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Abstract In this paper, we consider the mixed optimal control of a linear stochastic
system with a quadratic cost functional, with two controllers—one can choose only
deterministic time functions, called the deterministic controller, while the other can
choose adapted random processes, called the random controller. The optimal control
is shown to exist under suitable assumptions. The optimal control is characterized via
a system of fully coupled forward-backward stochastic differential equations (FBS-
DEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled)
Riccati equations, and give the respective optimal feedback law for both determin-
istic and random controllers, using solutions of both Riccati equations. The optimal
state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both
the singular and infinite time-horizonal cases are also addressed.
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1 Introduction and formulation of the problem

Let T > 0 be given and fixed. Denote by Sn the totality of n×n symmetric matrices,
and by Sn+ its subset of all n × n nonnegative matrices. We mean by an n × n matrix
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S ≥ 0 that S ∈ S
n+ and by a matrix S > 0 that S is positive definite. For a matrix-

valued function R : [0, T ] → S
n, we mean by R � 0 that R(t) is uniformly positive,

i.e. there is a positive real number α such that R(t) ≥ αI for any t ∈ [0, T ].
In this paper, we consider the following linear controlled stochastic differential

equation (SDE)

dXs =
[
AsXs + B1

s u1s + B2
s u2s

]
ds (1)

+
d∑

j=1

[
C

j
s Xs + D

1j
s u1s + D

2j
s u2s

]
dW

j
s , s > 0; X0 = x0,

with the following quadratic cost functional

J (u) � 1

2
E

∫ T

0

[
〈QsXs, Xs〉 +

〈
R1

s u
1
s , u

1
s

〉
+

〈
R2

s u
2
s , u

2
s

〉]
ds + 1

2
E [〈GXT , XT 〉] .

(2)
Here, (Wt )0≤t≤T = (

W 1
t , · · · , Wd

t

)
0≤t≤T

is a d-dimensional Brownian motion on
a probability space (�,F,P). Denote by (Ft ) the augmented natural filtration gen-
erated by (Wt ). A, B1, B2, Cj , D1j and D2j are all bounded Borel measurable
functions from [0, T ] to R

n×n,Rn×l1 ,Rn×l2 ,Rn×n,Rn×l1 , and R
n×l2 , respectively.

Q, R1, and R2 are nonnegative definite, and they are all essentially bounded mea-
surable functions on [0, T ] with values in S

n, Sl1 , and S
l2 , respectively. In the first

four sections, R1 and R2 are further assumed to be positive definite. G ∈ S
n is

positive semi-definite. A control u = (
u1, u2

)
is a process u ∈ L2

F
(
0, T ; Rl1+l2

)
,

and Xu ∈ L2
F (�; C(0, T ; Rn)) is the corresponding state process with initial value

x0 ∈ R
n.

We will use the following notations. Let l > 0 be an integer. For a given σ -field
G ⊂ F , L2

G
(
�; Rl

)
is the set of random variables ξ : (�,G) → (

R
l ,B

(
R

l
))

with E
[|ξ |2]

< +∞. L∞
G

(
�; Rl

)
is the set of essentially bounded random vari-

ables ξ : (�,G) → (
R

l ,B
(
R

l
))
. L2

F
(
t, T ; Rl

)
is the set of {Fs}s∈[t,T ]-adapted

R
l-valued processes f = {fs : t ≤ s ≤ T } such that E

[∫ T

t
|fs |2 ds

]
<

∞, and denoted by L2
(
t, T ;Rl

)
if the underlying filtration is the trivial one.

L∞
F

(
t, T ; Rl

)
is the set of essentially bounded {Fs}s∈[t,T ]-adapted R

l-valued pro-
cesses. L2

F
(
�; C

(
t, T ; Rl

))
is the set of continuous {Fs}s∈[t,T ]-adapted Rl-valued

processes f = {fs : t ≤ s ≤ T } such that E
[
sups∈[t,T ] |fs |2

]
< ∞. All vectors

used in this paper are column vectors. For a matrix M, M ′ is its transpose, and

|M| =
√∑

i,j m2
ij is the Frobenius norm. For a vector- or matrix-valued function K

defined on the time interval [0, T ] and differentiable at time t ∈ [0, T ], K̇t or K̇(t)

stands for the derivative at time t. Define

B :=
(
B1, B2

)
, D :=

(
D1, D2

)
, R := diag

(
R1, R2

)
, u :=

((
u1

)′
,
(
u2

)′)′
;

(3)
and for a matrix K with suitable dimensions and (t, x, u) ∈ [0, T ] × R

n × R
l1+l2 ,
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(Ctx + Dtu)dWt =
d∑

j=1

(
C

j
t x + D

1j
t u1 + D

2j
t u2

)
dW

j
t ; C′

tK :=
d∑

j=1

(
C

j
t

)′
Kj ;

D′
tKDt :=

d∑
j=1

(
D

j
t

)′
KD

j
t , C′

tKDt :=
d∑

j=1

(
C

j
t

)′
KD

j
t , C′

tKCt :=
d∑

j=1

(
C

j
t

)′
KC

j
t .

