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Abstract We consider the problem of approximation of the solution of the backward
stochastic differential equations in Markovian case. We suppose that the forward
equation depends on some unknown finite-dimensional parameter. This approxi-
mation is based on the solution of the partial differential equations and multi-step
estimator-processes of the unknown parameter. As the model of observations of the
forward equation we take a diffusion process with small volatility. First we establish
a lower bound on the errors of all approximations and then we propose an approx-
imation which is asymptotically efficient in the sense of this bound. The obtained
results are illustrated on the example of the Black and Scholes model.
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Introduction

We consider the problem of approximation of the solution of the backward stochastic
differential equation (BSDE) in the so-called Markovian case. Let us recall some
basics of BSDEs. We are given a stochastic differential equation (called forward)

dXt = S(t, Xt ) dt + σ(t, Xt ) dWt, X0 = x0, 0 ≤ t ≤ T ,
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where S (t, x) is the drift coefficient, σ (t, x)2 is the diffusion coefficient, and
Wt, 0 ≤ t ≤ T is a standard Wiener process. In addition, we have two func-
tions f (t, x, y, z) and �(x) and we must construct such couple of processes
(Yt , Zt , 0 ≤ t ≤ T ) that the solution of the equation

dYt = −f (t, Xt , Yt , Zt ) dt + Zt dWt, Y0, 0 ≤ t ≤ T ,

(called backward) has the final value YT = �(XT ). Such BSDEs were first intro-
duced by Bismut in 1973 (Bismut 1973) in the linear case and the general theory
was developed by Pardoux and Peng (1990) (Pardoux and Peng 1990). The Marko-
vian case considered in this work was studied by Pardoux and Peng (Pardoux and
Peng 1992), see Section 4 in El Karoui et al. (1997) as well. This model is also called
forward-backward stochastic differential equation (FBSDE) (El Karoui et al. 1997).

The construction of the backward equation is realized as follows. Suppose that
u (t, x) satisfies the parabolic partial differential equation

∂u

∂t
+ S (t, x)

∂u

∂x
+ 1

2
σ (t, x)2

∂2u

∂x2
= −f

(
t, x, u, a (t, x)

∂u

∂x

)
,

with the final condition u (T , x) = �(x). Let us let Yt = u (t,Xt ) , and Zt =
σ (t,Xt ) u′

x (t, Xt ). Then, by Itô’s formula

dYt =
[
∂u

∂t
(t, Xt ) + S (t,Xt )

∂u

∂x
(t, Xt ) + 1

2
σ (t, x)2

∂2u

∂x2 (t, Xt )

]
dt

+σ (t,Xt )
∂u

∂x
(t, Xt ) dWt

= −f (t,Xt , Yt , Zt ) dt + Zt dWt, Y0 = u (0, X0) , 0 ≤ t ≤ T .

The final value YT = u (T , XT ) = �(XT ). Therefore, if we have the solution
u (t, x), then we immediately obtain the BSDE.

We are interested by the problem of approximation of (Yt , Zt , 0 ≤ t ≤ T ) in the
situation, where the forward equation contains some unknown finite-dimensional
parameter ϑ :

dXt = S(ϑ, t, Xt ) dt + σ(ϑ, t, Xt ) dWt, X0 = x0, 0 ≤ t ≤ T .

Then the solution of the PDE u = u (t, x, ϑ). We cannot simply let Yt =
u(t, Xt , ϑ) because we do not know ϑ . Of course, the natural way to approximate
Yt and Zt is to estimate first the unknown parameter ϑ with the help of some esti-
mator ϑ̄ and then to put, say, Ȳt = u(t, Xt , ϑ̄). We can guess that if ϑ̄ is a good
estimator of ϑ , then Ȳt will be a good estimator of Yt . There are several problems,
that are interesting to study in this framework. We must understand what the condi-
tions imposed on the estimator ϑ̄ that allow us to say that it is good. We consider that
a good estimator has the following properties.

1. To estimate Yt we need an estimator, which is constructed by the first obser-
vations of the solution of the forward equation up to time t, i.e., ϑ̄t =
ϑ̄t (Xs, 0 ≤ s ≤ t), 0 < t ≤ T .

2. As we need such estimator for all t ∈ (0, T ] we suppose that its calculation must
be relatively simple.
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3. The error of estimation, say, Eϑ0

(
ϑ̄t − ϑ0

)2
must be as minimal as possible.

Therefore ϑ̄ is an estimator-process ϑ̄ = (
ϑ̄t , 0 < t ≤ T

)
. Of course, the con-

struction of such estimator-process is an intermediate problem. The main problem is
to obtain a good approximations of Yt and Zt . In particular, we must show that the
approximations

Ȳt = u(t, Xt , ϑ̄t ), Z̄t = u′
x(t, Xt , ϑ̄t ) σ (ϑ̄t , t, Xt )

are in some sense asymptotically optimal, i.e., it is impossible to have approximations
of these processes with asymptotic errors smaller than that of Ȳt and Z̄t .

