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Abstract G-Brownian motion has a very rich and interesting new structure that non-
trivially generalizes the classical Brownian motion. Its quadratic variation process
is also a continuous process with independent and stationary increments. We prove
a self-normalized functional central limit theorem for independent and identically
distributed random variables under the sub-linear expectation with the limit process
being a G-Brownian motion self-normalized by its quadratic variation. To prove the
self-normalized central limit theorem, we also establish a new Donsker’s invariance
principle with the limit process being a generalized G-Brownian motion.
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Introduction

Let {Xn; n ≥ 1} be a sequence of independent and identically distributed random
variables on a probability space (�,F , P ). Set Sn = ∑n

j=1 Xj . Suppose EX1 = 0

and EX2
1 = σ 2 > 0. The well-known central limit theorem says that

Sn√
n

d→ N
(

0, σ 2
)

, (1)
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or, equivalently, for any bounded continuous function ψ(x),

E

[

ψ

(
Sn√
n

)]

→ E [ψ(ξ)] , (2)

where ξ ∼ N
(
0, σ 2

)
is a normal random variable. If the normalization factor

√
n is

replaced by
√

Vn, where Vn = ∑n
j=1 X2

j , then

Sn√
Vn

d→ N(0, 1). (3)

Giné et al. (1997) proved that (3) holds if and only if EX1 = 0 and

lim
x→∞

x2P (|X1| ≥ x)

EX2
1I {|X1| ≤ x} = 0. (4)

The result (3) is refered to as the self-normalized central limit theorem. The pur-
pose of this paper is to establish the self-normalized central limit theorem under the
sub-linear expectation.

The sub-linear expectation, or also called G-expectation, is a nonlinear expec-
tation generalizing the notions of backward stochastic differential equations, g-
expectations, and provides a flexible framework to model non-additive probability
problems and the volatility uncertainty in finance. Peng (2006, 2008a,b) introduced a
general framework of the sub-linear expectation of random variables and the notions
of the G-normal random variable, G-Brownian motion, independent and identically
distributed random variables, etc., under the sub-linear expectation. The construction
of sub-linear expectations on the space of continuous paths and discrete-time paths
can also be founded in Yan et al. (2012) and Nutz and van Handel (2013). For basic
properties of the sub-linear expectation, one can refer to Peng (2008b, 2009, 2010a
etc.). For stochastic calculus and stochastic differential equations with respect to a
G-Brownian motion, one can refer to Li and Peng (2011), Hu et al. (2014a, b), etc.,
and a book by Peng (2010a).

The central limit theorem under the sub-linear expectation was first established by
Peng (2008b). It says that (2) remains true when the expectation E is replaced by a
sub-linear expectation Ê if {Xn; n ≥ 1} are independent and identically distributed
under Ê, i.e.,

Sn√
n

d→ ξ under Ê, (5)

where ξ is a G-normal random variable.
In the classical case, when E[X2

1] is finite, (3) follows from the cental limit
theorem (1) directly by Slutsky’s lemma and the fact that

Vn

n

P→ σ 2.

The latter is due to the law of large numbers. Under the framework of the sub-
linear expectation, Vn

n
no longer converges to a constant. The self-normalized central
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limit theorem cannot follow from the central limit theorem (5) directly. In this paper,
we will prove that

Sn√
Vn

d→ W1√〈W 〉1
under Ê, (6)

where Wt is a G-Brownian motion and 〈W 〉t is its quadratic variation process. A very
interesting phenomenon of G-Brownian motion is that its quadratic variation pro-
cess is also a continuous process with independent and stationary increments, and
thus can still be regarded as a Brownian motion. When the sub-linear expectation Ê

reduces to a linear one, Wt is the classical Brownian motion with W1 ∼ N
(
0, σ 2

)

and 〈W 〉t = tσ 2, and then (6) is just (3). Our main results on the self-normalized cen-
tral limit theorem will be given in Section “Main results”, where the process of the
self-normalized partial sums S[nt]/

√
Vn is proved to converge to a self-normalized

G-Brownian motion Wt/
√〈W 〉1. We also consider the case in which the second

moments of Xi’s are infinite and obtain the self-normalized central limit theorem
under a condition similar to (4). In the next section, we state basic settings in a
sub-linear expectation space, including capacity, independence, identical distribu-
tion, G-Brownian motion, etc. One can skip this section if these concepts are familiar.
To prove the self-normalized central limit theorem, we establish a new Donsker’s
invariance principle in Section “Invariance principle” with the limit process being a
generalized G-Brownian motion. The proof is given in the last section.

Basic settings

We use the framework and notations of Peng (2008b). Let (�,F) be a given measur-
able space and let H be a linear space of real functions defined on (�,F) such that
if X1, . . . , Xn ∈ H , then ϕ(X1, . . . , Xn) ∈ H for each ϕ ∈ Cb(R

n)
⋃

Cl,Lip(Rn),
where Cb(R

n) denotes the space of all bounded continuous functions and Cl,Lip(Rn)

denotes the linear space of (local Lipschitz) functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ R
n,

for some C > 0, m ∈ N depending on ϕ.

H is considered as a space of “random variables.” In this case, we denote X ∈ H .
Further, we let Cb,Lip(Rn) denote the space of all bounded and Lipschitz functions
on R

n.

Sub-linear expectation and capacity

Definition 1 A sub-linear expectation Ê on H is a function Ê : H → R

satisfying the following properties: for all X, Y ∈ H , we have

(a) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ];
(b) Constant preserving: Ê[c] = c;
(c) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ] whenever Ê[X] + Ê[Y ] is not of

the form +∞ − ∞ or −∞ + ∞;
(d) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0.
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Here R = [−∞, ∞]. The triple (�, H , Ê) is called a sub-linear expectation
space. Given a sub-linear expectation Ê, let us denote the conjugate expectation Êof
Ê by

Ê[X] := −Ê[−X], ∀X ∈ H .

Next, we introduce the capacities corresponding to the sub-linear expectations. Let
G ⊂ F . A function V : G → [0, 1] is called a capacity if

V (∅) = 0, V (�) = 1, and V (A) ≤ V (B) ∀ A ⊂ B, A, B ∈ G.

It is called sub-additive if V (A
⋃

B) ≤ V (A) + V (B) for all A, B ∈ G with
A
⋃

B ∈ G.
Let (�, H , Ê) be a sub-linear space and Ê be the conjugate expectation of Ê. We

introduce the pair (V,V) of capacities by setting

V(A) := inf{Ê[ξ ] : IA ≤ ξ, ξ ∈ H }, V(A) := 1 − V(Ac), ∀A ∈ F,

where Ac is the complement set of A. Then, V is sub-additive and

V(A) = Ê[IA], V(A) = Ê[IA], ifIA ∈ H

Ê[f ] ≤ V(A) ≤ Ê[g], Ê[f ] ≤ V(A) ≤ Ê[g], iff ≤ IA ≤ g, f, g ∈ H .
(7)

Further, we define an extension of Ê∗ of Ê by

Ê
∗[X] = inf{Ê[Y ] : X ≤ Y, Y ∈ H }, ∀X : � → R,

where inf ∅ = +∞. Then,

Ê
∗[X] = Ê[X] if X ∈ H , V(A) = Ê

∗[IA],
Ê[f ] ≤ Ê

∗[X] ≤ Ê[g] if f ≤ X ≤ g, f, g ∈ H .

Independence and distribution

Definition 2 (Peng (2006, 2008b))

(i) (Identical distribution) Let X1 and X2 be two n-dimensional random vec-
tors defined, respectively, in sub-linear expectation spaces (�1, H1, Ê1)

and (�2, H2, Ê2). They are called identically distributed, denoted by X1
d=

X2 if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite. A sequence {Xn; n ≥ 1} of random
variables is said to be identically distributed if Xi

d= X1 for each i ≥ 1.
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(ii) (Independence) In a sub-linear expectation space (�, H , Ê), a random
vector Y = (Y1, . . . , Yn), Yi ∈ H is said to be independent to another
random vector X = (X1, . . . , Xm) , Xi ∈ H under Ê if for each test
function ϕ ∈ Cl,Lip(Rm × R

n) we have

Ê[ϕ(X, Y )] = Ê

[
Ê[ϕ(x, Y )]∣∣

x=X

]
,

whenever ϕ(x) := Ê [|ϕ(x, Y )|] < ∞ for all x and Ê [|ϕ(X)|] < ∞.