If both u1 and u2 are adapted to the natural filtration of the underlying Brownian
motion W (i. e., ui ∈ Ui

ad = L2
F

(
0, T ;Rli

)
for i = 1, 2), it is well-known that the

optimal control exists and can be synthesized into the following feedback of the state:

ut = (
Rt + D′

tKtDt

)−1 (
KtBt + C′

tKtDt

)′
Xt, t ∈ [0, T ]. (4)

Here K solves the following Riccati differential equation:

K̇s + A′
sKs + KsAs + C′

sKsCs + Qs

− (
KsBs + C′

sKsDs

) (
Rs + D′

sKsDs

)−1 (
KsBs + C′

sKsDs

)′ (5)

= 0, s ∈ [0, T ]; KT = G.

See Wonham (1968), Haussmann (1971), Bismut (1976, 1977), Peng (1992), and
Tang (2003) for more details on the general Riccati equation arising from linear
quadratic optimal stochastic control with both state- and control-dependent noises
and deterministic coefficients.

In this paper, we consider the following situation: there are two controllers called
the deterministic controller and the random controller: the former can impose a deter-
ministic action u1 only, i.e., u1 ∈ U1

ad = L2
(
0, T ;Rl1

)
; while the latter can impose

a random action u2, more precisely u2 ∈ U2
ad = L2

F
(
0, T ;Rl2

)
. Firstly, we apply

the conventional variational technique to characterize the optimal control via a sys-
tem of fully coupled forward-backward stochastic differential equations (FBSDEs) of
mean-field type. Then we give the solution of the FBSDEs with two (but decoupled)
Riccati equations, and derive the respective optimal feedback law for both determin-
istic and random controllers, using solutions of both Riccati equations. Existence and
uniqueness is given to both Riccati equations. The optimal state is shown to satisfy
a linear stochastic differential equation (SDE) of mean-field type. Both the singular
and infinite time-horizonal cases are also addressed.

The rest of the paper is organized as follows. In Section 2, we give the necessary
and sufficient condition of the mixed optimal controls via a system of FBSDEs. In
Section 3, we synthesize the mixed optimal control into linear closed forms of the
optimal state. We derive two (but decoupled) Riccati equations, and study their solv-
ability. We state our main result. In Section 4, we address some particular cases. In
Section 5, we discuss singular linear quadratic control cases. Finally in Section 6, we
discuss the infinite time-horizonal case.



Page 4 of 15 Hu and Tang

2 Necessary and sufficient condition of mixed optimal controls

The following necessary and sufficient condition can be proved in a straightforward
way.

Theorem 1 Assume that u∗ is an optimal control, and X∗ is the corresponding
solution. Then there is a unique pair of processes

(
p(·), k := (kj (·))j=1,··· ,d

)
) ∈

L2
F (0, T ;Rn)× (

L2
F (0, T ;Rn)

)d
(hereafter called the adjoint processes) satisfying

the BSDE (6):

{
dp(s) = − [

A′
sp(s) + C′

sk(s) + QsX
∗
s

]
ds + k′(s)dWs, s ∈ [0, T ],

p(T ) = GX∗
T ; (6)

and the following optimality conditions hold true:

E

[(
B1

s

)′
p(s) +

(
D1

s

)′
k(s) + R1

s u
1∗
s

]
= 0, (7)

(
B2

s

)′
p(s) +

(
D2

s

)′
k(s) + R2

s u
2∗
s = 0. (8)

These optimality conditions are also sufficient for (X∗, u∗) to be an optimal pair.

Proof It is obvious that BSDE (6) has a unique solution (p(·), k(·)) ∈
L2
F (0, T ;Rn) × (

L2
F (0, T ;Rn)

)d
.

