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Abstract It is well known that the minimal superhedging price of a contingent claim
is too high for practical use. In a continuous-time model uncertainty framework, we
consider a relaxed hedging criterion based on acceptable shortfall risks. Combin-
ing existing aggregation and convex dual representation theorems, we derive duality
results for the minimal price on the set of upper semicontinuous discounted claims.
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1 Introduction

In this paper, we are concerned with convex duality for the minimal superhedging
problem with non-zero shortfall risk in continuous time. In a financial market with
underlying S, the minimal superhedging price φ(X) of a discounted contingent claim
X is the smallest cost m needed to form a superhedging portfolio. That is, to find an
admissible strategy Z such that

m + (Z · S)T ≥ X, (1)
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where (Z · S)T is the total gain up to time T ∈ (0, ∞) from trading S. A classical
result at the heart of mathematical finance gives conditions guaranteeing a pricing-
hedging duality, ensuring, for instance, that φ(X) is the largest non-arbitrage price
of X, see, for example, Delbaen and Schachermayer (1994) for details, and Kramkov
and Schachermayer (1999) for applications to portfolio optimization.

In the presence of model ambiguity, that is, when the negligible events do not
stem from a single measure, the pricing-hedging duality has attracted a sustained of
attention. Notably under models with volatility uncertainty, such duality results have
been derived, for instance, by Peng (2010), Denis and Martini (2006), and Soner et al.
(2013) and Soner et al. (2011a) for contingent claims that are (versions of) continuous
random variables. A crucial step to derive most of these results is to prove a dynamic
programming principle. This requires the (“dynamic version” of the functional) φ

to be time-consistent. Neufeld and Nutz (2013) have extended these representations
(and the dynamic programming principles) to measurable claims using the theory of
analytic sets. In the model-free framework, that is, when no probabilistic assumption
is made, superhedging duality results include those in (Acciaio et al. 2016; Beiglböck
et al. 2013; Cheridito et al. 2017; Burzoni et al. 2017; Burzoni 2016) in discrete time
and (Dolinsky and Soner 2014; Hou and Obłój 2018; Bartl et al. 2019; Bartl et al.
2020) in continuous time.

It is well-known that the minimal superhedging price is too high for practical
use, and even higher under model uncertainty. This motivated the notion of quantile-
hedging introduced by Föllmer and Leukert (1999) and Föllmer and Leukert (2000)
and further developed into risk-based approaches by Arai (2010) and Rudloff (2007);
and into no-good deal based valuations by Bion-Nadal and Di Nunno (2013). We also
refer to Becherer and Kentia (2017) for the analysis of robust no-good deals. More
precisely, this consists in substituting the (strict) superhedging requirement (1) by the
relaxed condition

m + (Z · S)T − X ∈ A, (2)
where A is the acceptance set of a convex monetary risk measure, or a set of accept-
able discounted financial positions. Adjusting the set A allows to change the level
of risk aversion. Under model uncertainty, superhedging dualities in such a situa-
tion have been investigated by Cheridito et al. (2017) in the discrete-time model-free
framework.

The goal of the present paper is to investigate the continuous-time case when a
set P of possible reference measures on the canonical space C([0, T ],Rd) is fixed.
Notice that if the risk measure with acceptance set A is not time-consistent, then
the resulting superhedging functional is not necessarily time-consistent anymore (for
instance, think of the trivial case where S = 0). This renders the dynamic program-
ming approach prevalent in the literature harder to apply. The proposed argument is
based on results by Cheridito et al. (2015) which give conditions under which a conti-
nuity from below condition (also known as the Fatou property) yields a representation
of convex monotone functions. More precisely, we show that a suitable sequential
closedness of the acceptance set A carries over to the sublevel sets of the superhedg-
ing functional, guaranteeing enough regularity to derive a convex dual representation;
see Theorem 1 for a precise statement. This will require the use of aggregation results
developed by Soner et al. (2011b). As an application, the case where the shortfall risk
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is quantified by a robust optimized certainty equivalent is systematically studied. To
give a taste of our results, consider the set of reference measures

P := {P : a ≤ d〈S〉t/dt ≤ ā : P ⊗ dt − a.s.}
with S being the canonical process on the space of continuous paths, a and ā being
two symmetric, positive definite deterministic matrices. This is an important class of
reference measures as it pertains to volatility uncertainty, and is also linked to Peng’s
G-expectation. Consider the robust form of the ([0, ∞]-valued) Renỳi divergence
given by

ρ∗(Q) := inf
P∈P

1

q
EP

[(
dQ

dP

)q]
for some q > 1

and the associated risk measure (see Bartl et al. (2020)) defined as

ρ(X) := sup
Q

(EQ[−X ] − ρ∗(Q))

with the supremum being over all regular probability measures, with the understand-
ing dQ

dP = +∞ if Q is not absolutely continuous with respect to P. We will show,
see Theorem 2 and Example 1, that if a contingent claim X is bounded and upper
semicontinuous (on the path space equipped with the supremum norm), then it holds

inf

{
m ∈ R : ρ

(
m +

∫ T

0
Zu dSu − X

)
≤ 0 P-a.s. for allP ∈ P

}

= sup
Q

(EQ[X ] − ρ∗(Q)),

where the supremum is taken over martingale measures for S with densities with
respect to P ∈ P having finite q moments. Recall that the risk measure ρ is not
time-consistent, see (Kupper and Schachermayer 2009).

In the next section, we describe the probabilistic setting and the main results of
the paper. Namely, a convex dual representation for the superhedging functional for
upper semicontinuous claims when the shortfall risk is quantified by a risk measure
whose acceptance set satisfies some integrability property. As an example, the case
of robust optimized certainty equivalent is studied in detail, since this class of risk
measures includes a large number of examples, see, for instance, (Bartl et al. 2020;
Ben-Tal and Taboulle 2007). All the proofs are given in section 3, and an appendix
contains some technical concepts from (Soner et al. 2011b).