The goal of the study initiated in Kutoyants and Zhou (2014) is to realize such
a program for three models of observations of the forward equation. As is usual in
statistics, we consider situations where it is possible to have a consistent estimation of
the unknown parameters and processes. Therefore, we are interested by the following
well-known models of observations.

• Diffusion process with an unknown parameter in the drift coefficient and small
noise or small volatility

dXt = S (ϑ, t, Xt ) dt + εσ (t, Xt ) dWt, x0, 0 ≤ t ≤ T . (1)

Here the time T of observations XT = (Xt , 0 ≤ t ≤ T ) is fixed and the limit
corresponds to ε → 0.

• Diffusion process

dXt = S (t,Xt ) dt + σ (ϑ, t, Xt ) dWt, X0, 0 ≤ t ≤ T , (2)

observed in the discrete times Xn = (
Xt0 , Xt1 , . . . Xtn

)
, ti = i T

n
. Here the

unknown parameter is in the volatility coefficient and the limit corresponds to
n → ∞ (high frequency model of observations). The time T of observations is
fixed.

• Ergodic diffusion process

dXt = S (ϑ, Xt ) dt + σ (Xt ) dWt, X0, 0 ≤ t ≤ T . (3)

Here the unknown parameter ϑ is in the drift coefficient, we have continuous
time observations XT = (Xt , 0 ≤ t ≤ T ) and the limit is T → ∞.

Of course there are other possible statements. For example, it can be considered
the mixture of discrete time and ergodic diffusion. This corresponds to the equation

dXt = S (ϑ, Xt ) dt + σ (ϑ, Xt ) dWt, X0, 0 ≤ t ≤ Tn

and observations Xn = (
Xt0 , Xt1 , . . . Xtn

)
. Here maxi |ti − ti−1| → 0 and Tn → ∞.

Such a model of parameter estimation was studied, e.g., in Kamatani and Uchida
(2015) and Uchida and Yoshida (2014). It is possible to consider the mixture of
discrete-time and small noise models, to consider the model with Xt → ±∞ or
the models with null recurrent forward equation etc. It will be interesting to see
the statements of the statistical problems in non-Markovian cases for more general
models.

Let us decribe the general framework of the statistical study of the above men-
tioned three models (1)-(3). For each model we propose an estimator-processes
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ϑ�
t , 0 < t ≤ T such that Y �

t = u(t, Xt , ϑ
∗
t ) → Yt and the error of approximation

Eϑ

(
Y �

t − Yt

)2 is asymptotically minimal. In the earlier works Kutoyants and Zhou
(2014) and Gasparyan and Kutoyants (2015); (Abakirova, A and Kutoyants, YA: On
approximation of the BSDE. Large samples approach. In preparation) (see the review
of these works in Kutoyants (2014)) we considered the approximation of the solution
of BSDEs with a learning interval of fixed length.

The optimality of estimators of Yt and Zt is understoud as follows. We define for
each model a normalization function ϕ → 0, i.e., ϕε → 0 as ε → 0, ϕn → 0 as
n → ∞, and ϕT → 0 as T → ∞.

We propose the lower bounds on the risks of all estimators

lim
δ→0

lim
ε,n,T

sup
|ϑ−ϑ0|<δ

Eϑ

∣∣∣∣ Ȳt − Yt

ϕ

∣∣∣∣
2

≥ D (ϑ0)
2 ,

which allow us to define the asymptotically efficient estimators Y �
t of Yt as follows

lim
δ→0

lim
ε,n,T

sup
|ϑ−ϑ0|<δ

Eϑ

∣∣∣∣Y
�
t − Yt

ϕ

∣∣∣∣
2

= D (ϑ0)
2 .

We suppose that the last equality takes place for all ϑ0 ∈ 
 and all t ∈ (0, T ]. We
also have a similar bound in the problem of estimation of Zt . For models (1) and (3)
these bounds are slight modifications of the Hajek-Le Cam lower bound (Ibragimov
and Has’minskii 1981) and for model (2) the lower bound is similar to Jeganathan’s
lower bound (Jeganathan 1983).

We take the quadratic loss function just for simplicity of exposition. For all men-
tioned models, the similar lower bounds and corresponding estimator processes can
be proved for more general loss functions.

The approximation of the solution of BSDEs in the Markovian case were initiated
in the work Kutoyants and Zhou (2014), where the model of small volatility was
considered. The parameter ϑ was supposed one-dimensional and the approximation-
process Y �

t,ε was defined for t ∈ [τ, T ], where τ > 0 is a fixed value.
In the work Gasparyan and Kutoyants (2015), we considered the model of discrete-

time observations (2) and the one-step MLE-process which allowed us to construct
an estimator-process Y �

tk,n
for the values tk,n ∈ [τ, T ], where τ > 0 is fixed.