Using the convex perturbation, we obtain in a straightforward way the necessary
conditions of the optimal control u∗:

E

∫ T

0

〈(
Bi

s

)′
p(s) +

(
Di

s

)′
k(s) + Ri

su
i∗
s , ui

s

〉
ds = 0, ∀ui ∈ Ui

ad; i = 1, 2.

(9)
Clearly, the preceding conditions are equivalent to (7) and (8). The sufficiency can
be proved in a standard way.

3 Synthesis of the mixed optimal control

3.1 Ansatz

Let u be a control, X be the corresponding state process, and (p, k) the unique
solution to (6) such that both (7) and (8) are satisfied. Define

X := E[X], X̃ := X − X; u2 := E

[
u2

]
, ũ2 := u2 − u2. (10)

We expect a feedback of the following form

p(s) = P1(s)X̃s + P2(s)Xs (11)
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for some n×nmatrix-valued absolutely continuous functions P1(·) and P2(·) defined
on the time interval [0, T ]. Applying Ito’s formula, we have

dp(s) = Ṗ1(s)X̃sds + P1(s)
[
AsX̃s + B2

s ũ2s

]
ds

+ P1(s) [CsXs + Dsus] dWs

+ Ṗ2(s)Xsds + P2(s)
[
AsXs + B1

s u1s + B2
s u2s

]
ds.

(12)

Hence

k(s) = P1(s) (CsXs + Dsus) . (13)

Define for i = 1, 2,

�i(S) := Ri + (
Di

)′
SDi, S ∈ S

n; (14)

�̂(S) := �1(S) − (
D1

)′
SD2�−1

2 (S)
(
D2

)′
SD1, S ∈ S

n; (15)

and

�i :=
(
B2

)′
Pi +

(
D2

)′
P1C. (16)

Plugging Eqs. (11) and (13) into the optimality conditions (7) and (8):
(
B1

s

)′
P2(s)Xs +

(
D1

s

)′
P1(s)

(
CsXs + D1

s u
1
s + D2

s u
2
s

)
+ R1

s u
1
s = 0, (17)

(
B2

s

)′ [
P1(s)X̃s + P2(s)Xs

]

+
(
D2

s

)′
P1(s)

[
Cs

(
X̃s + Xs

) + D1
s u

1
s + D2

s u
2
s

]
+ R2

s u
2
s = 0. (18)

From the last equality, we have

u2 = −�−1
2 (P1)

[
�1X̃ + �2X +

(
D2

)′
P1D

1u1
]

(19)

and consequently

u2 = −�−1
2 (P1)

[
�2X +

(
D2

)′
P1D

1u1
]

. (20)

In view of (17), we have
(
B1

s

)′
P2(s)Xs +

(
D1

s

)′
P1(s)CsXs

+
(
D1

s

)′
P1(s)D

2
s u

2
s + �1 (P1(s)) u1s = 0 (21)

and therefore,

�1 (P1(s)) u1s +
(
B1

s

)′
P2(s)Xs +

(
D1

s

)′
P1(s)CsXs

−
(
D1

s

)′
P1(s)D

2
s �

−1
2 (P1)

[
�2(s)Xs +

(
D2

s

)′
P1(s)D

1
s u

1
s

]
= 0 (22)
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or equivalently

[
�1 (P1) −

(
D1

)′
P1D

2�−1
2 (P1)

(
D2

)′
P1D

1
]

u1

= −
[(

B1
)′

P2 +
(
D1

)′
P1C −

(
D1

)′
P1D

2�−1
2 (P1)�2

]
Xs. (23)

We have

u1 = M1X, u2 = M2X̃ + M3X (24)

where

M1 := −
[
�1(P1) − (

D1
)′

P1D
2�−1

2 (P1)
(
D2

)′
P1D

1
]−1

×
[(

B1
)′

P2 + (
D1

)′
P1C − (

D1
)′

P1D
2�−1

2 (P1)�2

]
, (25)

M2 := −�−1
2 (P1)�1, (26)

M3 := −�−1
2 (P1)

[
�2 + (

D2
)′

P1D
1M1

]
. (27)

In view of (12) and (6), we have

dp(s) = Ṗ1X̃ds + P1
[
AX̃ + B2M2X̃

]
ds + k′dWs (28)

+Ṗ2Xds + P2
[
AX + B1M1X + B2M3X

]
ds

= − {
A′

s

(
P1(s)X̃s + P2(s)Xs

) + (
Qs + C′

sP1(s)Cs

) (
Xs + X̃s

)
(29)

+C′
sP1(s)

[
D1

s M
1
s Xs + D2

s

(
M2

s X̃s + M3
s Xs

)]}
ds

+k′(s)dWs.