2 Setting and main results

2.1 Probabilistic setting

The findings of this work rely on representation results of Cheridito et al. (2015) and
the aggregation results of Soner et al. (2011b) from which we borrow the probabilistic
setting. More precisely, fix T ∈ (0, ∞), d ∈ N \ {0} and let � be the canonical
space of Rd -valued continuous paths on [0, T ] with ω0 = 0. Let P0 be the Wiener
measure on � and S the canonical process, with natural filtration F

S = (F S
t )t∈[0,T ].
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By Karandikar (1983), there exists an F
S-adapted, continuous process 〈S〉, such that

〈S〉t = 〈S〉Qt Q-a.s. (almost surely) for all t ∈ [0, T ], and every local martingale
measure Q of S, where 〈S〉Q denotes the Q-quadratic variation of S. Let â be the
density of the quadratic variation 〈S〉 given by

ât := lim sup
ε↓0

1

ε
(〈S〉t − 〈S〉t−ε) .

We denote by M(S) the set of all local martingale measures P such that P-a.s., 〈S〉t is
absolutely continuous in t and â is valued in the set S>0

d of symmetric positive definite
matrices. For every P ∈ M(S) and every integrable F

S-progressively measurable
process a taking values in S

>0
d , and such that a = â P-a.s. (such process a is called

diffusion coefficient), P is a weak solution of the SDE

dYt = a1/2(Y·)dSt P0-a.s. (3)

with initial value P(S0 = 0) = 1. In particular, S is a P-local martingale. By
(Karatzas and Shreve 2004), the SDE (3) admits a unique weak solution for every
bounded process with values in S

>0
d . Let A0 be a generating class of diffusion coef-

ficients (see Definition 1) such that every a ∈ A0 is bounded and Pa satisfies the
martingale representation property. Further, let A be a separable class of diffusion
coefficients generated by A0, see Definition 2, and put

P := {Pa : a ∈ A}.
We consider the set P as the set of reference probability measures. Intuitively, the
set P is the set of models for different volatilities a ∈ A. For the sake of flexibility,
we allow the choice of a to be such that (3) has only a weak solution. One could
also consider the ”strong formulation” (as we did in the introduction), where Pa :=
P0 ◦ (Ya)−1 with Ya

t := ∫ t
0 a1/2

s dSs for some process a. For every P ∈ P , let FP :=
(F P

t )t∈[0,T ] be the P-completion of the right-continuous version of the filtration F
S ,

and denote by F := (Ft )t∈[0,T ] the filtration given by Ft := ⋂
P∈P (F P

t ∨ NP ),
where NP is the collection of P-null sets for all P ∈ P .

Let L0(P) be the space of FT -measurable random variables which are identified
if they agree P-q.s.1 and, given p ∈ [1, ∞), we denote by L p(P) the space of ran-
dom variables X ∈ L0(P) such that EP [|X |p] < ∞ for all P ∈ P . Further, let
L∞(P) be the subspace of L p(P) equipped with the norm ||X ||∞ := inf{m > 0 :
supP∈P P(|X | > m) = 0}.

2.2 Main results

For every progressively measurable R
d -valued processes Z such that∫ T

0 |Zt |2 d〈S〉t < ∞, we denote by
∫
Z dS the usual Itô’s integral which implicitly

depends on P ∈ P and by MZ the P-q.s. unique F-progressively measurable process
such that MZ = ∫

Z dS P-a.s. for all P ∈ P (see (Soner et al. 2011b, Theorem 6.4)).

1Hereby P-q.s. means P-a.s. for every P ∈ P . Unless otherwise stated, all equalities and inequalities
between random variables will be understood in this sense.



Probability, Uncertainty and Quantitative Risk             (2020) 5:6 Page 5 of 19

This defines a P-local martingale, that is, a P-local martingale under each P ∈ P .
The (admissible) gains and losses from trading in the financial market modeled by S
are given by the set

G :=
{
MZ

T :
∫ t

0
Zu dSu ≥ −c for allt ∈ [0, T ], for somec > 0

}

and the minimal superhedging cost φ(X) of a contingent claim X ∈ L0(P), is given
by

φ(X) := inf{m ∈ R : m + Y ≥ X for someY ∈ G}. (4)

Fix a non-empty, convex set A ⊆ L0(P) and containing L0+(P) assumed to be
monotone2. The functional ψ given by

ψ(X) := inf{m ∈ R : m + Y − X ∈ A for someY ∈ G} (5)

defines the minimal cost to be paid to construct a portfolio with a shortfall that lies
in the set A but that may fail to superhedge the claim X (in the P-q.s. sense), with
the convention inf ∅ := +∞. Our aim is to derive the dual representation of the
functional ψ .

Let Cb and Ub be the space of bounded continuous functions and bounded upper
semicontinuous functions on �, and Cb(P) and Ub(P) the set of elements of L∞(P)

with a P-q.s. version in Cb and Ub, respectively. Put

ψ∗(Q) := sup
X∈Cb

(EQ[X ] − ψ(X)) and φ∗(Q) := sup
X∈Cb

(EQ[X ] − φ(X))

and denote by ρA and ρ∗
A, respectively, the risk measure associated to A and its

conjugate, that is,

ρA(X) := inf{m : m + X ∈ A} and ρ∗
A(Q) := sup

X∈Cb

(EQ[X ] − ρA(X)).

The convex conjugates ψ∗, φ∗, and ρ∗
A are convex and lower semicontinuous func-

tions and play a key role in the statement and proofs of our dual representation
results. In the course of the proofs of Theorems 1 and 2 we will show that ψ∗(Q) =
φ∗(Q) + ρ∗(−Q), (where we use the informal notation E−Q[X ] := EQ[−X ]) and
that φ∗(Q) is zero for martingale measures and infinity otherwise.

Denote by ca+
1 the set of Borel probability measures on �, ca+

1 (�̃) its subset con-
taining probability measures with support included in �̃ := supp(P), the support3

of P , and by MA
P (S) the set of probability measures Q ∈ ca+

1 (�̃) such that S is a
Q-local martingale and it holds ρ∗

A(−Q) < ∞.

