s, Ys, Z

Y
s ) − 1

4R
ᵀ
s

(
Ks, �s, Ys, Z

Y
s

)
�−1

s (Ks, �s)Rs

(
Ks, �s, Ys, Z

Y
s

)
ds

− ∫ T

t
Z

χ
s dW 0

s ,

is satisfied for all t ∈ [0, T ].

The following verification result makes the connection between the system (20)
and the LQCMKV1 control problem.

Proposition 3.1 Assume that
(
K, ZK

)
,
(
�, Z�

)
,
(
Y, ZY

)
, (χ, Zχ) is a solution

to BSDE (20) such thatK, �, �−1(K, �) are essentially bounded,Z� lies inL2(�×
[0, T ]), i.e., E

[∫ T

0 |Z�
t |2dt

]
< ∞, Y lies in S2(� × [0, T ]), i.e. E [| sup0≤t≤T |Yt |2

]

< ∞, and χ lies in S1(� × [0, T ]), i.e. E [| sup0≤t≤T |χt |
]

< ∞ Then, the control
process

α∗
t = ât

(
E

[
X∗

t |W 0
]
, Kt , �t , Yt

)
(21)

= −�−1
t (Kt , �t )

[
U

ᵀ
t

(
Kt, �t , Z

�
t

)
E

[
X∗

t |W 0
]
+ 1

2
Rt

(
Kt, �t , Yt , Z

Y
t

)]
, 0≤ t ≤T ,

where X∗ = Xα∗
is the state process with the feedback control ât (., Kt , �t , Yt ), is an

optimal control for the LQCMKV1 problem, i.e., V0 = J (α∗), and we have
V0 = Var(L(ξ0), K0) + v2(L(ξ0), �0) + v1(L(ξ0), Y0) + χ0.

Proof Consider (K, ZK), (�, Z�), (Y, ZY ), (χ, Zχ) a solution to the BSDE (20),
and w as of the quadratic form (14). First, notice that w satisfies the quadratic
growth (11) since K, � are essentially bounded, and (Y, χ) ∈ S2(� × [0, T ]) ×
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S1(� × [0, T ]). Moreover, we have the terminal condition wT (μ) = ĝ. Next, by
construction, the process Dα

t = Dt (ρ
α
t , αt , Kt , �t , Yt ), 0 ≤ t ≤ T , is nonnegative,

which means that Sα
t = wt(ρ

α
t ) + ∫ t

0 f̂s(ρ
α
s , αs)ds, 0 ≤ t ≤ T , is a (P,F0)-local

submartingale. Moreover, by choosing the control α∗ in the form (21), we notice
that X∗, the solution to a linear stochastic McKean-Vlasov dynamics, satisfies the
square integrability condition: E[sup0≤t≤T |X∗

t |2] < ∞, thus E[∫ T

0 |α∗
t |2dt] < ∞,

since U(K, �, Z�) inherits from Z� the square integrability condition L2(� ×
[0, T ]), �−1(K, �) is essentially bounded, and so α∗ ∈ A. Finally, from (19) we
see that Dα∗ = 0, which gives the (P,F0)-local martingale property of Sα∗

, and we
conclude by the dynamic programming verification Lemma 2.1.

Let us now show, under assumptions (H1) and (H2), the existence of a solution
to the BSDE (20) satisfying the integrability conditions of Proposition 3.1. We point
out that this system is decoupled:

(i) One first considers the BSDE for (K, ZK) whose generator (k, z) ∈ S
d × S

d

→ �t(k, z) ∈ S
d is linear, with essentially bounded coefficients. Since the

terminal condition P is also essentially bounded, it is known by standard results
for linear BSDEs that there exists a unique solution

(
K, ZK

)
with values in

S
d ×S

d , s.t. K is essentially bounded and ZK lies in L2(�×[0, T ]). Moreover,
since P and �t(0, 0) = Qt are nonnegative under (H1), we also obtain by
standard comparison principle for BSDE that Kt is nonnegative, for all 0 ≤
t ≤ T .

(ii) Given K, we next consider the BSDE for
(
�, Z�

)
with generator: (
, z) ∈

S
d × S

d → �t(Kt , 
, z) − Ut(Kt , 
, z)�
−1
t (Kt , 
)U

ᵀ
t (Kt , 
, z) ∈ S

d , and ter-
minal condition P +P̄ . This is a backward stochastic Riccati equation (BSRE),
and it is well-known (see, e.g., (Bismut 1976)) that it is associated with a
stochastic standard LQ control problem (without McKean-Vlasov dependence)
with controlled linear dynamics:

dX̃t =
[
(Bt + B̄t )X̃t + Ctαt

]
dt +

[(
D0

t + D̄0
t

)
X̃t + F 0

t αt

]
dW 0

t ,

and quadratic cost functional

J̃ K(α) = E

[∫ T

0

(
X̃

ᵀ
t Q

K
t X̃t +α

ᵀ
t N

K
t αt +2X̃ᵀ

t M
K
t αt

)
dt + X̃

ᵀ
T (P +P̄ )X̃T

]
,

where QK
t = Qt + Q̄t + (Dt + D̄t )