We expect the following system for (P1, P2):

Ṗ1 + P1A + A′P1 + C′P1C + Q

− (
P1B

2 + C′P1D
2
)
�−1

2 (P1)
(
P1B

2 + C′P1D
2
)′ = 0, (30)

P1(T ) = G

and

Ṗ2 + P2A + A′P2 + C′P1C + Q + C′P1D
1M1 + C′P1D

2M3

+P2B
1M1 + P2B

2M3 = 0, P2(T ) = G. (31)

The last equation can be rewritten into the following one:

Ṗ2 + P2Ã(P1) + Ã′(P1)P2 + Q̃(P1) − P2N (P1)P2 = 0, P2(T ) = G (32)
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where for S ∈ S
n+,

U(S) := S − SD2�−1
2 (S)

(
D2

)′
S,

Q̃(S) := Q + C′U(S)C − C′U(S)D1�̂−1(S)
(
D1

)′
U(S)C,

Ã(S) := A − B2�−1
2 (S)

(
D2

)′
SC

−
[
B1 − B2�−1

2 (S)
(
D2

)′
SD1

]
�̂−1(S)

(
D1

)′
U(S)C,

N (S) := B2�−1
2 (S)

(
B2

)′

+
[
B1 − B2�−1

2 (S)
(
D2

)′
SD1

]
�̂−1(S)

[
B1 − B2�−1

2 (S)
(
D2

)′
SD1

]′
.

We have the following representation for M1 and M2:

M1 = −�̂−1(P1)

[(
B1

)′
P1 + (D1)′U(P1)C −

(
D1

)′
P1D

1�−1
2 (P1)

(
B2

)′
P2

]
,

M3 = −�−1
2 (P1)

{(
B2

)′
P2 +

(
D2

)′
P1C

− (D2)′P1D
1�̂−1(P1)

[(
B1

)′
P1 +

(
D1

)′
U(P1)C

−
(
D1

)′
P1D

1�−1
2 (P1)

(
B2

)′
P2

]}
.

(33)

Lemma 1 For S ∈ S
n+, we have Q̃(S) ≥ 0.

Proof First, we show that U(S) ≥ 0. In fact, we have
(
setting D̂2 := S1/2D2

)

U(S) = S − S1/2D̂2

[
R2 +

(
D̂2

)′
D̂2

]−1 (
D̂2

)′
S1/2

≥ S − S1/2IS1/2 = 0. (34)

Here we have used the following well-known matrix inequality:

D(R + D′FD)−1D′ ≤ F−1 (35)

for D ∈ R
n×m, and positive matrices F ∈ S

n and R ∈ S
m.

Using again the inequality (35), we have
(
setting D̂1 := [U(S)]1/2D1

)

Q̃(S) = Q + C′U(S)C

− C′U(S)D1
[
R1+

(
D1

)′
SD1−

(
D1

)′
SD2�−1

2 (S)
(
D2

)′SD1
]−1(

D1
)′U(S)C

= Q + C′U(S)C − C′U(S)D1
[
R1 +

(
D1

)′
U(S)D1

]−1 (
D1

)′
U(S)C

= Q+C′U(S)C−C′[U(S)]1/2D̂1

[
R1+

(
D̂1

)′
D̂1

]−1 (
D̂1

)′ [U(S)]1/2C
≥ Q + C′U(S)C − C′[U(S)]1/2I [U(S)]1/2C ≥ 0. (36)

The proof is complete.
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3.2 Existence and uniqueness of optimal control

Theorem 2 Assume that R1 � 0 and R2 � 0. Then, there is a unique optimal
control u∗, and Riccati Eqs. (30) and (32) have unique nonnegative solutions P1 and
P2. The optimal control u∗ = (

u1∗, u2∗
)
has the following feedback form:

u1∗ = M1X∗, u2∗ = M2X̃∗ + M3X
∗ = M2X∗ +

(
M3 − M2

)
X

∗
(37)

whereX∗ is the state process corresponding to the optimal control u∗,X∗
t := E

[
X∗

t

]
,

and X̃∗
t := X∗

t − X∗
t for t ∈ [0, T ]. The optimal feedback system is given by

Xt = x0 + ∫ t

0

[(
A + B2M2

)
Xs + (

B1M1 − B2M2 + B2M3
)
Xs

]
ds

+ ∫ t

0

[(
C+D2M2

)
Xs +

(
D1M1−D2M2 + D2M3

)
Xs

]
dWs, t ≥ 0. (38)

It is a mean-field stochastic differential equation. The expected optimal state X∗
t is

governed by the following ordinary differential equation:

Xt = x0 +
∫ t

0

(
A + B1M1 + B2M3

)
Xs ds, t ≥ 0; (39)

and X̃∗
t is governed by the following stochastic differential equation:

X̃t =
∫ t

0

(
A + B2M2

)
X̃s ds

+
∫ t

0

[(
C + D2M2

)
X̃s +

(
C + D1M1 + D2M3

)
Xs

]
dWs, t ≥ 0.