Theorem 1 Assume that the set A− := {A− : A ∈ A} is P-uniformly inte-
grable4; the sublevel sets {Q ∈ ca+

1 : ρ∗
A(−Q) ≤ c}, c ≥ 0 are weakly compact

2In the sense that for every X, X ′ ∈ L1(P) with X ≥ X ′ and X ′ ∈ A, we have X ∈ A.
3Here, supp(P) is the unique closed set �̃ for which P(�̃c) = 0 for all P ∈ P and P(�̃ ∩ O) > 0 for
some P ∈ P whenever O is open and �̃ ∩ O �= ∅. It can be checked that supp(P) = ∪P∈P supp(P),
where supp(P) exists, since P is a regular measure, see (Aliprantis and Border 2006, Theorem 12.14).
4That is, it is P-uniformly integrable for each P ∈ P; and A− := max(0,−A).
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and lim infn→∞ An ∈ A for every sequence (An) in A that is bounded in L1(P).
Then, if ψ(0) > −∞, the functional ψ is real-valued on L∞(P) and satisfies the
representation5

ψ(X) = sup
Q∈MA

P (S)

(
EQ[X ] − ρ∗

A(−Q)
)
, X ∈ Cb(P). (6)

Moreover, if
ψ∗(Q) = sup

X∈Ub

(EQ[X ] − ψ(X)),

then one has that

ψ(X) = sup
Q∈MA

P (S)

(
EQ[X ] − ρ∗

A(−Q)
)
, X ∈ Ub(P). (7)

The proof of this result is given in subsection 3.1. This result is close in spirit to the
so-called no-good deal bounds derived by (Becherer and Kentia 2017) using second
order backward stochastic differential equations.

Remark 1 Since G is convex, the convexity and monotonicity conditions on A
ensure that ψ is increasing and convex on the vector space L1(P). When A =
L0+(P), then ψ reduces to the superhedging function φ. In Theorem 1, assuming
ψ(0) > −∞ can be seen as a market viability condition, it is satisfied, for instance,
if R+ ∩ (G − A) = {0}, compare (Cheridito et al. 2017), or if there is a probabil-
ity measure Q such that EQ[A] ≥ 0 for all A ∈ A and EQ[Y ] ≤ 0 for all Y ∈ G.
Moreover, the uniform integrability condition on A− prevents, in particular, that ρA
attains the value −∞ which is undesirable for a risk measure. Furthermore, assum-
ing that lim infn→∞ Xn ∈ A for every sequence (Xn) in A that is bounded in L1(P)

can be seen as a version of the Fatou’s property for risk measures on L p-spaces, see,
for instance, (Kaina and Rüschendorf 2009).

A particularly interesting case arises when A is the acceptance set of a robust
optimized certainty equivalent. More precisely, let l : R → R be a loss function
satisfying the usual assumptions

l is convex, increasing, bounded from below, and
l(0) = 0, l∗(1) = 0, andl(x) > x for |x | large enough,

}
(CIB)

where l∗ denotes the convex conjugate of l defined as

l∗(y) := sup
x∈R

(xy − l(x))

for y ∈ R and l∗(+∞) := +∞. The functional ρ : L1(P) → (−∞, ∞] defined by

ρ(X) := inf
m∈R sup

P∈P
(EP [l(m − X)] − m) (8)

5In (6), EQ [X ] is understood as EQ [X ′], for any X ′ ∈ Cb with X = X ′ P-q.s. This expectation is uniquely
defined, see (Tangpi 2015, Lemma 4.5.1).
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is the analogue, in the context of model ambiguity, of the optimized certainty
equivalent risk measure introduced by (Ben-Tal and Taboulle 2007). It satisfies

ρ(X) = sup
Q∈ca+

1

(
EQ[−X ] − inf

P∈P
EP

[
l∗

(
dQ

dP

)])
, X ∈ L∞(P), (9)

where dQ/dP := ∞ if Q is not absolutely continuous w.r.t. P and with the under-
standing EP [Z ] := ∞ whenever EP [Z+] = ∞, see (Bartl et al. 2020) for details.
Let us consider the acceptance set

A :=
{
X ∈ L1(P) : ρ(X) ≤ 0

}

and denote by Ml
P (S) the set of probability measures Q ∈ ca+

1 (�̃) such that S is a
Q-local martingale and it holds infP∈P EP [l∗(dQ/dP)] < ∞.

Theorem 2 Assuming that l satisfies (CIB), there exist a > 0, b ∈ R, and p > 2
such that l(x) ≥ a|x |p + b and ψ(0) > −∞. If P is weakly compact, then it holds

ψ(X) = sup
Q∈Ml

P (S)

(EQ[X ] − inf
P∈P

EP [l∗(dQ/dP)]), X ∈ Ub(P). (10)

The proof of this result is given in subsection 3.2.

Example 1 Let a, ā be two matrices with 0 < a≤ ā, and denote by A0 the set of
(deterministic) functions on [0, T ] valued in S

>0
d and such that a ≤ at ≤ ā for all

t ∈ [0, T ]. By (Soner et al. 2011b, Example 4.9), A0 is a generating class of diffusion
coefficients and it clearly generates itself (in the sense of Definition 2). Put

P := {P : d〈S〉Pt /dt ∈ A0 -P ⊗ dt a.s.}.

It follows from (Bion-Nadal and Kervarec 2012, Proposition 6.2) that the set P is
compact in the weak topology. In this setting, taking for instance l(x) = (x+)p/p
with p > 2, it follows from Theorem 2 that ψ satisfies the representation

ψ(X) = sup
Q∈Ml

P (S)

(
EQ[X ] − inf

P∈P
1

q
EP

[(
dQ

dP

)q])
, X ∈ Ub(P)

with q the Hölder conjugate of p.
Theorem 2 also applies to the entropic risk measure (which is time-consistent)

when we let l(x) = ex − 1. In this case, it holds l∗(z) = z log(z) − z + 1 and

ψ(X) = sup
Q∈Ml

P (S)

(
EQ[X ] − inf

P∈P
EP

[
dQ

dP
log

(
dQ

dP

)])
, X ∈ Ub(P).



Page 8 of 19 L. Tangpi

3 Proofs

3.1 Proof of theorem 1

For each c > 0, consider the set Gc := {MZ
T : ∫ t

0 Zu dSu ≥ −c for allt ∈ [0, T ]} and
the functional

ψc(X) := inf{m ∈ R : m + Y − X ∈ A for someY ∈ Gc}. (11)

Recall that the inf-convolution ρ1�ρ2 of two functions ρ1 and ρ2 on L1(P) is defined
by

ρ1�ρ2(X) := inf
Y∈L1(P)

(ρ1(X − Y ) + ρ2(Y )).