(iii) (IID random variables) A sequence of random variables {Xn; n ≥ 1} is

said to be independent and identically distributed (IID), if Xi
d= X1 and

Xi+1 is independent to (X1, . . . , Xi) for each i ≥ 1.

G-normal distribution, G-Brownian motion and its quadratic variation

Let 0 < σ ≤ σ < ∞ and G(α) = 1
2

(
σ 2α+ − σ 2α−). X is called a normal

N
(
0,
[
σ 2, σ 2

])
distributed random variable (written as X ∼ N

(
0,
[
σ 2, σ 2

])
) under

Ê, if for any bounded Lipschitz function ϕ, the function u(x, t) = Ê
[
ϕ
(
x + √

tX
)]

(x ∈ R, t ≥ 0) is the unique viscosity solution of the following heat equation:

∂tu − G
(
∂2
xxu
)

= 0, u(0, x) = ϕ(x).

Let C[0, 1] be a function space of continuous functions on [0, 1] equipped with
the supremum norm ‖x‖ = sup

0≤t≤1
|x(t)| and Cb (C[0, 1]) is the set of bounded con-

tinuous functions h(x) : C[0, 1] → R. The modulus of the continuity of an element
x ∈ C[0, 1] is defined by

ωδ(x) = sup
|t−s|<δ

|x(t) − x(s)|.

It is showed that there is a sub-linear expectation space
(
�̃, H̃ , Ẽ

)
with �̃ =

C[0, 1] and Cb (C[0, 1]) ⊂ H̃ such that (H̃ , Ẽ[‖ · ‖]) is a Banach space, and the
canonical process W(t)(ω) = ωt(ω ∈ �̃) is a G-Brownian motion with W(1) ∼
N
(
0,
[
σ 2, σ 2

])
under Ẽ, i.e., for all 0 ≤ t1 < . . . < tn ≤ 1, ϕ ∈ Cl,lip(Rn),

Ẽ
[
ϕ (W(t1), . . . , W(tn−1), W(tn) − W(tn−1))

] = Ẽ
[
ψ (W(t1), . . . , W(tn−1))

]
,

(8)
where ψ (x1, . . . , xn−1)

) = Ẽ
[
ϕ
(
x1, . . . , xn−1,

√
tn − tn−1W(1)

)]
(cf. Peng (2006,

2008a, 2010a), Denis et al. (2011)).

The quadratic variation process of a G-Brownian motion W is defined by

〈W 〉t = lim
‖�N

t ‖→0

N−1∑

j=1

(
W
(
tNj

)
− W

(
tNj−1

))2 = W 2(t) − 2
∫ t

0
W(t)dW(t),
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where �N
t = {

tN0 , tN1 , . . . , tnN

}
is a partition of [0, t] and

∥
∥�N

t

∥
∥ = maxj

∣
∣
∣tNj − tNj−1

∣
∣
∣,

and the limit is taken in L2, i.e.,

lim∥
∥�N

t

∥
∥→0

Ẽ

⎡

⎢
⎣

⎛

⎝
N−1∑

j=1

(
W
(
tNj

)
− W

(
tNj−1

))2 − 〈W 〉t
⎞

⎠

2
⎤

⎥
⎦ = 0.

The quadratic variation process 〈W 〉t is also a continuous process with indepen-
dent and stationary increments. For the properties and the distribution of the quadratic
variation process, one can refer to a book by Peng (2010a).

Denis et al. (2011) showed the following representation of the G-Brownian motion
(cf. Theorem 52).

Lemma 1 Let (�, F , P ) be a probability measure space and {B(t)}t≥0 is a
P -Brownian motion. Then, for all bounded continuous functions ϕ : Cb[0, 1] → R,

Ẽ [ϕ (W(·))] = sup
θ∈�

EP [ϕ (Wθ(·))] , Wθ(t) =
∫ t

0
θ(s)dB(s),

where

� = {
θ : θ(t) is an Ft -adapted process such that σ ≤ θ(t) ≤ σ

}
,

Ft = σ {B(s) : 0 ≤ s ≤ t} ∨ N , N is the collection ofP -null subsets.

For the reminder of this paper, the sequences {Xn; n ≥ 1}, {Yn; n ≥ 1}, etc., of the
random variables are considered in (�, H , Ê). Without specification, we suppose
that {Xn; n ≥ 1} is a sequence of independent and identically distributed random
variables in (�, H , Ê) with Ê[X1] = Ê[X1] = 0, Ê

[
X2

1

] = σ 2, and Ê
[
X2

1

] = σ 2.
Denote SX

0 = 0, SX
n = ∑n

k=1 Xk , V0 = 0, Vn = ∑n
k=1 X2

k . And suppose that
(�̃, H̃ , Ẽ) is a sub-linear expectation space which is rich enough such that there
is a G-Brownian motion W(t) with W(1) ∼ N

(
0,
[
σ 2, σ 2

])
. We denote a pair of

capacities corresponding to the sub-linear expectation Ẽ by
(
Ṽ, Ṽ

)
, and the extension

of Ẽ by Ẽ
∗.

Main results

We consider the convergence of the process SX[nt]. Because it is not in C[0, 1], it needs

to be modified. Define the C[0, 1]-valued random variable S̃X
n (·) by setting

S̃X
n (t) =

⎧
⎪⎨

⎪⎩

∑k
j=1 Xj , if t = k/n (k = 0, 1, . . . , n);

extended by linear interpolation in each interval
[[k − 1]n−1, kn−1

]
.

Then, S̃X
n (t) = SX[nt] + (nt − [nt])X[nt]+1. Here [nt] is the largest integer less than or

equal to nt. Zhang (2015) obtained the functional central limit theorem as follows.
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Theorem 1 Suppose Ê

[(
X2

1 − b
)+] → 0 as b → ∞. Then, for all bounded

continuous functions ϕ : C[0, 1] → R,

Ê

[

ϕ

(
S̃X

n (·)√
n

)]

→ Ẽ

[
ϕ (W(·))

]
. (9)

Replacing the normalization factor
√

n by
√

Vn, we obtain the self-normalized
process of partial sums:

Wn(t) = S̃X
n (t)√
Vn

,

where 0
0 is defined to be 0. Our main result is the following self-normalized functional

central limit theorem (FCLT).

Theorem 2 Suppose Ê

[(
X2

1 − b
)+] → 0 as b → ∞. Then, for all bounded

continuous functions ϕ : C[0, 1] → R,

Ê
∗ [ϕ (Wn(·))] → Ẽ

[

ϕ

(
W(·)√〈W 〉1

)]

. (10)

In particular, for all bounded continuous functions ϕ : R → R,

Ê
∗
[

ϕ

(
SX

n√
Vn

)]

→Ẽ

[

ϕ

(
W(1)√〈W 〉1

)]

= sup
θ∈�

EP

⎡

⎢
⎣ϕ

⎛

⎜
⎝

∫ 1
0 θ(s)dB(s)
√∫ 1

0 θ2(s)ds

⎞

⎟
⎠

⎤

⎥
⎦ .

(11)

Remark 1 It is obvious that

Ẽ

[

ϕ

(
W(·)√〈W 〉1

)]

≥ EP [ϕ (B(·))] .

An interesting problem is how to estimate the upper bounds of the expectations on
the right hand side of (10) and (11).

Further, W(·)√〈W 〉1

d= W(·)√
〈W 〉1

, where W(t) is a G-Brownian motion with W(1) ∼
N(0, [r−2, 1]), r2 = σ 2/σ 2.