ᵀKt(Dt + D̄t ), NK
t = Nt + F

ᵀ
t KtFt , MK

t

= (Dt + D̄t )
ᵀKtFt . Under the condition that NK is positive definite, we can

rewrite this cost functional after square completion as

J̃ K(α) = E

[∫ T

0

(
X̃t Q̃

K
t X̃t + α̃

ᵀ
t N

K
t α̃t

)
dt + X̃

ᵀ
T (P + P̄ )X̃T

]
,

with Q̃K
t = QK

t − MK
t

(
NK

t

)−1 (
MK

t

)ᵀ
, α̃t = αt + (

NK
t

)−1 (
MK

t

)ᵀ
X̃t . By

noting that Q̃K
t ≥ Qt +Q̄t , it follows that the symmetric matrices Q̃K and P +

P̄ are nonnegative under condition (H1), and assuming furthermore that NK
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is uniformly positive definite, we obtain from (Tang 2003) the existence and
uniqueness of a solution

(
�, Z�

)
to this BSRE, with � being nonnegative and

essentially bounded, and Z� square integrable in L2(�×[0, T ]). This implies,
in particular, that �−1(K, �) is well-defined and essentially bounded. Since
K is nonnegative under (H1), notice that the uniform positivity condition on
NK is satisfied under (H2): this is clear when N is uniformly positive definite
(as usually assumed in LQ problem), and holds also true when F is uniformly
nondegenerate, and K is uniformly positive definite, which occurs when P orQ
is uniformly positive definite from comparison principle for the linear BSDE
for K.

(iii) Given
(
K, �, Z�

)
, we consider the BSDE for

(
Y, ZY

)
with generator:

(y, z) ∈ R
d × R

d → Gt(y, z) := �t(Kt , �t , Z
�
t , y, z) − Ut

(
Kt, �t , Z

�
t

)
�−1

t (Kt , �t )R
ᵀ
t (Kt , �t , y, z)with values inRd , and terminal condition L. This

is a linear BSDE and {Gt(0, 0), 0 ≤ t ≤ T } lies in L2(� × [0, T ]) (recall
that b0, γ , and γ 0 are assumed square integrable). By standard results for
BSDEs, we then know that there exists a unique solution

(
Y, ZY

)
s.t. Y lies in

S2(� × [0, T ]), and Z lies in L2(� × [0, T ]).
(iv) Finally, given

(
K, �, Y, ZY

)
, we solve the backward stochastic equation for χ ,

which is explicitly written as

χt = E

[∫ T

t

�s

(
Ks, �s, Ys, Z

Y
s

)

−1

4
Rᵀ

s

(
Ks, �s, Ys, Z

Y
s

)
�−1

s (Ks, �s)Rs

(
Ks, �s, Ys, Z

Y
s

)
ds

∣∣∣F0
t

]
, 0≤ t ≤T ,

and χ satisfies the S1(� × [0, T ]) integrability condition.
To sum up, we have proved the following result:

Theorem 3.1 Under assumptions (H1) and (H2), there exists a unique solution
(K, ZK), (�, Z�), (Y, ZY ), (χ, Zχ) to the BSDE (20) satisfying the integrability
condition of Proposition 3.1, and consequently we have an optimal control for the
LQCMKV1 problem given by (21).

Control set A = L(Rd;Rm)

From the linear form of bt , σt , σ
0
t in (2), and the quadratic form of f̂t in (7), the

random field process in (17) is given, after some calculations by

Dt (μ, a, k, 
, y) = Var
(
μ, �t

(
k, ZK

t

)
+ K̇t

)
+ v2

(
μ, �t

(
k, 
, Z�

t

) + �̇t

)

+ v1

(
μ, �t

(
k, 
, Z�

t , y, ZY
t

)
+ Ẏt

)
+ �t

(
k, 
, y, ZY

t

)
+ χ̇t

+ Var(a � μ, �t (k, k)) + a � μᵀ�t(k, 
)a � μ

+ 2
∫

(x − μ̄)ᵀVt

(
k, ZK

t

)
a(x)μ(dx)

+
[
2Uᵀ

t

(
k, 
, Z�

t

)
μ̄ + Rt

(
k, 
, y, ZY

t

)]ᵀ
a � μ,
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for all t ∈ [0, T ], μ ∈ P2

(
R

d
)
, k, 
 ∈ S

d , y ∈ R
d , a ∈ L(Rd ;Rm), where a � μ ∈

P2(R
m) denotes the image by a of μ,

a � μ =
∫

a(x)μ(dx), Var(a � μ, k) =
∫

(a(x)−a � μ)ᵀ k (a(x)−a � μ) μ(dx),

and we keep the same notations as in (18) with the additional term:

Vt

(
k, ZK

t

)
= D

ᵀ
t kFt +

(
D0

t

)ᵀ
kF 0

t + kCt + ZK
t F 0

t . (22)

Then, after square completion under the condition that �t(k, 
) is positive definite
in S

m, we have

Dt (μ, a, k, 
, y) = Var
(
μ, �t

(
k, ZK

t

)
− Vt

(
k, ZK

t

)
�−1

t (k, k)V
ᵀ
t

(
k, ZK

t

)
+ K̇t

)

+ v2

(
μ, �t

(
k, 
, Z�

t

) − Ut

(
k, 
, Z�

t

)
�−1

t (k, 
)U
ᵀ
t

(
k, 
, Z�

t

) + �̇t

)

+ v1

(
μ,�t

(
k,
,Z�

t , y,ZY
t

)
−Ut

(
k, 
, Z�

t

)
�−1

t (k, 
)Rt

(
k, 
, y, ZY

t

)
+Ẏt

)

+ �t

(
k, 
, y, ZY

t

)
− 1

4
R

ᵀ
t

(
k, 
, y, ZY

t

)
�−1

t (k, 
)Rt

(
k, 
, y, ZY

t

)
+ χ̇t

+ Var
(
(a − ât )(., μ̄, k, 
, y) � μ, �t (k, k)

)

+ (a − ât )(., μ̄, k, 
, y) � μ
ᵀ
�t (k, 
)(a − ât )(., μ̄, k, 
, y) � μ

where ât (., μ̄, k, 
, y) : Rd → R
m is defined by

ât (x, μ̄, k, 
, y) = −�−1
t (k, k)Vt

(
k, ZK

t

)ᵀ
(x − μ̄)

− �−1
t (k, 
)

[
U

ᵀ
t

(
k, 
, Z�

t

)
μ̄+ 1

2
Rt

(
k, 
, y, ZY

t

)]
, x ∈ R

d .

We then consider the system of BSDEs:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dKt = −
[
�t

(
Kt, Z

K
t

) − Vt

(
Kt, Z

K
t

)
�−1

t (Kt , Kt )V
ᵀ
t

(
Kt, Z

K
t

)]
dt

+ ZK
t dW 0

t , 0 ≤ t ≤ T , KT = P

d�t = −
[
�t

(
Kt, �t , Z

�
t

) − Ut

(
Kt, �t , Z

�
t

)
�−1

t (Kt , �t )U
ᵀ
t

(
Kt, �t , Z

�
t

)]
dt

+ Z�
t dW 0

t , 0 ≤ t ≤ T , �T = P + P̄

dYt = −
[
�t

(
Kt, �t , Z

�
t , Yt , Z

Y
t

)−Ut

(
Kt , �t , Z

�
t

)
�−1

t (Kt , �t )Rt

(
Kt, �t , Yt , Z

Y
t

)]
dt

+ ZY
t dW 0

t , 0 ≤ t ≤ T , YT = L,

dχt = −
[
�t

(
Kt, �t , Yt , Z

Y
t

)− 1
4R

ᵀ
t

(
Kt, �t , Yt , Z

Y
t

)
�−1

t (Kt , �t )Rt

(
Kt , �t , Yt , Z

Y
t

)]
dt

+ Z
χ
t dW 0

t , 0 ≤ t ≤ T , χT = 0,
(23)

and by the same arguments as in Proposition 3.1, we have the following verification
result making the connection between the system (23) and the LQCMKV2 control
problem.

Proposition 3.2 Assume that
(
K, ZK

)
,
(
�, Z�

)
,
(
Y, ZY

)
, (χ, Zχ) is a solution

to the BSDE (23) such that K, �, �−1(K, �) are essentially bounded, Y lies in
S2(� × [0, T ]), and χ lies in S1(� × [0, T ]). Then, the control process α∗ with
values in L(Rd ;Rm) and defined by
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α∗
t (x) = ât

(
x,E

[
X∗

t |W 0
]
, Kt , �t , Yt

)

= −�−1
t (Kt , Kt )Vt

(
Kt, Z

K
t

)ᵀ (
x − E

[
X∗

t |W 0
])

− �−1
t (Kt , �t )

[
U

ᵀ
t

(
Kt, �t , Z

�
t

)
E

[
X∗

t |W 0
]
+ 1

2
Rt

(
Kt,�t ,Yt ,Z

Y
t

)]
,x ∈R

d ,0≤ t ≤ T ,

where X∗ = Xα∗
is the state process with the feedback control ât (., ., Kt , �t , Yt ), is

an optimal control for the LQCMKV2 problem, i.e., V0 = J (α∗), and we have
V0 = Var(L(ξ0), K0) + v2(L(ξ0), �0) + v1(L(ξ0), Y0) + χ0.