(40)
The optimal value is given by

J (u∗) = 〈P2(0)x0, x0〉 . (41)

Proof Since R1 and R2 are uniformly positive, the cost functional J (u) is strictly
convex in u and thus has a unique minimizer. Therefore, we have a unique optimal
control. Define

û1 := M1X∗, û2 := M2X̃∗ + M3X∗, û :=
(
û1, û2

)
(42)

and

p̂ := P1X̃∗ + P2X∗, k̂ := P1
(
CX∗ + Du∗)

. (43)

We can check that the pair
(
p̂, k̂

)
is an adapted solution to BSDE (6), and

(̂
u, p̂, k̂

)
satisfies the optimality condition. Hence, û is the optimal control u∗.

The formula (41) is derived from computation of
〈
ps, X

∗
s

〉
with the Itô’s formula.

All other assertions are obvious.

Remark 1 The uniqueness of solution to the mean-field FBSDE (consisting of the
four Eqs. (1) with (X, u) = (X∗, u∗) and (6)-(8)) can be obtained from uniqueness
of optimal controls. In fact, as u∗ is unique, the corresponding state process X∗ is
unique, and thus the solution (p, k) to the adjoint equation is unique.
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It can also be proved in a direct way. In fact, if (X, u, p, k) is an alternative
solution to the FBSDE and satisfies the optimality condition, then by setting

δp := p − (
P1X̃ + P2X

)
, δk := k − P1(CX + Du),

and by putting
p = δp + P1X̃ + P2X, k = δk + P1(CX + Du)

into (7) and (8), we have δpT = 0 and the following two equalities

E

{(
B1

)′ (
δp+P1X̃+P2X

) +
(
D1

)′
[δk + P1(CX + Du)] + R1u1

}
= 0, (44)

(
B2

)′ (
δp + P1X̃ + P2X

) +
(
D2

)′
(δk + P1(CX + Du)) + R2u2s = 0. (45)

Therefore, we have

u2 = −�−1
2 (P1)

[(
B2

)′
δp +

(
D2

)′
δk + �2X + D′

2P1D1u
1∗

]
. (46)

In view of (44) and (45), we have
u1 = L1δp + L2δk + M1X (47)

and
u2 = L3δp + L4δk + L5δp + L6δk + M2X̃ + M3X

where

L1 := −�̂−1(P1)

[(
B1

)′ −
(
D1

)′
P1D

2�−1
2 (P1)

(
B2

)′]
,

L2 := −�̂−1(P1)

[(
D1

)′ −
(
D1

)′
P1D

2�−1
2 (P1)

(
D2

)′]
,

L3 := −�−1
2 (P1)

(
B2

)′
,

L4 := −�−1
2 (P1)

(
D2

)′
,

L5 := −�−1
2 (P1)

(
D2

)′
P1D

1L1,

L6 := −�−1
2 (P1)

(
D2

)′
P1D

1L2.

Define a new function f as follows:

f (s, p, k, P, K)

:= [
A′

s + P1(s)B
2
s L3

s + C′
sP1(s)D

2
s L

3
s

]
p + [

C′
s + P1(s)B

2
s L4 + C′P1(s)D

2
s L

4
s

]
k

+ [
C′

sP1(s)D
1
s L

1
s + P2(s)B

1
s L1

s + P2(s)B
2
s L3

s − P1(s)B
2
s L3

s + P2(s)B
2
s L5

s

+ C′
sP1(s)D

2
s L

5
s

]
P + [

C′
sP1(s)D

1
s L

2
s + P2(s)B

1
s L2

s + P2(s)B
2
s L4

s − P1(s)B
2
s L4

s

+ P2(s)B
2
s L6

s + C′
sP1(s)D

2
s L

6
s

]
K.