For the classical self-normalized central limit theorem, Giné et al. (1997) showed
that the finiteness of the second moments can be relaxed to the condition (4). Csörgő
et al. (2003) proved the self-normalized functional central limit theorem under (4).
The next theorem gives a similar result under the sub-linear expectation and is an
extension of Theorem 2.
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Theorem 3 Let {Xn; n ≥ 1} be a sequence of independent and identically
distributed random variables in the sub-linear expectation space (�, H , Ê) with
Ê[X1] = Ê[X1] = 0. Denote l(x) = Ê

[
X2

1 ∧ x2
]
. Suppose

(I) x2
V(|X1| ≥ x) = o (l(x)) as x → ∞;

(II) limx→∞
Ê
[
X2

1∧x2
]

Ê
[
X2

1∧x2
] = r2 < ∞;

(III) Ê[(|X1| − c)+] → 0 as c → ∞.

Then, the conclusions of Theorem 2 remain true with W(t) being a G-Brownian
motion such that W(1) ∼ N(0, [r−2, 1]).

Remark 2 Note for c > 1, l(cx) = Ê
[
X2

1 ∧ (cx)2
] ≤ l(x) + (cx)2

V(|X1| ≥ x).
Condition (I) implies that l(cx)/ l(x) → 1 as x → ∞, i.e., l(x) is a slowly varying
function. Therefore, there is a constant C such that

∫∞
x

y−2l(y)dy ≤ Cx−1l(x) if x

is large enough. So,
∫∞
x

V(|X1| ≥ y)dy = o(x−1l(x)). Also, by Lemma 3.9 (b) of

Zhang (2016), condition (III) implies that Ê
[
(|X1| − x)+

] ≤ ∫∞
x

V(|X1| ≥ y)dy.

Hence, Ê
[
(|X1| − x)+

] = o(x−1l(x)) if conditions (I) and (III) are satisfied. When

Ê is a continuous sub-linear expectation, then for any random variable Y we have
Ê[|Y |] ≤ ∫∞

0 V(|Y | ≥ y)dy by Lemma 3.9 (c) of Zhang (2016), and so the condition

(III) can be removed. Here, Ê is called continuous if, for any 0 ≤ Xn, X ∈ H with
Ê[Xn], Ê[X] < ∞, Ê[Xn] ↗ Ê[X] whenever 0 ≤ Xn ↗ X, and, Ê[Xn] ↘ Ê[X]
whenever Xn ↘ X.

Invariance principle

To prove Theorems 2 and 3, we will prove a new Donsker’s invariance principle. Let
{(Xi, Yi); i ≥ 1} be a sequence of independent and identically distributed random
vectors in the sub-linear expectation space (�, H , Ê) with Ê[X1] = Ê[−X1] = 0,
Ê[X2

1] = σ 2, Ê[X2
1] = σ 2, Ê[Y1] = μ, Ê[Y1] = μ. Denote

G(p, q) = Ê

[
1

2
qX2

1 + pY1

]

, p, q ∈ R. (12)

Let ξ be a G-normal distributed random variable, η be a maximal distributed ran-
dom variable such that the distribution of (ξ, η) is characterized by the following
parabolic partial differential equation (PDE) defined on [0, ∞) × R × R:

∂tu − G
(
∂yu, ∂2

xxu
)

= 0, (13)

i.e., if for any bounded Lipschitz function ϕ(x, y) : R
2 → R, the function

u(x, y, t) = Ẽ
[
ϕ
(
x + √

tξ, y + tη
)]

(x, y ∈ R, t ≥ 0) is the unique viscosity
solution of the PDE (13) with Cauchy condition u|t=0 = ϕ.

Further, let Bt and bt be two random processes such that the distribution of the
process (B·, b·) is characterized by

(i) B0 = 0, b0 = 0;
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(ii) for any 0 ≤ t1 ≤ . . . ≤ tk ≤ s ≤ t +s, (Bs+t −Bs, bs+t −bs) is independent
to (Btj , btj ), j = 1, . . . , k, in sense that, for any ϕ ∈ Cl,Lip(R2(k+1)),

Ẽ
[
ϕ
(
(Bt1 , bt1), . . . , (Btk , btk ), (Bs+t − Bs, bs+t − bs)

)]

= Ẽ
[
ψ
(
(Bt1 , bt1), . . . , (Btk , btk )

)]
,

(14)

where

ψ ((x1, y1), . . . , (xk, yk)) = Ẽ [ϕ ((x1, y1), . . . , (xk, yk) ,

(Bs+t − Bs, bs+t − bs))
] ;

(iii) for any t, s > 0, (Bs+t − Bs, bs+t − bs)
d∼ (Bt , bt ) under Ẽ;

(iv) for any t > 0, (Bt , bt )
d∼ (√

tB1, tb1
)

under Ẽ;
(v) the distribution of (B1, b1) is characterized by the PDE (13).

It is easily seen that Bt is a G-Brownian motion with B1 ∼ N
(
0, [σ 2, σ 2]),

and (Bt , bt ) is a generalized G-Brownian motion introduced by Peng (2010a). The
existence of the generalized G-Brownian motion can be found in Peng (2010a).

Theorem 4 Suppose Ê
[
(X2

1 − b)+
] → 0 and Ê

[
(|Y1| − b)+

] → 0 as b → ∞.
Let

W̃n(t) =
(

S̃X
n (t)√

n
,
S̃Y

n (t)

n

)

.

Then, for any bounded continuous function ϕ : C[0, 1] × C[0, 1] → R,

lim
n→∞ Ê

[
ϕ
(
W̃ n(·)

)] = Ẽ [ϕ (B·, b·)] . (15)

Further, let p ≥ 2, q ≥ 1, and assume Ê[|X1|p] < ∞, Ê[|Y1|q ] < ∞. Then, for
any continuous function ϕ : C[0, 1] × C[0, 1] → R with |ϕ(x, y)| ≤ C(1 + ‖x‖p +
‖y‖q),

lim
n→∞ Ê

∗ [ϕ
(
W̃ n(·)

)] = Ẽ [ϕ (B·, b·)] . (16)

Here ‖x‖ = sup0≤t≤1 |x(t)| for x ∈ C[0, 1].

Remark 3 WhenXk and Yk are random vectors inRd with Ê[Xk] = Ê[−Xk] = 0,
Ê[(‖X1‖2 − b)+] → 0 and Ê[(‖Y1‖ − b)+] → 0 as b → ∞. Then, the function G

in (12) becomes

G(p, A) = Ê

[
1

2
〈AX1, X1〉 + 〈p, Y1〉

]

, p ∈ R
d , A ∈ S(d),

where S(d) is the collection of all d × d symmetric matrices. The conclusion of
Theorem 4 remains true with the distribution of (B1, b1) being characterized by the
following parabolic partial differential equation defined on [0, ∞) × R

d × R
d :

∂tu − G
(
Dyu, D2

xxu
)

= 0, u|t=0 = ϕ,

where Dy = (∂yi
)ni=1 and D2

xx = (∂2
xixj

)di,j=1.
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Remark 4 As a conclusion of Theorem 4, we have

Ê

[

ϕ

(
SX

n√
n
,
SY

n

n

)]

→ Ẽ

[
ϕ(B1, b1)

]
, ϕ ∈ Cb(R

2).

This is proved by Peng (2010a) under the conditions Ê
[|X1|2+δ

]
< ∞ and

Ê
[|Y1|1+δ

]
< ∞ (cf. Theorem 3.6 and Remark 3.8 therein).

When Y1 ≡ 0, (15) becomes

lim
n→∞ Ê

[

ϕ

(
S̃X

n (·)√
n

)]

= Ẽ [ϕ (B·)] , ϕ ∈ Cb(C[0, 1]),

which is proved by Zhang (2015).