Let us now discuss the existence of a solution to the BSDE (23) satisfying the
integrability conditions of Proposition 3.2. As for (20), this system is decoupled. The
difference w.r.t to the LQCMKV1 problem is in the BSDE for

(
K, ZK

)
, where the

generator (k, z) ∈ S
d × S

d → �t(k, z) − Vt (k, z)�−1
t (k, k)V

ᵀ
t (k, z) ∈ S

d is now
of the Riccati type. In general, it is not in the class of BSREs related to LQ control
problem, but existence can be obtained in some particular cases:

(1) The coefficients B, C, D, F, D0, F 0, Q, P, N are deterministic. In this case, the
BSRE for K is reduced to a matrix Riccati ordinary differential equation:

−dKt

dt
= �t(Kt , 0) − Vt (Kt , 0)�

−1
t (Kt , Kt )V

ᵀ
t (Kt , 0), 0 ≤ t ≤ T , KT = P.

This problem is associated to the LQ problem with controlled linear
dynamics

dX̃t = (Bt X̃t + Ct α̃t )dt + (Dt X̃t + Ft α̃t )dWt +
(
D0

t X̃t + F 0
t α̃t

)
dW 0

t ,

where the control process α̃ is an F-adapted process with values in Rm, and the
cost functional to be minimized over α̃ is

J̃ (α̃) = E

[∫ T

0

(
X̃

ᵀ
t Qt X̃t + α̃

ᵀ
t Nt α̃t

)
dt + X̃

ᵀ
T P X̃T

]
.

It was solved in (Wonham 1968) under assumption (H1) and the condition
(H2)(i) that N is uniformly positive definite, and this gives the existence and
uniqueness of K ∈ C1

([0, T ]; Sd
)
, which is nonnegative.

(2) D ≡ F ≡ 0. In this case, the BSRDE for
(
K, ZK

)
is associated to the LQ

problem with controlled linear dynamics

dX̃t = (Bt X̃t + Ct α̃t )dt +
(
D0

t X̃t + F 0
t α̃t

)
dW 0

t ,

where the control process α̃ is an F
0-adapted process with values in R

m, and
the cost functional to be minimized over α̃ is

J̃ (α̃) = E

[∫ T

0

(
X̃

ᵀ
t Qt X̃t + α̃

ᵀ
t Nt α̃t

)
dt + X̃

ᵀ
T P X̃T

]
.

It is then known from (Tang 2003) that under assumptions (H1) and (H2)(i),
there exists a unique pair (K, ZK) solution to the BSRDE, with K nonnegative,
and essentially bounded.
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(3) N ≡ 0, P is uniformly positive, m = d, and F is invertible with F−1 bounded.
In this case, the BSDE for K is reduced to the linear BSDE:

dKt = −
[
�t

(
Kt, Z

K
t

)
−
(
CtF

−1
t Dt

)ᵀ
Kt + Kt

(
CtF

−1
t Dt

)

− D
ᵀ
t KtDt −KtCt

(
F

ᵀ
t KtFt

)−1
C

ᵀ
t Kt

]
dt+ZK

t dW 0
t , 0 ≤ t ≤ T , KT = P,

for which it is known that there exists a unique solution
(
K, ZK

)
, with K

positive, and essentially bounded.

It is an open question whether existence of a solution for K to the BSRE (23) holds
in the general case. Anyway, once a solution K exists, and is given, the BSDEs for
the pairs

(
�, Z�

)
,
(
Y, ZY

)
, (χ, Zχ) are the same as in (20), and then their existence

and uniqueness are obtained under the same conditions.

Applications

Trading with price impact and benchmark tracking

We consider an agent trading in a financial market with an inventory Xt , i.e., a
number of shares held at time t in a risky stock, governed by

dXt = αtdt,

where the control α, a real-valued F
0-progressively measurable process in L2(� ×

[0, T ]), represents the trading rate. Given a real-valued F
0-adapted stock price pro-

cess (St )0≤t≤T in L2(� × [0, T ]), a real-valued F0-adapted target process (It )0≤t≤T

inL2(�×[0, T ]), and a terminal benchmarkH as a square integrableF0
T -measurable

random variable, the objective of the agent is to minimize over control processes α a
cost functional of the form:

J (α) = E

[∫ T

0

(
αt (St + ηαt ) + q(Xt − It )

2
)

dt + λ(XT − H)2
]

, (24)

where η > 0, q ≥ 0, and λ ≥ 0 are constants.
Such formulation is connected with optimal trading and hedging problems in pres-

ence of liquidity frictions like price impact, and widely studied in the recent years:
when S ≡ = 0, the cost functional in (24) arises in option hedging in presence of
transient price impact, see, e.g., (Almgren and Li 2016; Bank et al. 2015; Rogers
and Singh 2010) and is also related to the problem of optimal VWAP execution (see
(Cartea and Jaimungal 2015; Frei and Westray 2015), or benchmark tracking, see
(Cai et al. 2015). When q = 0, the minimization of the cost functional in (24) cor-
responds to the optimal execution problem arising in limit order book (LOB), as
originally formulated in (Almgren and Chriss 2000) in a particular Bachelier model
for S, and has been extended (with general shape functions in LOB) in the litera-
ture, but mostly by assuming the martingale property of the price process, see, e.g.,
(Alfonsi et al. 2010, Predoiu et al. 2011). By rewriting the cost functional after square
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completion as

