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The proof of (Geiss and Steinicke (2018), Theorem 3.5) needs an extra step address-
ing the problem that our conditions on the generator are not sufficient to guarantee
the existence of the considered optional projection:

In Definition 3.3 we defined f; as the optional projection of

(@,1,y,z,u) > “Uf(n, 0,1, y,2,u)

with respect to " (given by F;' := F; N J"), with parameters (y, z, u). However,

this optional projection does not always exist for generators f satisfying (A1)—(A3).

Sufficient for the existence of the optional projection of a process is boundedness

or non-negativity. To guarantee the existence one can replace first f(w, s, y, z, ) by
fK(wvsvyaZ7u) - (_K)Vf(a)vsvyazau)/\K

for some K > 0.

Clearly, (A1) and (A2) are satisfied for fX. Concerning (A3), one observes that
only the cases where both factors of (y —y')(f (s, y, z,u)— f(s, ¥, 2/, u’)) are either
positive or negative are relevant. Since

min{f(57 Y, Z,M) - f(57 y/v Z/,M/),O} = fK(S’ Y, Z,M) - fK (S’ y/’ Z/,M/)
max { (s, y, z,u) — f(s, ¥, 2", u"),0},

(A3) is satisfied for fX. The above inequality implies that also (Ay) holds for fX.
Hence in order to prove Theorem 3.5, one first starts with fX and f’X and gets

YK <v/X Poas.
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Next we will see that ||Y; — YX || and ||Y/ — ¥/ || converge to zero for K — oo, so
that ¥, <Y/ P-as. follows. In the proof of Proposition 4.2 it was shown that for
data (£, f) and (&, fK) itholds

K2
sup [|Y; = Y," |l
t€l0,T]

T
<h (a, .28 [ 1~ ¥f1| 11 21U - ¥ ¥ 20 dr) .
0

To see that the r.h.s. goes to zero, one can use that

T
E/ Y= S F v 2 — R 20|
0

) 172
dt> .

The factor sup, ¢ 71 I1Y: — YX| is bounded according to Proposition 4.1, and the
integral goes to zero by monotone convergence. Since lim,_.¢ #(a, b, x) = 0, one
derives that limg _, o || Yy — YIK || = 0, and in the same way it follows limg o0 || ¥/ —
/K| =o0.

Moreover, Theorem 3.4 and Lemma 5.1 in Geiss and Steinicke (2018) are only
valid, if f,, in Definition 3.3 exists. For the proof of Theorem 3.5 this does not cause
a problem since we need these results for £X only.

For more general conditions for the existence of an optional projection than non-
negativity or boundedness we refer to (Dellacherie and Meyer (1982), Remarks
VI1.44.(f)) and (He et al. 1992).

T
< VT sup |IY, =¥ (E/ 7., 2, U = R @Y 2,0
t€l0,T] 0
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