Before the proof, we need several lemmas. For random vectors Xn in (�, H , Ê)

and X in
(
�̃, H̃ , Ẽ

)
, we write Xn

d→ X if

Ê [ϕ(Xn)] → Ẽ [ϕ(X)]

for any bounded continuous ϕ. Write Xn
V→ x if V(‖Xn − x‖ ≥ ε) → 0 for any

ε > 0. {Xn} is called uniformly integrable if

lim
b→∞ lim sup

n→∞
Ê
[
(‖Xn‖ − b)+

] = 0.

The following three lemmas are obvious.

Lemma 2 If Xn
d→ X and ϕ is a continuous function, then ϕ(Xn)

d→ ϕ(X).

Lemma 3 (Slutsky’s Lemma) Suppose Xn
d→ X, Y n

V→ y, ηn
V→ a, where a is

a constant and y is a constant vector, and Ṽ(‖X‖ > λ) → 0 as λ → ∞. Then,

(Xn, Y n, ηn)
d→ (X, y, a), and as a result, ηnXn + Y n

d→ aX + y.

Remark 5 Suppose Xn
d→ X. Then, Ṽ(‖X‖ > λ) → 0 as λ → ∞ is equivalent

to the tightness of {Xn; n ≥ 1}, i.e.,

lim
λ→∞ lim sup

n→∞
V (‖Xn‖ > λ) = 0,

because for all ε > 0, we can define a continuous function ϕ(x) such that I {x >

λ + ε} ≤ ϕ(x) ≤ I {x > λ] and so
Ṽ(‖X‖ > λ + ε) ≤ Ẽ[ϕ(‖X‖)] = lim

n→∞ Ê[ϕ(‖Xn‖)] ≤ lim sup
n→∞

V (‖Xn‖ > λ) ,

lim sup
n→∞

V (‖Xn‖ > λ + ε) ≤ lim
n→∞ Ê[ϕ(‖Xn‖)] = Ẽ[ϕ(‖X‖)] ≤ Ṽ(‖X‖ > λ).
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Lemma 4 Suppose Xn
d→ X.

(a) If {Xn} is uniformly integrable and Ẽ[((‖X‖ − b)+] → 0 as b → ∞, then,

Ê[Xn] → Ẽ[X]. (17)

(b) If supn Ê[|Xn‖q < ∞ and Ẽ[|X‖q < ∞ for some q > 1, then (17) holds.

The following lemma is proved by Zhang (2015).

Lemma 5 Suppose thatXn
d→ X, Y n

d→ Y , Y n is independent toXn under Ê and

Ṽ(‖X‖ > λ) → 0 and Ṽ(‖Y‖ > λ) → 0 as λ → ∞. Then (Xn, Y n)
d→ (X, Y ),

where X
d= X, Y

d= Y and Y is independent to X under Ẽ.

The next lemma is about the Rosenthal-type inequalities due to Zhang (2016).

Lemma 6 Let {X1, . . . , Xn} be a sequence of independent random variables in
(�, H , Ê).

(a) Suppose p ≥ 2. Then,

Ê

[

max
k≤n

|Sk|p
]

≤ Cp

⎧
⎨

⎩

n∑

k=1

Ê
[|Xk|p

]+
(

n∑

k=1

Ê

[
|Xk|2

]
)p/2

+
(

n∑

k=1

[
(
Ê[Xk]

)− +
(
Ê[Xk]

)+]
)p}

.

(18)

(b) Suppose Ê[Xk] ≤ 0, k = 1, . . . , n. Then,

Ê

[∣
∣
∣
∣max
k≤n

(Sn − Sk)

∣
∣
∣
∣

p]

≤ 22−p
n∑

k=1

Ê[|Xk|p], for1 ≤ p ≤ 2 (19)

and

Ê

[∣
∣
∣
∣max
k≤n

(Sn − Sk)

∣
∣
∣
∣

p]

≤ Cp

⎧
⎨

⎩

n∑

k=1

Ê
[|Xk|p

]+
(

n∑

k=1

Ê

[
|Xk|2

]
)p/2

⎫
⎬

⎭

≤ Cpnp/2−1
n∑

k=1

Ê[|Xk|p], for p ≥ 2.

(20)

Lemma 7 Suppose Ê[X1] = Ê[−X1] = 0 and Ê
[
X2

1

]
< ∞. Let Xn,k =

(−√
n) ∨ Xk ∧ √

n, X̂n,k = Xk − Xn,k , S
X

n,k = ∑k
j=1 Xn,j and ŜX

n,k = ∑k
j=1 X̂n,j ,

k = 1, . . . , n. Then

Ê

⎡

⎣max
k≤n

∣
∣
∣
∣
∣

S
X

n,k√
n

∣
∣
∣
∣
∣

q
⎤

⎦ ≤ Cq, for all q ≥ 2,
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and

lim
n→∞ Ê

[

max
k≤n

∣
∣
∣
∣
∣

ŜX
n,k√
n

∣
∣
∣
∣
∣

p]

= 0

whenever Ê[(|X1|p − b)+] → 0 as b → ∞ if p = 2, and Ê[|X1|p] < ∞ if p > 2.

Proof Note Ê[X1] = Ê[X1] = 0. So, |Ê[Xn,1]| = |Ê[X1]− Ê[Xn,1]| ≤ Ê|X̂n,1| ≤
Ê[(|X1|2 − n)+]n−1/2 and |Ê[Xn,1]| = |Ê[X1] − Ê[Xn,1]| ≤ Ê|X̂n,1| ≤ Ê[(|X1|2 −
n)+]n−1/2. By Rosenthal’s inequality (cf. (18)),

Ê

[

max
k≤n

∣
∣
∣S

X

n,k

∣
∣
∣
q
]

≤ Cp

{

nÊ[|Xn,1|q +
(
nÊ
[
|Xn,1|2

])q/2

+
(

n

[
(
Ê[Xn,1]

)− +
(
Ê[Xn,1]

)+])q}

≤ Cq

{

nnq/2−1
Ê

[
|X1|2

]
+ nq/2

(
Ê

[
X2

1

])q/2 +
(

nn−1/2
Ê

[(
X2

1 − n
)+])q}

≤ Cqnq/2
{
Ê

[
|X1|2

]
+
(
Ê

[
X2

1

])q}
, for all q ≥ 2

and

Ê

[

max
k≤n

∣
∣
∣ŜX

n,k

∣
∣
∣
p
]

≤Cp

{

nÊ
[|X̂n,1|p

]+
(
nÊ
[
|X̂n,1|2

])p/2

+
(

n

[
(
Ê[X̂n,1]

)− +
(
Ê[X̂n,1]

)+])p}

≤Cp

{

nÊ
[(|X1|p − np/2)+]+ np/2

(
Ê

[
(X2

1 − n)+
])p/2

+np/2
(
Ê

[
(X2

1 − n)+
])p}

, p ≥ 2.

The proof is completed.

Lemma 8 (a) Suppose p ≥ 2, Ê[X1] = Ê[−X1] = 0, Ê[(X2
1 − b)+] → 0 as

b → ∞ and Ê[|X1|p] < ∞. Then,

{

max
k≤n

∣
∣
∣
∣
∣

SX
k√
n

∣
∣
∣
∣
∣

p}∞

n=1

is uniformly integrable and therefore is tight.

(b) Suppose p ≥ 1, Ê
[
(|Y1| − b)+

] → 0 as b → ∞, and Ê[|Y1|p] < ∞. Then,

{

max
k≤n

∣
∣
∣
∣
∣

SY
k

n

∣
∣
∣
∣
∣

p}∞

n=1

is uniformly integrable and therefore is tight.
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Proof (a) follows from Lemma 6. (b) is obvious by noting

Ê

⎡

⎣

((
maxk≤n |SY

k |
n

− b

)+)p
⎤

⎦ ≤ Ê

[(∑n
k=1(|Yk| − b)+

n

)p]

≤Cp

(∑n
k=1 Ê[(|Yk| − b)+]

n

)p

+ Cp

Ê

[∣
∣
∣
(∑n

k=1{(|Yk| − b)+ − Ê[(|Yk| − b)+]}
)+ ∣∣
∣
p]

np

≤Cp

(
Ê
[
(|Y1| − b)+

])p + Cp

(
n−p/2 + n1−p

)
Ê
[
(|Y1|p − bp)+

]

by the Rosenthal-type inequalities (19) and (20).