The minimal cost ψc can be written as an inf-convolution:

Lemma 1 For every X ∈ L∞(P), the minimal cost ψc satisfies ψc(X) =
ρA�φ̄c(−X), whereby φ̄c(·) := φc(−·) and φc(X) := inf{m ∈ R : m + Y − X ≥
0 for someY ∈ Gc}.

Proof Let X ∈ L∞(P), ε > 0 and Y ∈ Gc. There is an m ∈ R such that ρA(Y −
X) ≥ m−ε and m+Y −X ∈ A. Hence, ψc(X) ≤ m ≤ ρA(Y −X)+ε. This implies
that ψc(X) ≤ infY∈Gc ρA(Y − X). On the other hand, if infY∈Gc ρA(Y − X) = −∞,
the previous inequality is an equality. If infY∈Gc ρA(Y − X) > −∞, let m ∈ R be
such that m < infY∈Gc ρA(Y − X). Then it holds m ≤ ψc(X) because, if not, there
would exist Y ∈ Gc such that m + Y − X ∈ A. That is, m ≥ ρA(Y − X). Therefore,

ψc(X) = inf
Y∈Gc

ρA(Y − X). (12)

In particular, denoting by φ̄c the functional φ̄c(X) := inf{m : m+X ∈ L0+(P)−Gc},
we have

ψc(X) ≥ inf
Y∈L1(P)

(ρA(−Y − X) + φ̄c(Y ))

and if we take m > infY∈L1(P)(ρA(−Y − X) + φ̄c(Y )), then for every ε > 0 there
exists Y ′ ∈ L1(P) such that m > ρA(−Y ′ − X) + φ̄c(Y ′) − ε. Thus, using the
definition of φ̄c, one can find Y ∈ Gc such that φ̄c(Y ′) + Y ≥ −Y ′ − ε. Since
ρA is decreasing and translation invariant, this yields m > ρA(Y − X) − 2ε, thus
m ≥ infY∈Gc ρA(Y − X) so that

ψc(X) = inf
Y∈L1(P)

(
ρA(−Y − X) + φ̄c(Y )

) = ρA�φ̄c(−X).

Proposition 1 Under the conditions of Theorem 1, it holds:

(i) For every claim X ∈ L0(P) with X− ∈ L1(P) and ψc(X) < ∞, there exists
an optimal Ȳ ∈ Gc such that ψc(X) + Ȳ − X ∈ A.
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(ii) The functional ψc is real-valued on L∞(P) and satisfies

ψc(X) = sup
Q∈MA

P

(
EQ[X ] − ψc,∗(Q)

)
, X ∈ Cb(P) (13)

ψc(X) ≤ sup
Q∈MA

P

(
EQ[X ] − ψc,∗(Q)

)
, X ∈ Ub(P) (14)

with MA
P the set of probability measures Q ∈ ca+

1 (�̃) such that ρ∗
A(−Q) <

∞. Moreover, it holds that

ψc,∗(Q) = φc,∗(Q) + ρ∗
A(−Q),

for all Q ∈ ca+
1 (�̃).

Proof (i) Existence: We start by fixing a random variable X ∈ L0(P) such that
X− ∈ L1(P) and ψc(X) < ∞. There is a decreasing sequence of real numbers (mn)

converging to ψc(X) which is such that for all n ∈ N there exists Y n ∈ Gc satisfying

mn + Y n − X ∈ A, with Y n :=
∫ T

0
Zn
u dSu .

Let MZn
be the unique process such that MZn

t = ∫ t
0 Zn

u dSu P-q.s. It can be
checked that MZn

is a P-supermartingale for each n ∈ N and P ∈ P . There exists a
sequence (An) in A such that for every n, it holds mn + Y n − X = An . Since A− is
P-uniformly integrable, (An)− is bounded in L1(P) and EP [(An)+] = EP [An] +
EP [(An)−] ≤ EP [mn + Y n + X−] + EP [(An)−] ≤ mn + EP [X−] + EP [(An)−].
This shows that (An) is bounded in L1(P). Let t ∈ [0, T ] and put

Yt := lim inf
n→∞ MZn

t .

The process Y is F-progressively measurable and does not depend on a particular
measure P ∈ P . Since

∫ t
0 Zn

s dSs ≥ −c, it holds Yt ≥ −c. On the other hand, it
follows from Fatou’s lemma and the P-supermartingale property of

∫
Zn dS that

EP [Y+
t ] ≤ lim infn→∞ EP

[(∫ t
0 Zn

u dSu
)+]

= lim infn→∞
{
EP

[∫ t
0 Zn

u dSu
]

+ EP

[(∫ t
0 Zn

u dSu
)−]}

≤ c.

That is, Yt ∈ L1(P) and the process Y is a P-supermartingale since for all 0 ≤ s ≤
t ≤ T we have Ys = lim infn→∞ MZn

s ≥ lim infn→∞ EP [MZn

t | Fs] ≥ EP [Yt | Fs].
Let

Ȳt := lim sup
s↓t,s∈Q∩[0,T ]

Ys for t ∈ [0, T ) andȲT := YT .

Since the filtration (F P
t )t∈[0,T ] is right continuous for each P ∈ P , the process

Ȳ is a càdlàg P-supermartingale with respect to (F P
t )t∈[0,T ], see (Dellacherie and

Meyer 1982, Theorems VI.2 and VI.3). Hence, Ȳ is a P-supermartingale with respect
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to the filtration F for all P ∈ P . Due to (Soner et al. 2011b, Theorem 6.5 and Propo-
sition 6.6), there exists a F-progressively measurable process Z̄ and an increasing
progressively measurable process L̄ such that L̄0 = 0 and Ȳt = Ȳ0 +∫ t

0 Z̄u dSu − L̄ t ,
where

∫
Z̄ dS is a P-local martingale. Thus,

∫ t
0 Z̄u dSu ≥ Ȳt − Ȳ0 ≥ −c − Ȳ0 and,

by (Dellacherie and Meyer 1982, Theorem VI.2) and the right-continuity of our fil-
tration, it holds Ȳ0 ≤ 0 so that MZ̄

T ∈ Gc. Since mn + Y n − X ∈ A for all n ∈ N and

A is monotone, one has ψc(X) + ȲT − X ∈ A and by ψc(X) + ∫ T
0 Z̄u dSu − X ≥

ψc(X) + ȲT − X , it holds ψc(X) + ∫ T
0 Z̄u dSu − X ∈ A.