J (α) = E

[∫ T

0

(
ηα̃2

t + q(Xt − It )
2
)

dt + λ(XT − H)2
]

− E

[∫ T

0

S2
t

4η
dt

]
,

with α̃t = αt + St

2η , we see that this problem fits into the LQCMKV1 framework (with

b0t = − St

2η , without McKean-Vlasov dependence but with random coefficients), and
Assumptions (H1), (H2) are satisfied. From Theorem 3.1, the optimal control is then
given by

α∗
t = −1

η

[
�tX

∗
t + Yt

2

]
− St

2η
, 0 ≤ t ≤ T , (25)

where � is solution to the (ordinary differential) Riccati equation

d�t = −
(

q − �2
t

η

)
dt, 0 ≤ t ≤ T , �T = λ, (26)

and Y is solution to the linear BSDE

dYt =
[
2qIt + �t

η
St + �t

η
Yt

]
dt+ZY

t dW 0
t , 0 ≤ t ≤ T , YT = −2λH. (27)

The solution to the Riccati equation is

�t

η
= √

q/η

√
q/η sinh(

√
q/η(T − t)) + λ/η cosh(

√
q/η(T − t))

λ/η sinh(
√

q/η(T − t)) + √
q/η cosh(

√
q/η(T − t))

, 0 ≤ t ≤ T ,

while the solution to the linear BSDE is given by

Yt = −2E

[
e
−∫ T

t
�s
η

ds
λH +

∫ T

t

e
−∫ s

t
�u
η

du

(
qIs + �s

η
Ss

)
ds

∣∣∣F0
t

]
, 0 ≤ t ≤ T .

By integrating the function �/η, we have

e
−∫ s

t
�u
η

du = �t/η√
q/η

√
q/η cosh(

√
q/η(T − s)) + λ/η sinh(

√
q/η(T − s))√

q/η sinh(
√

q/η(T − t)) + λ/η cosh(
√

q/η(T − t))

= �t

�s

√
q/η sinh(

√
q/η(T − s)) + λ/η cosh(

√
q/η(T − s))√

q/η sinh(
√

q/η(T − t)) + λ/η cosh(
√

q/η(T − t))
, t ≤ s ≤ T ,

and plugging into the expectation form of Y, the optimal control in (25) is then
expressed as

α∗
t = −�t

η

(
X∗

t − ÎH
t

)
+ 1

2η

(
E

[∫ T

t

�t

η

ω(t, T )

ω(s, T )
Ssds|F0

t

]
− St

)

=: α
∗,IH
t + α

∗,S
t , 0 ≤ t ≤ T , (28)

where

ÎH
t = E

[
ω(t, T )H + (1 − ω(t, T ))

∫ T

t

IsK(t, s)ds

∣∣∣F0
t

]

with a weight valued in [0, 1]
ω(t, T ) = λ/η√

q/η sinh(
√

q/η(T − t)) + λ/η cosh(
√

q/η(T − t))
,
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and a kernel

K(t, s) = √
q/η

√
q/η cosh(

√
q/η(T −t))+λ/η sinh(

√
q/η(T −t))√

q/η sinh(
√

q/η(T −t))+λ/η(cosh(
√

q/η(T −t))−1)
, 0 ≤ t ≤ s ≤ T .

The optimal trading rule in (28) is decomposed in two parts:

(i) The first term α∗,IH prescribes the agent to trade optimally towards a weigh-
ted average ÎH

t , rather than the current target position I. Indeed, ÎH is a convex
combination of the expected future of the terminal random target H, and of a
weighted average of the running target I (notice that K(t, .) is a nonnegative
kernel integrating to one over [t, T ]). The rate towards this target is at a speed
proportional to its distance w.r.t the current investor’s position, and the coeffi-
cient of proportionality is determined by the costs parameters η, q, λ and the
time to maturity T − t . We retrieve the interpretation and results obtained in
(Bank et al. 2015) in the limiting cases where λ = 0 (no constraint on the termi-
nal position), and λ = ∞ (constraint on the terminal position XT = H). In the

case where q = 0, we have �t/η = λ/(η + λ(T − t)), ˆIH
t = E[H |F0

t ], and we
retrieve, in particular, the expression α∗,IH = −X∗

t /(T − t), of optimal trading
rate when H = 0, and λ → ∞ corresponding to the optimal execution problem
with terminal liquidation XT = 0.