Lemma 9 Suppose Ê
[
(|Y1| − b)+

] → 0 as b → ∞. Then, for any ε > 0,

V

(
SY

n

n
> Ê[Y1] + ε

)

→ 0 and V

(
SY

n

n
< Ê[Y1] − ε

)

→ 0.

Proof Let Yk,b = (−b) ∨ Yk ∧ b, Sn,1 = ∑n
k=1 Yk,b and Sn,2 = SY

n − Sn,1.

Note Ê
[
Y1,b] → Ê[Y1] as b → ∞. Suppose

∣
∣
∣Ê[Y1,b] − Ê[Y1]

∣
∣
∣ < ε/4. Then, by

Kolmogorov’s inequality (cf. (19)),

V

(
Sn,1

n
> Ê[Y1] + ε/2

)

≤ V

(
Sn,1

n
> Ê[Y1,b] + ε/4

)

≤ 16

n2ε2
Ê

⎡

⎣

(
( n∑

k=1

(
Yk,b − Ê[Yk,b]

))+
)2
⎤

⎦

≤ 32

n2ε2

n∑

k=1

Ê

[(
Yk,b − Ê[Yk,b]

)2
]

≤ 32(2b)2

nε2
→ 0.

Also,

V

(
Sn,2

n
> ε/2

)

≤ 2

nε

n∑

k=1

Ê|Yk − Yk,b| ≤ 2

ε
Ê
[
(|Y1| − b)+

] → 0 as b → ∞.

It follows that

V

(
SY

n

n
> Ê[Y1] + ε

)

→ 0.

By considering {−Yk} instead, we have

V

(
SY

n

n
< Ê[Y1] − ε

)

= V

(−SY
n

n
> Ê[−Y1] + ε

)

→ 0.
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Proof of Theorem 4. We first show the tightness of W̃ n. It is easily seen that

wδ

(
S̃Y

n (·)
n

)

≤ 2δb +
∑n

k=1(|Yk| − b)+

n
.

It follows that for any ε > 0, if δ < ε/(4b), then

sup
n

V

(

wδ

(
S̃Y

n (·)
n

)

≥ ε

)

≤ sup
n

V

(
n∑

k=1

(|Yk| − b)+ ≥ n
ε

2

)

≤ 2

ε
Ê
[
(|Y1| − b)+

]
.

Letting δ → 0 and then b → ∞ yields

sup
n

V

(

wδ

(
S̃Y

n (·)
n

)

≥ ε

)

→ 0 as δ → 0.

For any η > 0, we choose δk ↓ 0 such that, if

Ak =
{

x : ωδk
(x) <

1

k

}

,

then supn V
(
S̃Y

n (·)/n ∈ Ac
k

) ≤ η/2k+1. Let A = {x : |x(0)| ≤ a}, K2 = A
⋂∞

k=1 Ak .
Then, by the Arzelá-Ascoli theorem, K2 ⊂ Cb(C[0, 1]) is compact. It is obvious that
{S̃Y

n (·)/n �∈ A} = ∅, because S̃Y
n (0)/n = 0. Next, we show that

V

(
S̃Y

n (·)/n ∈ Kc
2

)
≤ V

(
S̃Y

n (·)/n ∈ Ac
)

+
∞∑

k=1

V

(
S̃Y

n (·)/n ∈ Ac
k

)
.

Note that when δ < 1/(2n),

ωδ

(
S̃Y

n (·)/n
)

≤ 2n|t − s| max
i≤n

|Yi |/n ≤ 2δ max
i≤n

|Yi |.
Choose a k0 such that δk < 1/(2Mk) for k ≥ k0. Then, on the event E =

{maxi≤n |Yi | ≤ M}, {S̃Y
n (·)/n ∈ Ac

k} = ∅ for k ≥ k0. So, by the (finite) sub-additivity
of V,

V

(
E
⋂{

S̃Y
n (·)/n ∈ Kc

})

≤V

(
E
⋂{

S̃Y
n (·)/n ∈ Ac

})
+

k0∑

k=1

V

(
E
⋂{

S̃Y
n (·)/n ∈ Ac

k

})

≤V

(
S̃Y

n (·)/n ∈ Ac
)

+
∞∑

k=1

V

(
S̃Y

n (·)/n ∈ Ac
k

)
.

On the other hand,

V(Ec) ≤ Ê[maxi≤n |Yi |]
M

≤ nÊ[|Y1|]
M

.

It follows that

V

(
S̃Y

n (·)/n ∈ Kc
2

)
≤ V

(
S̃Y

n (·)/n ∈ Ac
)

+
∞∑

k=1

V

(
S̃Y

n (·)/n ∈ Ac
k

)
+ nÊ[|Y1|]

M
.
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Letting M → ∞ yields

V

(
S̃Y

n (·)/n ∈ Kc
2

)
≤ V(S̃Y

n (·)/n ∈ Ac) +
∞∑

k=1

V

(
S̃Y

n (·)/n ∈ Ac
k

)

< 0 +
∞∑

k=1

η

2k+1
<

η

2
.

We conclude that for any η > 0, there exists a compact K2 ⊂ Cb(C[0, 1]) such that

sup
n

Ê
∗
[

I

{
S̃Y

n (·)
n

�∈ K2

}]

= sup
n

V

{
S̃Y

n (·)
n

�∈ K2

}

< η/2. (21)

Next, we show that for any η > 0, there exists a compact K1 ⊂ Cb(C[0, 1]) such that

sup
n

Ê
∗
[

I

{
S̃X

n (·)√
n

�∈ K1

}]

= sup
n

V

{
S̃X

n (·)√
n

�∈ K1

}

< η/2. (22)

Similar to (21), it is sufficient to show that

sup
n

V

(

wδ

(
S̃X

n (·)√
n

)

≥ ε

)

→ 0 as δ → 0. (23)

With the same argument of Billingsley (1968, Pages 56–59, cf. (8.12)), for large n,

V

(

wδ

(
S̃X

n (·)√
n

)

≥ 3ε

)

≤ 2

δ
V

(

max
i≤[nδ]

|SX
i |√[nδ] ≥ ε

√
n√[nδ]

)

≤2

δ
V

(

max
i≤[nδ]

∣
∣SX

i

∣
∣

√[nδ] ≥ ε√
2δ

)

≤ 4

ε2
Ê

[(

max
i≤[nδ]

∣
∣
∣

SX
i√[nδ]

∣
∣
∣
2 − ε2

2δ

)+]
.

It follows that

lim
δ→0

lim sup
n→∞

V

(

wδ

(
S̃X

n (·)√
n

)

≥ 3ε

)

= 0

by Lemma 8 (a), where p = 2. On the other hand, for fixed n, if δ < 1/(2n), then

ωδ(S̃
X
n (·)/√n) ≤ 2n|t − s| max

i≤n
|Xi |/

√
n ≤ 2δ

√
n max

i≤n
|Xi |.

We have

lim
δ→0

V

(

wδ

(
S̃X

n (·)√
n

)

≥ ε

)

= 0

for each n. It follows that (23) holds.
Now, by combining (21) and (22) we obtain the tightness of W̃ n as follows.

sup
n

Ê
∗[I
{
W̃ n(·) �∈ K1 × K2

}]
< η. (24)
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Define Ên by

Ên[ϕ] = Ê

[
ϕ
(
W̃ n(·)

)]
, ϕ ∈ Cb

(
C[0, 1] × C[0, 1]).