(ii) Representation: First notice that there are compact subsets (Kn) of �

(equipped with the maximum norm || · ||∞) such that � = ∪n∈NKn P-q.s. To
see this, let P ∈ P and a ∈ A such that P = P0 ◦ (Ya)−1, with dY a

t =
a1/2(Ya· )dSt P0-a.s. Since a is bounded, for every q > 4 (independent of P), it holds

EP

[(∫ T
0 |as |2 d〈S〉s

)q/4
]

< ∞. Thus, it follows by Burkholder–Davis–Gundy and

Cauchy-Schwarz inequalities that

EP
[|Ya

t − Ya
s |q] = E

[∣∣∣∣
∫ t

s
a1/2(Ya· ) dSu

∣∣∣∣
q]

≤ CEP

[(∫ t

s
|a(Ya· )| d〈S〉u

)q/2
]

≤ CEP

[(∫ t

s
|a(Ya· )|2 d〈S〉u

)q/4
]

|s − t |q/4 ≤ K |s − t |q/4

for some constants C, K ≥ 0. Then, by (Bartl et al. 2019, Theorem A.1), Ya ∈ �α

for every α ∈ (0, 1/4−1/q), where �α is the space of functions ω ∈ � which are α-
Hölder continuous. In particular, α can be chosen independent of P. Thus, � = �α

P-q.s. By (Bartl et al. 2019, Corollary 3.2), �α = ∪n∈NKn for some compact sets
Kn .

Since 0 ∈ A, for every X ∈ L∞(P), one has ψc(X) < ∞ and, by ψ(0) > −∞, it
holds ψc(0) ∈ R. Thus, the convex increasing function ψc is real-valued on L∞(P).
Let (Xn) be an increasing sequence of bounded measurable functions such that Xn ↑
X . By the first part of the proof, for every n ∈ N there exists Ȳ n ∈ Gc such that
ψc(Xn)+Ȳ n−Xn ∈ A with Ȳ n = ∫ T

0 Z̄ n
u dSu . Putting Yt := lim infn→∞

∫ t
0 Z̄ n

u dSu ,
t ∈ [0, T ]; Ȳt := lim sups↓t,s∈Q∩[0,T ] Ys for t ∈ [0, T ); and ȲT := YT , we use the

procedure of part (i) to construct an S-integrable process Z̄ such that
∫ t

0 Z̄u dSu ≥ −c
and Ȳ ≤ ∫

Z̄ dS.
Let n ∈ N be fixed. Since the function ψc is increasing and the acceptance set A

is monotone, we can find An ∈ A satisfying

( lim
k→∞ ψc(Xk)) + Ȳ n − Xn = An .

Arguing as above, (An) is bounded in L1(P). Hence,
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lim
n→∞ ψc(Xn) +

∫ T

0
Z̄u dSu − X ≥ lim

n→∞ ψc(Xn) + ȲT − X ≥ lim inf
n→∞ An ∈ A,

which implies limn→∞ ψc(Xn) ≥ ψc(X) and therefore limn→∞ ψc(Xn) = ψc(X).
Thus, by (Cheridito et al. 2015, Theorem 1.7), (see also (Tangpi 2015, Theorem 4.5.2)
for the probabilistic version of this result) it holds that

ψc(X) = sup
Q∈ca+

1 (�̃)

(EQ[X ] − ψc,∗(Q)), X ∈ Cb(P) (15)

ψc(X) ≤ sup
Q∈ca+

1 (�̃)

(EQ[X ] − ψc,∗(Q)), X ∈ Ub(P). (16)

Notice that (Cheridito et al. 2015, Theorem 1.7) (respectively, (Tangpi 2015, The-
orem 4.5.2)) require � to be σ -compact, (respectively, be quasi-surely equal to a
σ -compact set). The property ψc,∗(Q) = φc,∗(Q) + ρ∗

A(−Q), for all Q ∈ ca+
1 (�̃)

is a consequence of Lemma 1. Thus, if ρ∗
A(−Q) = ∞, then ψc,∗(Q) = ∞, so that

(13) and (14) can be deduced from (15) and (16), respectively.

Proof (of Theorem 1). Since Gn ⊆ G for all n ∈ N \ {0}, one has ψ(X) ≤
infn≥1 ψn(X). Assume that the inequality is strict, that is, ψ(X) < infn≥1 ψn(X).
Then, there are m ∈ R and ε > 0 such that ψ(X) < m < m + ε < infn≥1 ψn(X).
Thus, there is x ∈ R such that ψ(X) ≥ x − ε, with x + Y − X ∈ A for some Y ∈ G.
Since there is n ∈ N such that Y ∈ Gn , we have x ≥ ψn(X). Hence,

m > ψ(X) ≥ x − ε ≥ ψn(X) − ε ≥ inf
n≥1

ψn(X) − ε,

which is a contradiction. Thus, ψ(X) = infn≥1 ψn(X), the sequence (ψn,∗(Q))n is
increasing and ψ∗(Q) = supn≥1 ψn,∗(Q) for all Q ∈ ca+

1 (�̃).
Let X ∈ Cb(P). By Proposition 1, for every n ≥ 1 it holds ψ(X) ≤

supQ∈MA
P

(EQ[X ] − ψn,∗(Q)). Thus, there is Qn ∈ ca+
1 (�̃) such that

ψ(X) ≤ EQn [X ] − ψn,∗(Qn) + 1

n
.