Then (δp, δk) satisfies the following linear homogeneous BSDE of mean-field type:

dδps = −f
(
s, δps, δks, δps, δks

)
ds + δks dWs, δpT = 0. (48)

In view of (Buckdahn et al. (2009), Theorem 3.1), it admits a unique solution
(δp, δk) = (0, 0). Therefore, X = X∗ and u = u∗.
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4 Particular cases

4.1 The classical optimal stochastic LQ case: B1 = 0 and D1 = 0.

In this case, let P1 be the unique nonnegative solution to Riccati Eq. (30). Then,
P1 is also the solution of Riccati Eq. (32), and the optimal control reduces to the
conventional feedback form.

4.2 The deterministic control of linear stochastic system with quadratic cost:
B2 = 0 and D2 = 0.

In this case, B = B1 and D = D1, and Riccati Eq. (30) takes the following form (we
write R = R1 for simplifying exposition):

Ṗ1 + P1A + A′P1 + C′P1C + Q = 0, P1(T ) = G,

which is a linear Liapunov equation. Riccati Eq. (32) takes the following form:

Ṗ2 + P2Ã + Ã′P2 + Q̃ − P2B
′ (

R + D′P1D
)−1

BP2 = 0, P2(T ) = G

with
Ã := A − B

(
R + D′P1D

)−1
D′P1C

and
Q̃ := Q + C′P1C − C′P1D

(
R + D′P1D

)−1
D′P1C.

The optimal control takes the following feedback form:

u∗ = − (
R + D′P1D

)−1 (
BP2 + D′P1C

)
X∗.

5 Some solvable singular cases

In this section, we study the possibility of R1 = 0 or R2 = 0. We have

Theorem 3 Assume that R1 � 0 and

R2 ≥ 0,
(
D2

)′
D2 � 0, G > 0. (49)

Then Riccati Eqs. (30) and (32) have unique nonnegative solutions P1 � 0 and P2,
respectively. The optimal control is unique and has the following feedback form:

u1∗ = M1X∗, u2∗ = M2X̃∗ + M3X∗ = M2X∗ +
(
M3 − M2

)
X∗. (50)

The optimal feedback system and the optimal value take identical forms to those of
Theorem 2.

Proof In view of the conditions (49), the existence and uniqueness of solution
P1 � 0 to Riccati Eq. (30) can be found in Kohlmann and Tang (2003), and those
of solution P2 ≥ 0 to Riccati Eqs. (30) comes from the fact that �̂(P1) � 0 as a
consequence of the condition that R1 � 0.

Other assertions can be proved in an identical manner as Theorem 2.
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Theorem 4 Assume that R2 � 0 and

R1 ≥ 0,
(
D1

)′
D1 � 0, G > 0. (51)

Then Riccati Eqs. (30) and (32) have unique nonnegative solutions P1 � 0 and P2,
respectively. The optimal control is unique and has the following feedback form:

u1∗ = M1X∗, u2∗ = M2X̃∗ + M3X∗ = M2X∗ +
(
M3 − M2

)
X∗. (52)

The optimal feedback system and the optimal value take identical forms to those of
Theorem 2.

Proof The existence and uniqueness of solution P1 to Riccati Eqs. (30) are well-
known. In view of the condition G > 0, we have P1 � 0. We now prove those of
solution P2 ≥ 0 to Riccati Eq. (30).

In view of the well-known matrix inverse formula:

(
A + BD−1C

)−1 = A−1 − A−1B
(
D + CA−1B

)−1
CA−1 (53)

for B ∈ R
n×m, C ∈ R

m×n and invertible matrices A ∈ R
n×n, D ∈ R

m×m such that
A + BD−1C and D + CA−1B are invertible, we have the following identity:

�̂(P1) = R1 + (
D1

)′
{
P1 − P1D

2
[
R2 + (

D2
)′

P1D
2
]−1 (

D2
)′

P1

}
D1

= R1 + (
D1

)′ [
P −1
1 + D2

(
R2

)−1 (
D2

)′]−1
D1. (54)

Noting the condition
(
D1

)′
D1 � 0, we have �̂(P1) � 0.

Other assertions can be proved in an identical manner as Theorem 2.

6 The infinite time-horizontal case

In this section, we consider the time-invariant situation of all the coefficients
A, B, C, D, Q and R in the linear controlled stochastic differential equation (SDE)

dXs =
[
AXs + B1u1s + B2u2s

]
ds +

[
CXs + D1u1s + D2u2s

]
dWs, t > 0; X0 = x0,

(55)
and the quadratic cost functional

J (u) � 1

2
E

∫ ∞

0

[
〈QXs, Xs〉 +

〈
R1u1s , u

1
s

〉
+

〈
R2u2s , u

2
s

〉]
ds (56)

for
(
u1, u2

) ∈ L2
(
0, ∞;Rl1

) × L2
F

(
0, ∞;Rl2

)
and u :=

((
u1

)′
,
(
u2

)′)′
.