Then, the sequence of sub-linear expectations {Ên}∞n=1 is tight by (24). By Theo-

rem 9 of Peng (2010b), {Ên}∞n=1 is weakly compact, namely, for each subsequence

{Ênk
}∞k=1, nk → ∞, there exists a further subsequence

{
Êmj

}∞
j=1

⊂
{
Ênk

}∞
k=1

,

mj → ∞, such that, for each ϕ ∈ Cb

(
C[0, 1] × C[0, 1]), {Êmj

[ϕ]} is a Cauchy
sequence. Define F[·] by

F[ϕ] = lim
j→∞ Êmj

[ϕ], ϕ ∈ Cb

(
C[0, 1] × C[0, 1]).

Let � = C[0, 1] × C[0, 1], and (ξt , ηt ) be the canonical process ξt (ω) = ω
(1)
t ,

ηt (ω) = ω
(2)
t

(
ω = (

ω(1), ω(2)
) ∈ �

)
. Then,

Ê

[
ϕ
(
W̃mj

(·))
]

→ F [ϕ(ξ·, η·)] , ϕ ∈ Cb

(
C[0, 1] × C[0, 1]). (25)

The topological completion of Cb(�) under the Banach norm F[‖ · ‖] is denoted
by LF(�). F[·] can be extended uniquely to a sub-linear expectation on LF(�).

Next, it is sufficient to show that (ξt , ηt ) defined on the sub-linear space

(�, LF(�),F) satisfies (i)-(v) and so (ξ·, η·)
d= (B·, b·), which means that the limit

distribution of any subsequence of W̃ n(·) is uniquely determined.
The conclusion in (i) is obvious. For (ii) and (iii), we let 0 ≤ t1 ≤ . . . ≤ tk ≤ s ≤

t + s. By (25), for any bounded continuous function ϕ : R2(k+1) → R we have

Ê
[
ϕ
(
W̃mj

(t1), . . . , W̃mj
(tk), W̃mj

(s + t) − W̃mj
(s)
)]

→F
[
ϕ
(
(ξt1 , ηt1), . . . , (ξtk , ηtk ), (ξs+t − ξs, ηs+t − ηs)

)]
.

Note

sup
0≤t≤1

∣
∣
∣S̃X

n (t) − SX[nt]
∣
∣
∣

√
n

≤ maxk≤n |Xk|√
n

V→ 0,

sup
0≤t≤1

∣
∣
∣S̃Y

n (t) − SY[nt]
∣
∣
∣

n
≤ maxk≤n |Yk|

n

V→ 0.

It follows that by Lemmas 3 and 8,

Ê

[

ϕ

((
SX[mj t1]√

mj

,
SY[mj t1]

mj

)

, . . . ,

(
SX[mj tk]√

mj

,
SY[mj tk]

mj

)

,

(
SX

[mj (s+t)] − SX[mj s]√
mj

,
SY

[mj (s+t)] − SY[mj s]
mj

))]

→ F
[
ϕ
(
(ξt1 , ηt1), . . . , (ξtk , ηtk ), (ξs+t − ξs, ηs+t − ηs)

)]
.

(26)
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In particular,
(

SX
[mj (s+t)]−[mj s]√

mj

,
SY

[mj (s+t)]−[mj s]
mj

)
d=
(

SX
[mj (s+t)] − SX[mj s]√

mj

,
SY

[mj (s+t)] − SY[mj s]
mj

)

d→ (
ξs+t − ξs, ηs+t − ηs

)
.

It follows that
(

SX[mj t]√
mj

,
SY[mj t]
mj

)
d→ (

ξs+t − ξs, ηs+t − ηs

)
. (27)

On the other hand, (
SX[mj t]√

mj

,
SY[mj t]
mj

)
d→ (

ξt , ηt

)
,

by (26). Hence,

F
[
φ(ξs+t − ξs, ηs+t − ηs)

] = F [φ(ξt , ηt )] for all φ ∈ Cb

(
R

2
)

. (28)

Next, we show that

F[|ξs+t − ξs |p] ≤ Cptp/2 and F[|ηs+t − ηs |p] ≤ Cptp, for all p ≥ 2 and t, s ≥ 0.

(29)
By Lemma 9,

Ṽ
(
tμ − ε ≤ ηs+t − ηs ≤ tμ + ε

) = 1 for all ε > 0. (30)

It follows that
F[|ηs+t − ηs |p] ≤ tp

∣
∣Ê[|Y1|]

∣
∣p.

For considering ξs+t − ξs , we let S
X

n,k and ŜX
n,k be defined as in Lemma 7. Then,

SX
k = S

X

n,k + ŜX
n,k . By (27) and Lemmas 7 and 3,

S
X

[mj t],[mj t]√
mj

d→ ξs+t − ξs and Ê

⎡

⎣

∣
∣
∣
∣
∣
∣

S
X

[mj t],[mj t]√
mj

∣
∣
∣
∣
∣
∣

p⎤

⎦ ≤ Cptp/2, p ≥ 2.

It follows that

F
[|ξs+t − ξs |p ∧ b

] = lim
n→∞ Ê

⎡

⎣

∣
∣
∣
∣
∣
∣

S
X

[mj t],[mj t]√
mj

∣
∣
∣
∣
∣
∣

p

∧ b

⎤

⎦ ≤ Cptp/2, for any b > 0.

Hence,

F
[|ξs+t − ξs |p

] = lim
b→∞F

[|ξs+t − ξs |p ∧ b
] ≤ Cptp/2

by the completeness of (�, LF(�),F). (29) is proved.
Now, note that (Xi, Yi), i = 1, 2, . . ., are independent and identically distributed.

By (26) and Lemma 5, it is easily seen that (ξ·, η·) satisfies (14) for ϕ ∈ Cb(R
2(k+1)).

Note that, by (29), the random variables concerned in (14) and (28) have finite
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moments of each order. The function space Cb(R
2(k+1)) and Cb(R

2) can be extended
to Cl,Lip(R2(k+1)) and Cl,Lip(R2), respectively, by elemental arguments. So, (ii) and
(iii) are proved.

For (iv) and (v), we let ϕ : R2 → R be a bounded Lipschitz function and consider

u(x, y, t) = F [ϕ(x + ξt , y + ηt )] .

It is sufficient to show that u is a viscosity solution of the PDE (13). In fact, due
to the uniqueness of the viscosity solution, we will have

F [ϕ(x + ξt , y + ηt )] = Ẽ

[
ϕ(x + √

tξ, y + tη)
]
, ϕ ∈ Cb,Lip(R2).

Letting x = 0 and y = 0 yields (iv) and (v).
To verify PDE (13), first it is easily seen that

Ê

⎡

⎣q

2

(
SX[nt]√

n

)2

+ p
SY[nt]
n

⎤

⎦ = [nt]
n

Ê

⎡

⎣q

2

(
SX[nt]√[nt]

)2

+ p
SY[nt]
[nt]

⎤

⎦ = [nt]
n

G(p, q).

Note that

{
q
2

(
SX[nt]√

n

)2

+ p
SY[nt]
n

}

is uniformly integrable by Lemma 8. By

Lemma 4, we conclude that

F

[q

2
ξ2
t + pηt

]
= lim

mj →∞ Ê

⎡

⎣q

2

(
SX[mj t]√

mj

)2

+ p
SY[mj t]
mj

⎤

⎦ = tG(p, q).

It is obvious that if q1 ≤ q2, then G(p, q1) − G(p, q2) ≤ G(0, q1 − q2) ≤
0. Also, it is easy to verify that |u(x, y, t) − u(x, y, t)| ≤ C(|x − x| + |y − y|),
|u(x, y, t) − u(x, y, s)| ≤ C

√|t − s| by the Lipschitz continuity of ϕ, and

u(x, y, t) =F [ϕ(x + ξs + ξt − ξs, y + ηs + ηt − ηs)]

=F

[
F [ϕ(x + x + ξt − ξs, y + y + ηt − ηs)]

∣
∣
(x,y)=(ξs ,ηs )

]

=F [u(x + ξs, y + ηs, t − s)] , 0 ≤ s ≤ t.