Since X is bounded and ρ∗
A(−Q) ≤ ψn,∗(Q), there is a constant c ≥ 0 such that

Qn ∈ {Q ∈ ca+
1 (�̃) : ρ∗

A(−Q) ≤ c} for all n. Hence, there is Q ∈ ca+
1 such that

up to a subsequence, (Qn) converges to Q in σ(ca+
1 ,Cb) and since �̃ is closed, we

have 1 = lim supn→∞ Qn(�̃) ≤ Q(�̃), showing that actually, Q ∈ ca+
1 (�̃). Now,

let ε > 0 and N ∈ N be such that ψN ,∗(Q) ≥ ψ∗(Q) − ε. Since ψN ,∗ is lower
semicontinuous (with ca+

1 equipped with the weak topology σ(ca+
1 ,Cb)), we can

choose n ≥ N large enough so that ψN ,∗(Qn) ≥ ψN ,∗(Q) − ε. Thus,

ψn,∗(Qn) ≥ ψN ,∗(Qn) ≥ ψN ,∗(Q) − ε ≥ ψ∗(Q) − 2ε.

This shows that ψ(X) ≤ EQn [X ] − ψ∗(Q) − 2ε + 1/n. Taking the limit in n and
dropping ε yields

ψ(X) ≤ EQ[X ] − ψ∗(Q).
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Since the weak duality ψ(X) ≥ supQ∈ca+
1 (�̃)(EQ[X ]−ψ∗(Q)), X ∈ Cb(P) is easily

obtained, this implies

ψ(X) = sup
Q∈ca+

1 (�̃)

(EQ[X ] − ψ∗(Q)) X ∈ Cb(P). (17)

Let us now show that ψ∗(Q) = ∞ whenever Q /∈ MA
P (S). Since 0 ∈ G, we

have ψ(X) ≤ ρA(−X) for every X ∈ Cb, and hence ψ∗(Q) ≥ ρ∗
A(−Q) for every

Q ∈ ca+
1 (�̃). Thus, if ρ∗

A(−Q) = ∞, then ψ∗(Q) = ∞. If S is not a Q-local
martingale, then since supp(Q) ⊆ �̃ and �̃ is a subset of a σ -compact set, it follows
from (Bartl et al. 2019, Remark 4.1 and Proposition 4.4) that there is X ∈ Cb and an
S-integrable process Z such that X ≤ MZ and EQ[X ] > 0. Thus, one has ψ(x X) ≤ 0
for all x ≥ 0 and by X ∈ Cb it holds ψ∗(Q) ≥ EQ[x X ] for all x ≥ 0. This
shows by scaling that ψ∗(Q) = ∞. It remains to show that φ∗(Q) = 0 whenever
S is a Q-local martingale. For every bounded X and every ε > 0, there is m ∈ R

such that φ(X) ≥ x − ε and x + MZ
T ≥ X for some admissible Z. Since MZ is

a Q-local martingale that is bounded from below, it is a Q-supermartingale. Thus,
EQ[X ] − φ(X) − ε ≤ EQ[X ] − x ≤ 0. Since ε was taken arbitrarily, this shows that
φ∗(Q) ≤ 0, and since we also have φ∗(Q) ≥ 0, the result is obtained. Arguing as in
the proof of Proposition 1, we have ψ∗(Q) = φ∗(Q) + ρ∗

A(−Q). Therefore, (6) is
due to (17).

Furthermore, it follows again by Proposition 1 that

ψn(X) ≤ sup
Q∈MA

P

(
EQ[X ] − ψn,∗(Q)

)
, X ∈ Ub(P).

Let X ∈ Ub(P). For every n ≥ 1, it holds ψ(X) ≤ supQ∈MA
P

(
EQ[X ] − ψn,∗(Q)

)
.

Arguing as above, we find Qn, Q ∈ ca+
1 (�̃) such that (Qn) converges to Q in

σ(ca+
1 ,Cb), and for every ε > 0, up to a subsequence, ψ(X) ≤ EQn [X ] − ψ∗(Q) −

2ε+1/n. Since X is upper semicontinuous and bounded, taking the limit this implies
ψ(X) ≤ EQ[X ] − ψ∗(Q), showing that

ψ(X) ≤ sup
Q∈MA

P

(
EQ[X ] − ψ∗(Q)

)
, X ∈ Ub(P). (18)

The assumption ψ∗(Q) = supX∈Ub
(EQ[X ] − ψ(X)) implies that the inequality in

(18) is an equality and as shown above, ψ∗(Q) = ∞ whenever Q /∈ MA
P (S). This

concludes the proof.

3.2 Proof of theorem 2

Recall that here, A is given by

A :=
{
X ∈ L1(P) : ρ(X) ≤ 0

}
,

the acceptance set of the robust optimized certainty equivalent defined by (8).
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Lemma 2 If there exist a > 0, b ∈ R, and p > 2 such that the loss function l
satisfies the growth condition l(x) ≥ a|x |p + b, then the set A− := {A− : A ∈ A} is
P-uniformly integrable.

Proof Consider the classical OCE ρP defined as

ρP(X) := inf
m∈R(EP [l(m − X)] − m). (19)

By definition, we have

ρ(X) ≥ sup
P∈P

inf
m∈R(EP [l(m − X)] − m) = sup

P∈P
ρP(X).

Assume by contradiction that there is P̄ ∈ P and ε > 0 such that it holds

lim inf
n→∞ sup

X∈A
EP̄ [X−1{X−≥n}] ≥ ε.

Given X ∈ A, put δn := EP̄ [X−1{X−≥n}] ≥ ε. Let Qn � P̄ be the measure given

by dQn

d P̄
:= X−1{X−≥n}/δn .

Notice that l∗ satisfies the growth condition l∗(z) ≤ a′|z|q + b with the constant
a′ = 1−a

(ap)q and where 1 < q < 2 is the Hölder conjugate of p. Thus, it holds that

ρ(X) ≥ ρ P̄ (X) ≥ EP̄

[
−X

X−1{X−≥n}
δn

]
− EP̄

[
l∗

(
X−1{X−≥n}

δn

)]

≥ EP̄

[
(X−)21{X−≥n}

] 1

δn
− a′EP̄

[
(X−)q1{X−≥n}

] 1

(δn)q
− b

≥ EP̄

[
(X−)q1{X−≥n}

] (
n2−q

δn
− a′

(δn)q

)
− b

≥ (
EP̄

[
X−1{X−≥n}

])q (
n2−q

δn
− a′

(δn)q

)
− b,

where the last inequality follows by Jensen’s inequality with n large enough. Since
q < 2, the last term converges to infinity, a contradiction.