The admissible class of controls for the deterministic controller u1 is
L2

(
0, ∞;Rl1

)
and for the random controller u2 is L2

F
(
0, ∞;Rl2

)
. For simplicity of

subsequent exposition, we assume that Q > 0.
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Assumption 1 There isK ∈ R
l2×n such that the unique solution X to the following

linear matrix stochastic differential equation

dXs =
(
A + B2K

)
Xs ds +

(
C + D2K

)
XsdWs, t > 0; X0 = I, (57)

lies in L2
F (0, ∞;Rn×n). That is, our linear control system (55) is stabilizable using

only control u2.

Remark 2 By applying Itô’s formula to |Xs |2 and taking the expectation, it is
straightforward to see that if there exists K ∈ R

l2×n such that
(
A + B2K

)
+

(
A + B2K

)′ +
(
C + D2K

)′ (
C + D2K

)
< 0,

then Assumption 1 is satisfied. In particular, if

A + A′ + C′C < 0,

then Assumption 1 is satisfied.

We have

Lemma 2 Assume that Q > 0 and Assumption 1 and either of the following three
sets of conditions hold true:

(i) R1 > 0 and R2 > 0; (ii) R1 > 0, R2 ≥ 0,
(
D2

)′
D2 > 0, and G > 0; and (iii)

R1 ≥ 0,
(
D1

)′
D1 > 0, R2 > 0, and G > 0.

Then, Algebraic Riccati equation

P1A + A′P1 + C′P1C + Q

− (
P1B

2 + C′P1D
2
)
�−1

2 (P1)
(
P1B

2 + C′P1D
2
)′ = 0 (58)

has a unique positive solution P1, and Algebraic Riccati equation

P2Ã(P1) + Ã′(P1)P2 + Q̃(P1) − P2N (P1)P2 = 0 (59)

has a positive solution P2. Here for S ∈ S
n+,

U(S) := S − SD2�−1
2 (S)

(
D2

)′
S;

Q̃(S) := Q + C′U(S)C − C′U(S)D1�̂−1(S)
(
D1

)′
U(S)C;

Ã(S) := A − B2�−1
2 (S)

(
D2

)′
SC

−
[
B1 − B2�−1

2 (S)
(
D2

)′
SD1

]
�̂−1(S)

(
D1

)′
U(S)C;

N (S) := B2�−1
2 (S)

(
B2

)′

+
[
B1 − B2�−1

2 (S)
(
D2

)′
SD1

]
�̂−1(S)

[
B1 − B2�−1

2 (S)
(
D2

)′
SD1

]′
.

Proof Existence and uniqueness of positive solution P1 to Algebraic Riccati
Eq. (58) is well-known, and is referred to (Wu and Zhou (2001), Theorem 7.1,
page 573). Now we prove the existence of positive solution to Algebraic Riccati



Probability, Uncertainty and Quantitative Risk             (2019) 4:1 Page 13 of 15

Eq. (59). We use approximation method by considering finite time-horizontal Riccati
equations.

For any T > 0, let P T
1 and P T

2 be unique solutions to Riccati Eqs. (30) and (32),
withG = 0. It is well-known that P T

1 converges to the constant matrix P1 as T → ∞.
We now show the convergence of P T

2 . Firstly, P T
2 (t) is nondecreasing in T for any

t ≥ 0 due to the following representation formula: for (t, x) ∈ [0, T ] × R
n,

〈
P T
2 (t)x, x

〉
= inf

u1∈L2(t,T ;Rl1 )

u2∈L2
F

(
t,T ;Rl2

)

1

2
E

t,x

∫ T

t

[
〈QXs, Xs〉 +

〈
R1u1s , u

1
s

〉
+

〈
R2u2s , u

2
s

〉]
ds,

(60)
whose proof is identical to that of the formula (41). From Assumption 1, it is straight-
forward to show that there is Ct > 0 such that

∣∣P T
2 (t)

∣∣ ≤ Ct . Then P T
2 (t) converges

to P2(t) as T → ∞. Furthermore, since all the coefficients are time-invariant and(
P T
1 (T ), P T

2 (T )
) = 0 for any T > 0, we have
(
P T +s
1 (t + s), P T +s

2 (t + s)
)

=
(
P T
1 (t), P T

2 (t)
)

. (61)

Taking the limit T → ∞ yields that P2(t + s) = P2(t). Therefore, P2 is a constant
matrix.