Let ψ(·, ·, ·) ∈ C
3,3,2
b (R,R, [0, 1]) be a smooth function with ψ ≥ u and

ψ(x, y, t) = u(x, y, t). Then,

0 =F [u(x + ξs, y + ηs, t − s) − u(x, y, t)] ≤ F [ψ(x + ξs, y + ηs, t − s) − ψ(x, y, t)]

=F

[

∂xψ(x, y, t)ξs + 1

2
∂2
xxψ(x, y, t)ξ2

s + ∂yψ(x, y, t)ηs − ∂tψ(x, y, t)s + Is

]

≤F

[

∂xψ(x, y, t)ξs + 1

2
∂2
xxψ(x, y, t)ξ2

s + ∂yψ(x, y, t)ηs − ∂tψ(x, y, t)s

]

+ F[|Is |]

=F

[
1

2
∂2
xxψ(x, y, t)ξ2

s + ∂yψ(x, y, t)ηs

]

− ∂tψ(x, y, t)s + F[|Is |]
=sG(∂yψ(x, y, t), ∂2

xxψ(x, y, t)) − s∂tψ(x, y, t) + F[|Is |],



Probability, Uncertainty and Quantitative Risk  (2017) 2:4 Page 19 of 25

where

|Is | ≤ C
(
|ξs |3 + |ηs |2 + s2

)
.

By (29), we have F[|Is |] ≤ C
(
s3/2 + s2 + s2

) = o(s). It follows that [∂tψ −
G(∂yψ, ∂2

xx)](x, y, t) ≤ 0. Thus, u is a viscosity subsolution of (13). Similarly, we
can prove that u is a viscosity supersolution of (13). Hence, (15) is proved.

As for (16), let ϕ : C[0, 1] × C[0, 1] → R be a continuous function with
|ϕ(x, y)| ≤ C0(1 + ‖x‖p + ‖y‖q). For λ > 4C0, let ϕλ(x, y) = (−λ) ∨ (ϕ(x, y) ∧
λ) ∈ Cb(C[0, 1]). It is easily seen that ϕ(x, y) = ϕλ(x, y) if |ϕ(x, y)| ≤ λ. If
|ϕ(x, y)| > λ, then

|ϕ(x, y)−ϕλ(x, y)| = |ϕ(x, y)| − λ ≤ C0(1 + ‖x‖p + ‖y‖q) − λ

≤C0

{(
‖x‖p − λ/(4C0)

)+ +
(
‖y‖q − λ/(4C0)

)+}
.

Hence,

|ϕ(x, y) − ϕλ(x, y)| ≤ C0

{(
‖x‖p − λ/(4C0)

)+ +
(
‖y‖q − λ/(4C0)

)+}
.

It follows that

lim
λ→∞ lim sup

n→∞

∣
∣
∣Ê∗[ϕ

(
W̃ n(·)

)]
− Ê

[
ϕλ

(
W̃ n(·)

) ]∣∣
∣

≤ lim
λ→∞ lim sup

n→∞
C0

⎧
⎨

⎩
Ê

⎡

⎣

(

max
k≤n

∣
∣
∣
∣
∣

SX
k√
n

∣
∣
∣
∣
∣

p

− λ

4C0

)+⎤

⎦+ Ê

⎡

⎣

(

max
k≤n

∣
∣
∣
∣
∣

SY
k

n

∣
∣
∣
∣
∣

q

− λ

4C0

)+⎤

⎦

⎫
⎬

⎭

=0,

by Lemma 8. Further, by (15),

lim
n→∞ Ê

[
ϕλ

(
W̃ n(·)

)] = Ẽ [ϕλ (B·, b·)] → Ẽ [ϕ (B·, b·)] as λ → ∞.

(16) is proved, and the proof of Theorem 4 is now completed.

Proof of Theorem 4. When Xk and Yk are d-dimensional random vectors, the
tightness (24) of W̃ n(·) also follows, because each sequence of the components of
vector W̃ n(·) is tight. Also, (29) remains true, because each component has this
property. Moreover, it follows that

F

[
1

2
〈Aξt , ξt 〉 + 〈p, ηt 〉

]

= lim
mj →∞ Ê

[
1

2

〈

A
SX[mj t]√

mj

,
SX[mj t]√

mj

〉

+
〈

p,
SY[mj t]
mj

〉]

= lim
mj →∞

[mj t]
mj

G(p, A) = tG(p, A).

The remaining proof is the same as that of Theorem 4.
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Proof of the self-normalized FCLTs

Let Yk = X2
k . The function G(p, q) in (12) becomes

G(p, q) = Ê

[(q

2
+ p

)
X2

1

]
=
(q

2
+ p

)+
σ 2 −

(q

2
+ p

)−
σ 2, p, q ∈ R.

Then, the process (Bt , bt ) in (15) and the process (W(t), 〈W 〉t ) are identically
distributed.

In fact, note

〈W 〉t+s −〈W 〉t = (W(t +s)−W(t))2 −2
∫ s

0
(W(t +x)−W(t))d(W(t +x)−W(t)).

It is easy to verify that (W(t), 〈W 〉t ) satisfies (i)-(iv) for (B·, b·). It remains to

show that (B1, b1)
d= (W(1), 〈W 〉1). Let {Xn; n ≥ 1} be a sequence of independent

and identically distributed random variables with X1
d= W(1). Then, by Theorem 4,

(∑n
k=1 Xk√

n
,

∑n
k=1 X2

k

n

)
d→ (B1, b1).

Further, let tk = k
n

. Then,
(∑n

k=1 Xk√
n

,

∑n
k=1 X2

k

n

)
d=
(

W(1),

n∑

k=1

(W(tk) − W(tk−1))
2

)
L2→ (W(1), 〈W 〉1).

Hence, (B·, b·)
d= (W(·), 〈W 〉·). We conclude the following proposition from

Theorem 4.

Proposition 1 Suppose Ê[(X2
1 − b)+] → 0 as b → ∞. Then, for any bounded

continuous function ψ : C[0, 1] × C[0, 1] → R,

Ê

[

ψ

(
S̃X

n (·)√
n

,
Ṽn(·)

n

)]

→ Ẽ

[
ψ
(
W(·), 〈W 〉·

)]
,

where Ṽn(t) = V[nt] + (nt − [nt])X2[nt]+1, and, in particular, for any bounded
continuous function ψ : C[0, 1] × R → R,

Ê

[

ψ

(
S̃X

n (·)√
n

,
Vn

n

)]

→ Ẽ

[
ψ
(
W(·), 〈W 〉1

)]
. (31)

Now, we begin the proof of Theorem 2. Let a = σ 2/2 and b = 2σ 2. According to
(30), we have Ṽ

(
σ 2 − ε < 〈W 〉1 < σ 2 + ε

) = 1 for all ε > 0. Let ϕ : C[0, 1] → R

be a bounded continuous function. Define

ψ
(
x(·), y) = ϕ

(
x(·)√

a ∨ y ∧ b

)

, x(·) ∈ C[0, 1], y ∈ R.
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Then, ψ : C[0, 1] × R → R is a bounded continuous function. Hence, by
Proposition 1,

Ê

[

ϕ

(
S̃X

n (·)/√n√
a ∨ (Vn/n) ∧ b

)]

→ Ẽ

[

ϕ

(
W(·)√

a ∨ (〈W 〉1) ∧ b

)]

= Ẽ

[

ϕ

(
W(·)√〈W 〉1)

)]

.

Also,

lim sup
n→∞

∣
∣
∣
∣
∣
Ê

∗
[

ϕ

(
S̃X

n (·)/√n√
Vn/n

)]

− Ê

[

ϕ

(
S̃X

n (·)/√n√
a ∨ (Vn/n) ∧ b

)]∣
∣
∣
∣
∣

≤ C lim sup
n→∞

V (Vn/n �∈ (a, b))

≤ CṼ

(
〈W 〉1 ≥ 3σ 2/2

)
+ CṼ

(
〈W 〉1 ≤ 2σ 2/3

)
= 0.