Observe that our verification of the uniform integrability property of A− in the
case of the optimized certainty equivalent (see the preceding proof) requires the loss
function l to grow sufficiently fast. This is why Theorem 2 does not apply, say to the
average value at risk which is the OCE risk measure with loss function l(x) := x+.

Recall the conjugate function ρ∗ defined in section 2.2 as

ρ∗(−Q) := sup
X∈Cb

(EQ[−X ] − ρ(X)).

Lemma 3 If P is σ(ca+
1 ,Cb)-compact, then it holds

ρ∗(−Q) = inf
P∈P

EP

[
l∗

(
dQ

dP

)]
for allQ ∈ ca+

1 (20)

and the sublevel sets {Q ∈ ca+
1 : ρ∗(−Q) ≤ c}, c ≥ 0 are σ(ca+

1 ,Cb)-compact.
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Proof Let us first prove (20). Since for each X ∈ Cb the function P �→ ρP(X) is
concave and σ(ca+

1 ,Cb)-upper semicontinuous, it follows by weak compactness of
P and (Fan (1953), Theorem 2) that

ρ∗(−Q) = inf
P∈P

sup
X∈Cb

(EQ[−X ] − ρP(X)). (21)

Let L∞(P,F S
T ) be the space of P-essentially bounded and F S

T -measurable random
variables. We claim that

sup
X∈Cb

(EQ[−X ] − ρP(X)) = sup
X∈L∞(P,F S

T )

(EQ[−X ] − ρP(X)) = EP [l∗(dQ/dP)]

for every Borel measure Q � P . The second equality of the claim follows by (Ben-
Tal and Taboulle 2007). To prove the first one, let ε > 0 and X ∈ L∞(P,F S

T ) be
such that

sup
X∈L∞(P,F S

T )

(EQ[−X ] − ρP(X)) ≤ EQ[−X ] − ρP(X) + ε.

It follows by Lusin’s and Tietze’s theorems that there is a sequence (Xn) of contin-
uous functions converging P-a.s. to X, see, for instance, (Wisniewski 1994, Theorem
1) for details. In addition, the sequence (Xn) can be chosen bounded. Since
l∗(x)/x → +∞ as |x | goes to infinity, it follows that for each c ≥ 0, the set
{dQ/dP : EP [l∗(dQ/dP)] ≤ c} is σ(L1(P,F S

T ), L∞(P,F S
T ))-compact. Hence,

by the representation

ρP(X) = sup
Q�P

(EQ[−X ] − EP [l∗(dQ/dP)]) X ∈ L∞(P,F S
T ),

see, for instance, (Ben-Tal and Taboulle 2007, Theorem 4.2), and the Jouini–
Schachermayer–Touzi theorem (see (Jouini et al. 2006, Theorem 2.4)), one has
limn→∞ ρP (Xn) = ρP(X). Therefore, EQ[−X ] − ρP(X) = limn→∞ EQ[−Xn] −
ρP(Xn), which proves the claim. In combination with (21), we obtain (20).

Next, let us prove compactness of the sublevel sets. As a consequence of
Prokhorov’s theorem, the set P is tight. That is, there exists a family (Kn) of com-
pact subsets of � such that supP∈P P(Kc

n) → 0. Let Q ∈ ca1+ satisfy ρ∗(−Q) ≤ C .
There is P ∈ P such that Q � P and EP [l∗( dQdP )] ≤ C+1. Therefore for all m > 0,
by Young’s inequality, one has

m
dQ

dP
1Kc

n
≤ l(m1Kc

n
) + l∗

(
dQ

dP

)

and using l(0) = 0, one gets

Q(Kc
n) ≤ 1

m

(
l(m)P(Kc

n) + EP

[
l∗

(
dQ

dP

)])
≤ l(m)

m
sup
P∈P

P(Kc
n) + (C + 1)

m
.

Thus, sup{Q:ρ∗(−Q)≤C} Q(Kc
n) → 0 as n → ∞, showing by Prokhorov’s theorem

that the sublevel set is weakly relatively compact. Since ρ∗ is lower semicontinuous,
the sublevel sets are σ(ca+

1 ,Cb)-closed. This completes the argument.
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Lemma 4 For every local martingale measure Q of S such that Q � P for some
P ∈ P , and every Y ∈ G, it holds EQ[Y ] ≤ 0.

Remark 2 Note that in the above lemma, Y ∈ G is not necessarily a Q-stochastic
integral.

Proof (of Lemma 4). Let Y ∈ G and Q be a local martingale measure for S. Let
P ∈ P be such that Q � P , let c > 0, and Z an S-integrable process such that
Yt := ∫ t

0 Zu dSu ≥ −c. Recall that a process H : [0, T ] × � → R is called simple if
it is of the form

Ht (ω) =
N∑
i=1

hi (ω)1(τi (ω),τi+1(ω)],

where N ∈ N, 0 ≤ τ1 ≤ · · · ≤ τN+1 ≤ T are F-stopping times and hi are Fτi -
measurable bounded functions.

Let us first assume that EP [∫ T
0 |Zu |2 du] < ∞. Then, there is a sequence (Zn)

of simple processes such that
∫ T

0 Zn
u dSu → ∫ T

0 Zu dSu in L2(P). Fix ε > 0, and
define the sequence of stopping times

τ n := inf

{
t > 0 :

∫ t

0
Zn
u dSu ≤ −c − ε

}
∧ T,

with the convention inf ∅ := +∞. Further, put Z̃ n := Zn1[0,τ n ]. By definition,∫ t
0 Z̃ n

u dSu = ∫ t∧τ n

0 Zn
u dSu ≥ −c−ε. For almost all ω ∈ �, there is N ∈ N such that

if n ≥ N , then
∫ t

0 Zn
u dSu(ω) ≥ ∫ t

0 Zu dSu(ω) − ε ≥ −c − ε. Thus, τ n(ω) = T , in

other words, τ n ↑ T P-a.s. Hence,
∫ T

0 Z̃ n
u dSu = ∫ τ n

0 Zn
u dSu converges to

∫ T
0 Zu dSu

P-a.s. and Q-a.s. In addition, since Z̃ n is a simple process,
∫
Z̃ n dS is a Q-martingale,

so that EQ[∫ T
0 Z̃ n

u dSu] = 0. Therefore, it follows from Fatou’s lemma that

0 = lim inf
n→∞ EQ

[∫ T

0
Z̃ n
u dSu

]
≥ EQ

[∫ T

0
Zu dSu

]
.