(ii) The second term α∗,S related to the stock price, is an incentive to buy or sell
depending on whether the weighted average of expected future value of the
stock is larger or smaller than its current value. In particular, when the price
process is a martingale, then

α
∗,S
t = − St

2η

√
q/η√

q/η cosh(
√

q/η(T − t)) + λ/η sinh(
√

q/η(T − t))

which is nonpositive for nonnegative price St , hence meaning that due to the
price impact, one must sell. Moreover, in the limiting case where λ → ∞,
i.e., the terminal inventory XT is constrained to achieve the target H, then
α∗,S is zero: we retrieve the result that the optimal trading rate does not
depend on the price process when it is a martingale, see (Alfonsi et al. 2010;
Predoiu et al. 2011.

On the other hand, by applying Itô’s formula to (25), and using (26)-(27), we have

d

(
α∗

t + St

2η

)
= q

η
(X∗

t − It )ds − 1

2η
ZY

t dW 0
s ,

which implies the notable property:

α∗
t + St

2η
− q

η

∫ t

0
(X∗

s − Is)ds, 0 ≤ t ≤ T , is a martingale.
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Conditional mean-variance portfolio selection in incomplete market

We consider an agent who can invest in a financial market model with one bond of
price process S0 and one risky asset of price process S governed by

dS0
t = S0

t r(It )dt

dSt = St ((b + r)(It )dt + σ(It )dWt),

where I is a factor process with dynamics governed by a Brownian motion W 0,
assumed to be non correlated with the Brownian motion W driving the asset price
process S, and r the interest rate, b the excess rate of return, and σ the volatility are
measurable bounded functions of I, with σ(It ) ≥ ε for some ε > 0. We shall assume
that the natural filtration generated by the observable factor process I is equal to the
filtration F0 generated by W 0. Notice that the market is incomplete as the agent can-
not trade in the factor process. The investment strategy of the agent is modeled by a
random field F

0-progressively measurable process α = {αt (x), 0 ≤ t ≤ T , x ∈ R}
(or equivalently as a F

0-progressively measurable process with values in L(R;R))
where αt (x) with values in R, is Lipschitz in x, and represents the amount invested
in the stock at time t, when the current wealth is Xt = x, and based on the past
observations F0

t of the factor process. The evolution of the controlled wealth process
is then given by

dXt = r(It )Xtdt+αt(Xt )(b(It )dt+σ(It )dWt) , 0 ≤ t ≤ T , X0 = x0 ∈ R. (29)

The objective of the agent is to minimize over investment strategies a criterion of
the form:

J (α) = E

[
λ

2
Var

(
XT |W 0

)
− E

[
XT |W 0

]]
,

where λ is a positive F0
T -measurable random variable. In the absence of random

factors in the dynamics of the price process, hence in a complete market model,
and when λ is constant, the above criterion reduces to the classical mean-variance
portfolio selection, as studied e.g. in (Li and Zhou 2000). Here, in presence of the
random factor, we consider the expectation of a conditional mean-variance criterion,
and also allow the risk-aversion parameter λ to depend reasonably on the random
factor environment. By rewriting the cost functional as

J (α) = E

[
λ

2
X2

T − λ

2

(
E[XT |W 0]

)2 − XT

]
,

we then see that this conditional mean-variance portfolio selection problem fits into
the LQCMKV2 problem, and more specifically into the case (3) of the discussion
following Proposition 3.2. The optimal control is then given from (24) by

α∗
t (x) = − b(It )

σ 2(It )

(
x−E

[
X∗

t |W 0
])

− b(It )

σ 2(It )Kt

[
�tE

[
X∗

t |W 0
]

+ 1

2
Yt

]
, (30)
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where X∗ is the optimal wealth process in (29) controlled by α∗, K is the solution to
the linear BSDE

dKt =
[

b2(It )

σ 2(It )
− 2r(It )

]
Ktdt + ZK

t dW 0
t , 0 ≤ t ≤ T , KT = λ

2
,

� is solution to the linear BSDE

d�t =
[

b2(It )

σ 2(It )Kt

�2
t − 2r(It )�t

]
dt + Z�

t dW 0
t , 0 ≤ t ≤ T , �T = 0,

and Y the solution to the linear BSDE

dYt =
[

b2(It )�t

σ 2(It )Kt

− r(It )

]
Ytdt + ZY

t dW 0
t , 0 ≤ t ≤ T , YT = −1.