It follows that

Ê
∗
[

ϕ

(
S̃X

n (·)√
Vn

)]

→ Ẽ

[

ϕ

(
W(·)√〈W 〉1)

)]

.

The proof is now completed.

Proof of Theorem 3. First, note that

Ê

[
X2

1 ∧ x2
]

≤ Ê

[
X2

1 ∧ (kx)2
]

≤ Ê

[
X2

1 ∧ x2
]

+ k2x2
V(|X1| > x), k ≥ 1,

Ê
[|X1|r ∧ xr

] ≤ Ê
[|X1|r ∧ (δx)r

]+ Ê
[
(δx)r ∨ |X1|r ∧ xr

]

≤ δr−2xr−2l(δx) + xr
V(|X1| ≥ δx), 0 < δ < 1, r > 2.

The condition (I) implies that l(x) is slowly varying as x → ∞ and

Ê[|X1|r ∧ xr ] = o(xr−2l(x)), r > 2.

Further,

Ê
∗[X2

1I {|X1| ≤ x}]
l(x)

→ 1,

CV

(|X1|r I {|X1| ≥ x}) =
∫ ∞

xr

V(|X1|r ≥ y)dy = o(x2−r l(x)), 0 < r < 2.

If conditions (I) and (III) are satisfied, then

Ê[(|X1| − x)+] ≤ Ê
∗[|X1|I {|X| ≥ x}] ≤ CV

(|X1|I {|X1| ≥ x}) = o(x−1l(x)).

Now, let dt = inf{x : x−2l(x) = t−1}. Then, nl(dn) = d2
n . Similar to Theorem 2,

it is sufficient to show that for any bounded continuous function ψ : C[0, 1] ×
C[0, 1] → R,
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Ê

[

ψ

(
S̃X

n (·)
dn

,
Ṽn(·)
d2
n

)]

→ Ẽ [ψ(W(·), 〈W 〉·)] with W(1) ∼ N(0, [r−2, 1]).

Let Xk = Xk,n = (−dn) ∨ Xk ∧ dn, Sk = ∑k
i=1 Xi , V k = ∑k

i=1 X
2
i . Denote

Sn(t) = S[nt] + (nt − [nt])X[nt]+1 and V n(t) = V [nt] + (nt − [nt])X2
[nt]+1. Note

V
(
Xk �= Xk for some k ≤ n

) ≤ nV (|X1| ≥ dn) = n · o

(
l(dn)

d2
n

)

= o(1).

It is sufficient to show that for any bounded continuous function ψ : C[0, 1] ×
C[0, 1] → R,

Ê

[

ψ

(
Sn(·)
dn

,
V n(·)
d2
n

)]

→ Ẽ [ψ(W(·), 〈W 〉·)] .

Following the line of the proof of Theorem 4, we need only to show that

(a) for any 0 < t ≤ 1,

lim sup
n→∞

Ê

[

max
k≤[nt]

∣
∣
∣
∣
∣

Sk

dn

∣
∣
∣
∣
∣

p]

≤ Cptp/2, lim sup
n→∞

Ê

[

max
k≤[nt]

∣
∣
∣
∣
∣

V k

d2
n

∣
∣
∣
∣
∣

p]

≤ Cptp, ∀p ≥ 2;

(b) for any 0 < t ≤ 1,

lim
n→∞ Ê

⎡

⎣q

2

(
S[nt]
dn

)2

+ p
V [nt]
d2
n

⎤

⎦ = tG(p, q),

where

G(p, q) =
(q

2
+ p

)+ − r−2
(q

2
+ p

)− ;

(c)

max
k≤n

|Xk|
dn

V→ 0.

In fact, (a) implies the tightness of
(

S̃X
n (·)
dn

,
Ṽn(·)
d2
n

)
and (29), and (b) implies the

distribution of the limit process is uniquely determined.
First, (c) is obvious, because

V

(
max
k≤n

|Xk| ≥ εdn

)
≤ nV

(
|X1| ≥ εdn

)
= o(1)n

l(εdn)

ε2d2
n

= o(1)n
l(dn)

d2
n

= o(1).
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As for (a), by the Rosenthal-type inequality (18),

Ê

[

max
k≤[nt]

∣
∣
∣
∣
∣

Sk

dn

∣
∣
∣
∣
∣

p]

≤ Cpd
−p
n

{

[nt]Ê [|X1|p ∧ d
p
n

]+
(
[nt]Ê

[
|X1|2 ∧ d2

n

])p/2

+
(
[nt](Ê[(−dn) ∨ X1 ∧ dn])+ + [nt](Ê[(−dn) ∨ X1 ∧ dn])+

)p}

≤ Cpd
−p
n

{

[nt]Ê [|X1|p ∧ d
p
n

]+
(
[nt]Ê

[
|X1|2 ∧ d2

n

])p/2 +
(
[nt]Ê [(|X1| − dn)

+])p
}

≤ Cpd
−p
n

{

[nt]o
(
d

p−2
n l(dn)

)
+ ([nt]l(dn))

p/2 +
(

[nt]o
(

l(dn)

dn

))p}

= o(1)[nt] l(dn)

d2
n

+
( [nt]

n

)p/2 (
nl(dn)

d2
n

)p/2

+ o(1)

(

[nt] l(dn)

d2
n

)p

≤ Cptp/2 + o(1),

and similarly,

Ê

[

max
k≤[nt]

∣
∣
∣
∣
∣

V k

d2
n

∣
∣
∣
∣
∣

p]

≤ Cpd
−2p
n

{

[nt]Ê
[
|X1|2p ∧ d

2p
n

]
+
(
[nt]Ê

[
|X1|4 ∧ d4

n

])p/2

+
(
[nt]Ê

[
X2

1 ∧ d2
n

])
+ [nt]

(
Ê

[
X2

1 ∧ d2
n

])p}

= o(1) + Cp

(

[nt] l(dn)

d2
n

)p

≤ Cptp + o(1).

Thus (a) follows.
As for (b), note

q

2

(
S[nt]
dn

)2

+ p
V [nt]
d2
n

=
(q

2
+ p

) V [nt]
d2
n

+ q

∑[nt]−1
k=1 Sk−1Xk

d2
n

.

By (32),

Ê

[[nt]−1∑

k=1

Sk−1Xk

]

≤
[nt]−1∑

k=1

Ê
[
Sk−1Xk

]

≤
[nt]−1∑

k=1

{
Ê

[(
Sk−1

)+]
Ê
[
Xk

]− Ê
[
(Sk−1)

−] Ê
[
Xk

]}

≤
[nt]−1∑

k=1

(
Ê

[
|Sk−1|2

])1/2
Ê
[
(|X1| − dn)

+]

=O

((
d2
n

)1/2
)

· nÊ
[
(|X1| − dn)

+]

=O(dn) · n · o

(
l(dn)

dn

)

= o
(
d2
n

)
,

and similarly,
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Ê

[

−
[nt]−1∑

k=1

Sk−1Xk

]

= o
(
d2
n

)
.

Further,

Ê
[
V[nt]

]

d2
n

= [nt]Ê [X2
1 ∧ d2

n

]

d2
n

= [nt]
n

nl(dn)

d2
n

= [nt]
n

→ t

and
Ê
[
V[nt]

]

d2
n

= [nt]Ê [X2
1 ∧ d2

n

]

d2
n

= [nt]
n

Ê
[
X2

1 ∧ d2
n

]

Ê
[
X2

1 ∧ d2
n

] → tr−2.

Hence, we conclude that

Ê

⎡

⎣q

2

(
S[nt]
dn

)2

+ p
V [nt]
d2
n

⎤

⎦ = Ê

[
(q

2
+ p

) V [nt]
d2
n

]

+ o(1)

= t

[(q

2
+ p

)+ − r−2
(q

2
+ p

)−]+ o(1).

(32)

Thus, (b) is statisfied, and the proof is completed.
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