In the general case, let σ k be a localizing sequence such that
∫ σ k∧·

0 Z dS is a square
integrable P-martingale. Put Zk := Z1[0,σ k ]. One has

∫ t
0 Zk

u dSu ≥ −c for all k. By

the first part of the proof, for each k, it holds EQ[∫ T
0 Zk

u dSu] ≤ 0. Taking the limit

in k, it follows by Fatou’s lemma that EQ[∫ T
0 Zu dSu] ≤ 0.

Proof (of Theorem 2). It is clear that the set A contains 0, and is convex and
monotone. Moreover, in view of Theorem 1, Lemmas 2 and 3, the representation can
be obtained if we show that X := lim infn→∞ Xn ∈ A for every sequence (Xn) in A
that is bounded in L1(P) and that

ψ∗(Q) = ψ∗
Ub

(Q) := sup
X∈Ub

(EQ[X ] − ψ(X)). (22)

For every n ∈ N, there is an mn ∈ R such that

EP [l(mn − Xn)] − mn − 1/n ≤ 0 for allP ∈ P .
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Condition (CIB) ensures that l(x) ≥ bx + c and l(x) ≥ b′x + c for all x ∈ R for
some b > 1 > b′ and c ∈ R. Since (Xn) is bounded in L1(P), this shows that
(mn) is bounded. Thus, there is an m such that (mn) converges to m after passing
to a subsequence. Hence, it follows from Fatou’s lemma and the continuity of l that
EP [l(m − X)] −m ≤ 0. Since this holds for every P ∈ P , it follows that ρ(X) ≤ 0,
from which we conclude that X ∈ A.

Let us now prove (22). It follows from Theorem 1 and Lemma 3 that

ψ∗(Q) = φ∗(Q) + inf
P∈P

EP [l∗(dQ/dP)]. (23)

Observe that by definition, ψ∗ ≤ ψ∗
Ub

. Let Q ∈ ca+
1 (�̃). Assuming that

infP∈P EP [l∗(dQ/dP)] = ∞, then by Lemma 3, ψ∗(Q) ≥ ρ∗(−Q) = ∞. If S is
not a Q-local martingale, then since supp(Q) ⊆ �̃ and �̃ is a subset of a σ -compact
set, it follows from (Bartl et al. 2019, Remark 4.1 and Proposition 4.4) that there is
X ∈ Cb and an S-integrable process Z such that X ≤ MZ and EQ[X ] > 0. Thus,
one has φ(x X) ≤ 0 for all x ≥ 0 and by X ∈ Cb it holds that ψ∗(Q) ≥ φ∗(Q) ≥
EQ[x X ] for all x ≥ 0. This shows by scaling that ψ∗(Q) = φ∗(Q) = ∞. Thus,
∞ = ψ∗(Q) ≤ ψ∗

Ub
(Q) for all Q /∈ Ml

P (S).
On the other hand, it can be checked that ρ satisfies the weak duality

ρ(X) ≥ sup
Q

(EQ[−X ] − inf
P∈P

EP [l∗(dQ/dP)]) for all X ∈ L1(P).

Let Q ∈ Ml
P (S), and X ∈ Ub such that m + Y − X ∈ A for some m ∈ R and

Y ∈ G. It holds that EQ[−m − Y + X ] − ρ∗(−Q) ≤ 0 and there is P ∈ P such that
Q � P . By Lemma 4, we have EQ[Y ] ≤ 0, that is, EQ[X ] − m ≤ ρ∗(−Q). This
implies ψ∗

Ub
(Q) ≤ ρ∗(−Q) ≤ ψ∗(Q). Therefore, ψ∗ = ψ∗

Ub
.

Finally, recall that ψ∗(Q) = φ∗(Q) + ρ∗(−Q) for every Q and φ∗(Q) = 0 for
Q ∈ Ml

P (S). This concludes the proof.

Appendix A: Separable class of diffusion coefficients

In this appendix, we define the classes of diffusion coefficients we consider. The
definition and the proposition below are taken from Soner et al. (2011b). Let P̄W
be the set of local martingale measures P of S such that P-a.s., 〈S〉t is absolutely
continuous in t and â takes values in S

>0
d , put

Ā :=
{
a :R+ → S

>0
d , F-progressively measurable and

∫ t

0
|as | ds < ∞ for all t ≥ 0

}
,

and for each P ∈ P̄W , ĀW (P) := {a ∈ Ā : a = â P-a.s.}. Denote by ĀW the set
ĀW := ∪P∈P̄W

ĀW (P) and by AW the set of elements of ĀW such that the SDE (3)
has weak uniqueness.

Definition 1 A subset A0 of AW is called a generating class of diffusion
coefficients if
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(i) A0 satisfies the concatenation property: a1[0,t) + b1[t,∞) ∈ A0 for all a, b ∈
A0 and t ≥ 0.

(ii) A0 has constant disagreement times: for all a, b ∈ A0, θa,b is a constant, with
θa,b : inf{t ≥ 0 := ∫ t

0 as ds �= ∫ t
0 bs ds}.

Definition 2 A set A is a separable class of diffusion coefficients generated by
A0 if A0 ⊆ AW is a generating class of diffusion coefficients and A consists of all
processes of the form

a =
∞∑
n=0

∞∑
i=1

ani 1En
i
1[τn ,τn+1),

where (ani )i,n ⊆ A0, (τn)n is an increasing sequence of F-stopping times valued in
R+ ∪ {∞} with τ0 = 0 and

(i) inf{n : τn = ∞} < ∞, τn < τn+1 whenever τn < ∞, and each τn takes at most
countably many values.

(ii) for each n, {En
i , i ≥ 1} ⊆ Fτn forms a partition of �.

Proposition 2 Let A be a separable class of diffusion coefficients generated by
A0. Then, A ⊆ AW and if for all a ∈ A0, Pa satisfies the martingale representation
property, then for all a ∈ A, Pa satisfies the martingale representation property as
well.
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