The solutions to these linear BSDEs are explicitly given by

Kt = E

[
λ

2
exp

(∫ T

t

2r(Is) − b2(Is)

σ 2(Is)
ds

) ∣∣∣F0
t

]
, (31)

� = 0, and

Yt = −E

[
exp

(∫ T

t

r(Is)ds

) ∣∣∣F0
t

]
, 0 ≤ t ≤ T . (32)

From (29) and (30), the conditional mean of the optimal wealth X∗ with portfolio
strategy α∗ is governed by

dE
[
X∗

t |W 0
]

=
[
r(It )E

[
X∗

t |W 0
]

− b2(It )

2σ 2(It )

Yt

Kt

]
dt,

hence explicitly given by

E

[
X∗

t |W 0
]

= x0e
∫ t
0 r(Is )ds −

∫ t

0

b2(Is)

2σ 2(Is)

Ys

Ks

e
∫ t
s r(Iu)duds, 0 ≤ t ≤ T .

Plugging into (30), this gives the explicit form of the optimal control for the
conditional mean-variance portfolio selection problem:

α∗
t (X∗

t ) = b(It )

σ 2(It )

[
x0e

∫ t
0 r(Is )ds − X∗

t + 1

2

(∫ t

0

b2(Is)

σ 2(Is)

|Ys |
Ks

e
∫ t
s r(Iu)duds + |Yt |

Kt

)]
, (33)

for all 0 ≤ t ≤ T , with K and Y in (31)-(32). When b, σ , and r do not depend on I,
we retrieve the expression of the optimal control obtained in (Li and Zhou 2000), and
the formula (33) is an extension to the case of an incomplete market with a factor I
independent of the stock price.

Systemic risk model

We consider a model of inter-bank borrowing and lending where the log-monetary
reserves Xi , i = 1, . . . , n, of n banks are driven by

dXi
t = κ(It )

n

n∑
j=1

(
X

j
t −Xi

t

)
dt+αi

t dt+σ(It )

(√
1 − ρ2(It ) dWi

t +ρ(It )dW 0
t

)
, i = 1, . . . , n,
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where It is a factor process driven by a Brownian motion W 0, which is the com-
mon noise for all the banks, Wi , i = 1, . . . , N , are independent Brownian motions,
independent of W 0, called idiosyncratic noises, ρ(It ) ∈ [−1, 1] is the correlation
between the idiosyncratic noise and the common noise, κ(It ) ≥ 0 is the rate of mean-
reversion in the interaction from borrowing and lending between the banks, σ(It ) >

0 is the volatility of the bank reserves, and compared to the original model introduced
in (Carmona et al. 2015), these coefficients may depend on the common factor pro-
cess I. Each bank i can control its rate of borrowing/lending to a central bank via the
control αi

t in order to minimize

J i
(
α1, . . . , αn

)
= E

⎡
⎣
∫ T

0
ft

⎛
⎝Xi

t ,
1

n

n∑
j=1

X
j
t , αi

t

⎞
⎠ dt + g

⎛
⎝Xi

T ,
1

n

n∑
j=1

X
j
t

⎞
⎠
⎤
⎦ ,

where

ft (x, x̄, a) = 1

2
a2 − q(It )a(x − x̄) + η(It )

2
(x − x̄)2, g(x, x̄) = c

2
(x − x̄)2.

Here q(It ) > 0 is a positive F
0-adapted process for the incentive to borrowing

(αi
t > 0) or lending (αi

t < 0), η(It ) > 0 is a positive F0-adapted process, c > 0 is a
positive F0

T -measurable random variable, for penalizing departure from the average,
and these coefficients may depend on the random factor. For this n-player stochas-
tic differential game, one looks for cooperative equilibriums by taking the point of
view of a center of decision (or social planner), which decides on the strategies for
all banks, with the goal of minimizing the global cost to the collective. More pre-
cisely, given the symmetry of the set-up, when the social planner chooses the same

control policy for all the banks in feedback form: αi
t = α̃

(
t, Xi

t ,
1
n

∑n
j=1 X

j
t , It

)
, i

= 1, . . . , n, for some deterministic function α̃ depending upon time, private state of
bank i, the empirical mean of all banks, and factor I, then the theory of propagation
of chaos implies that, in the limit n → ∞, the log-monetary reserve processes Xi

become asymptotically independent conditionally on the random environment W 0,
and the empirical mean 1

n

∑n
j=1 X

j
t converges to the conditional mean E[Xt |W 0] of

Xt given W 0, and X is governed by the conditional McKean-Vlasov equation:

dXt =
[
κ(It )

(
E

[
Xt |W 0

]
− Xt

)
+ α̃

(
t, Xt ,E

[
Xt |W 0

]
, It

)]
dt

+ σ(It )

(√
1 − ρ2(It )dWt + ρ(It )dW 0

t

)
, X0 = x0 ∈ R,

for some Brownian motionW independent of W 0. More generally, the representative
bank can control its rate of borrowing/lending via a random field F0-adapted process
α = {αt (x), x ∈ R}, leading to the log-monetary reserve dynamics:

dXt =
[
κ(It )

(
E

[
Xt |W 0

]
− Xt

)
+ αt (Xt )

]
dt

+ σ(It )

(√
1 − ρ2(It )dBt + ρ(It )dW 0

t

)
, X0 = x0 ∈ R, (34)

and the objective is to minimize over α
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J (α) = E

[∫ T

0
ft

(
Xt,E

[
Xt |W 0

]
, αt (Xt )

)
dt + g

(
XT ,E

[
XT |W 0

])]
.