Taking the limit T → ∞ in the integral form of Riccati Eq. (32), we show that P2
solves Algebraic Riccati Eq. (59).

Finally, in view of Q > 0, we have P 1
2 (0) > 0. Hence P2 ≥ P 1

2 (0) > 0.

Theorem 5 Let Assumption 1 be satisfied. Assume that Q > 0 and either of the
following three sets of conditions holds true:

(i) R1 > 0 and R2 > 0; (ii) R1 > 0, R2 ≥ 0, (D2)′D2 > 0, and G > 0; and (iii)
R1 ≥ 0,

(
D1

)′
D1 > 0, R2 > 0, and G > 0.

Let P1 be the unique positive solution to algebraic Eq. (58), and P2 a posi-
tive solution to the algebraic Eq. (59). Let (u∗, X∗) be an optimal pair with u∗ =((

u1∗
)′

,
(
u2∗

)′)′
. Then the optimal control is unique and has the following feedback

form:

u1∗ = M1X∗, u2∗ = M2X̃∗ + M3X∗ = M2X∗ +
(
M3 − M2

)
X∗ (62)

where X∗
t := E

[
X∗

t

]
and X̃∗

t := X∗
t − X∗

t for t ≥ 0. The optimal feedback system is
given by

Xt = x0 + ∫ t

0

[(
A + B2M2

)
Xs + (

B1M1 − B2M2 + B2M3
)
Xs

]
ds

+ ∫ t

0

[(
C+D2M2

)
Xs +

(
D1M1−D2M2+D2M3

)
Xs

]
dWs, t ≥ 0. (63)

It is a mean-field stochastic differential equation. The expected optimal state X∗
t is

governed by the following ordinary differential equation:

Xt = x0 +
∫ t

0

(
A + B1M1 + B2M3

)
Xs ds, t ≥ 0; (64)
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and X̃∗
t is governed by the following stochastic differential equation:

X̃t = ∫ t

0

(
A + B2M2

)
X̃s ds

+ ∫ t

0

[(
C + D2M2

)
X̃s + (

C + D1M1 + D2M3
)
Xs

]
dWs, t ≥ 0. (65)

The optimal value is given by

J
(
u∗) = 〈P2 x0, x0〉, (66)

which implies the uniqueness of the positive solution to Algebraic Riccati Eq. (59).

Proof The uniqueness of the optimal control is an immediate consequence of the
strict convexity of the cost functional in both control variables u1 and u2. We now
show that u∗ is optimal.

Note that the constant positive matrix P2 solves the Riccati differential Eq. (32)
with G := P2. Define for T > 0,

(
u1, u2

) ∈ L2
(
0, T ;Rl1

) × L2
F

(
0, T ;Rl2

)
, and

u := (
u1, u2

)
,

J T (u) := 1

2
E

∫ T

0

[
〈QXs, Xs〉 +

〈
R1u1s , u

1
s

〉
+

〈
R2u2s , u

2
s

〉]
ds.

For any admissible pair
(
u1, u2

)
, from Theorem 2, we have

E
〈
P2 Xu

T , Xu
T

〉 + J T (u) ≥ 〈P2 x0, x0〉.
Therefore, letting T → ∞, we have J (u) ≥ 〈P2 x0, x0〉.

On the other hand, define ps := P1X̃∗
s + P2X∗

s for s ≥ 0. Using Itô’s formula to
compute the inner product 〈p, X∗〉, we have

E

[〈
P1X̃

∗
T + P2X

∗
T , X∗

T

〉]
+ J T

(
u∗|[0,T ]

) = 〈P2 x0, x0〉, ∀ T > 0. (67)

Since

E

[〈
P1X̃

∗
T + P2X

∗
T , X∗

T

〉]
= E

[〈
P1X̃

∗
T , X̃∗

T

〉]
+ E

[〈
P2X

∗
T , X

∗
T

〉]
≥ 0,

we have J T
(
u∗|[0,T ]

) ≤ 〈P2 x0, x0〉 for any T > 0, and thus X∗ is stable and u∗ is
admissible.

Passing to the limit T → ∞ in (67), we have

J
(
u∗) = 〈P2 x0, x0〉 . (68)

The proof is complete.
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