After square completion, we can rewrite the cost functional as

J (α) = E

[∫ T

0

(
1

2
ᾱt (Xt )

2+ (η − q2)(It )

2

(
E

[
Xt |W 0

]
−Xt

)2)
dt+ c

2

(
E

[
XT |W 0

]
−XT

)2]
,

with ᾱt (Xt ) = αt (Xt ) − q(E[Xt |W 0] − Xt). Assuming that q2 ≤ η, this model fits
into the LQCMKV2 problem, and more specifically into the case (2) of the discussion
following Proposition 3.2. The optimal control is then given from (24) by

α∗
t (x) = − (2Kt + q(It ))

(
x − E

[
X∗

t |W 0
])

− 2�tE

[
X∗

t |W 0
]

− Yt , (35)

where X∗ is the optimal log-monetary reserve in (34) controlled by α∗, K is the
solution to the BSRE:

dKt =
[
2(κ + q)(It )Kt −2K2

t − 1

2

(
η−q2

)
(It )

]
dt+ZK

t dW 0
t , 0 ≤ t ≤ T , KT = c

2
,

� is the solution to the BSRE

d�t = 2�2
t dt + Z�

t dW 0
t , 0 ≤ t ≤ T , �T = 0,

and Y is the solution to the linear BSDE

dY t =
[
2�tYt − 2σ(It )ρ(It )Z

Y
t

]
dt + ZY

t dW 0
t , 0 ≤ t ≤ T , YT = 0.

The nonnegative solution K to the BSRE is, in general, not explicit, while the
solution for (�, Y ) is obviously equal to � ≡ 0 ≡ Y. From (35), it is then clear that
E[α∗

t (X∗
t )|W 0] = 0, so that the conditional mean of the optimal log-monetary reserve

is governed from (34) by

dE[X∗
t |W 0] = σ(It )ρ(It )dW 0

t .

The optimal control can then be expressed pathwise as

α∗
t (X∗

t ) = −(2Kt + q(It ))

(
X∗

t − x0 −
∫ t

0
σ(Is)ρ(Is)dW 0

s

)
, 0 ≤ t ≤ T .
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(2012)
Peng, S: Stochastic Hamilton Jacobi Bellman equations. SIAM J. Control Optim 30, 284–304 (1992)
Pham, H, Wei, X: Bellman equation and viscosity solutions for mean-field stochastic control problem

(2015). arXiv:1512.07866v2
Pham, H, Wei, X: Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics

(2016). arXiv: 1604. 04057

http://link.springer.com/article/10.1007/s11579-016-0178-4
http://link.springer.com/article/10.1007/s11579-016-0178-4
http://arxiv.org/abs/1407.1215
http://www.imstat.org/aop/future_papers.htm
http://www.imstat.org/aop/future_papers.htm
https://www.ceremade.dauphine.fr/cardalia/MFG100629.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2542314
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2542314


Page 26 of 26 H. Pham

Predoiu, S, Shaikhet, G, Shreve, S: Optimal execution in a general one-sided limit-order book. SIAM J.
Financial Math 2, 183–212 (2011)

Rogers, LCG, Singh, S: The cost of illiquidity and its effects on hedging. Mathematical Finance 20,
597–615 (2010)

Sun, J: Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities
(2015). arXiv: 1509.02100v2

Sun, J, Yong, J: Linear Quadratic Stochastic Differential Games: Open-Loop and Closed-Loop Saddle
Points. SIAM J. Control Optim 52, 4082–4121 (2014)

Tang, S: General linear quadratic optimal stochastic control problems with random coefficients: linear
stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim 42,
53–75 (2003)

Wonham, W: On a matrix Riccati equation of stochastic control. SIAM J. Control 6, 681–697 (1968)
Yong, J: A linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM

J. Control Optim 51(4), 2809–2838 (2013)
Yong, J, Zhou, XY: Stochastic controls. Hamiltonian systems and HJB equations. Springer, New York

(1999)


	Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications
	Abstract
	Introduction and problem formulation
	Preliminaries
	Backward stochastic Riccati equations
	Control set bold0mu mumu AAdottedAAAA bold0mu mumu ==dotted==== bold0mu mumu RmRmdottedRmRmRmRm
	Control set bold0mu mumu AAdottedAAAA bold0mu mumu ==dotted==== bold0mu mumu L(Rd;Rm)L(Rd;Rm)dottedL(Rd;Rm)L(Rd;Rm)L(Rd;Rm)L(Rd;Rm)

	Applications
	Trading with price impact and benchmark tracking
	Conditional mean-variance portfolio selection in incomplete market
	Systemic risk model

	Competing interests
	References