The case of ergodic diffusion process is considered in the work (Abakirova, A
and Kutoyants, YA: On approximation of the BSDE. Large samples approach. In
preparation), which is still in progress.

The main contribution of the present work is due to a new class of estimator-
processes called multi-step MLE-process introduced in Kutoyants (2015). These
estimator-processes allow us to construct the approximations of the solutions of
BSDEs for three above mentioned models with vanishing learning intervals (models
(1) and (2)) or negligible with respect to the whole volume of observations learning
interval (model (3)). Here we consider the model (1) only. The models (2) and (3) we
leave to study later.

In the present work, we consider the small volatility model where we suppose that
the unknown parameter is multi-dimensional and the approximation process Y �

t,ε we
define for t ∈ [τε, T ], where τε → 0. This approximation allows us to consider the
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case τε = εδ → 0 and, moreover, to choose δ close to 2. The relations between
the choice of δ and the multi-step MLE-processes are the following. If δ ∈ (0, 1),
then we use the one-step MLE-process ϑ�

t,ε; if δ ∈ [1, 4
3 ), then we use the two-step

MLE-process ϑ��
t,ε; if δ ∈ [ 43 , 3

2 ), then we use the three-step MLE-process ϑ���
t,ε .

In the work Kutoyants (2015) we aleady studied the multi-step MLE-process for
ergodic diffusion process, and the structure of estimator-process proposed in the
present work is quite similar.

Note that the multi-step, like the well-known one-step ML-estimators, are based
on the so-called Fisher-score device proposed by Fisher in 1925 (Fisher 1925) and
studied by Le Cam in 1956 (Le Cam 1956). Let us recall this construction. Suppose
that we have n i.i.d. r.v.’s Xn = (X1, . . . , Xn) with smooth density function f (ϑ, x)

and denote � (ϑ, x) = ln f (ϑ, x). The maximum likelihood equation is

n∑
j=1

�̇
(
ϑ̂n, Xj

)
= 0.

Here and in the rest of the paper dot means derivation w.r.t. ϑ . If we expand it at
the vicinity of the true value ϑ0, we obtain

n∑
j=1

�̇
(
ϑ0, Xj

) +
(
ϑ̂n − ϑ0

) n∑
j=1

�̈
(
ϑ̃n, Xj

)
= 0.

Therefore

ϑ̂n = ϑ0 −
∑n

j=1 �̇
(
ϑ0, Xj

)
∑n

j=1 �̈
(
ϑ̃n, Xj

) = ϑ0 + 1√
n

1√
n

∑n
j=1 �̇

(
ϑ0, Xj

)
− 1

n

∑n
j=1 �̈

(
ϑ̃n, Xj

) . (4)

Note that

− 1

n

n∑
j=1

�̈
(
ϑ0, Xj

) −→ I (ϑ0) =
∫

�̇ (ϑ0, x)2 f (ϑ0, x) dx, (5)

where I (ϑ0) is the Fisher information.
Suppose that we have a preliminary estimator ϑ̄n such that

√
n

(
ϑ̄n − ϑ0

) =⇒ N (0, D (ϑ0)) , D (ϑ0) > I (ϑ0)
−1 .

Keeping in mind the relations (4)-(5), the one-step MLE ϑ�
n is defined as follows

ϑ�
n = ϑ̄n + 1√

n


n

(
ϑ̄n, X

n
)

I
(
ϑ̄n

) , 
n

(
ϑ, Xn

) = 1√
n

n∑
j=1

�̇
(
ϑ, Xj

)
.

This estimator is already asymptotically efficient because its limit variance is
I (ϑ0)

−1:
√

n
(
ϑ�

n − ϑ0
) =⇒ N

(
0, I (ϑ0)

−1
)

.

Therefore, this Fisher-score device allows us to improve the preliminary estimator
up to asymptotically efficient (see details, e.g., in Lehmann and Romano (2005)).
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Moreover, this device can be applied even in the case of preliminary estimator with
the rate of convergence worse than

√
n (see, e.g., Robinson (1988) and Kamatani and

Uchida (2015)). For continuous-time stochastic processes such a construction was
used, for example, in Skorohod and Khasminskii (1996).

The one-step MLE-process, introduced in Kutoyants (2015), for this model of
observations can be written as follows. Let us denote ϑ̄N the premilinary estimator
constructed by the first N = [

nδ
]
observations XN = (X1, . . . , XN) with δ ∈ ( 12 , 1).

Then the one-step MLE-process ϑ�
n =

(
ϑ�

k,n, N + 1 ≤ k ≤ n
)
is defined by the

equality

ϑ�
k,n = ϑ̄N + I

(
ϑ̄N

)−1 1

k

k∑
j=N+1

�̇
(
ϑ̄N , Xj

)
(6)

and for k = [sn], s ∈ (0, 1] we have the convergence
√

k
(
ϑ�

k,n − ϑ0
) =⇒ N

(
0, I (ϑ0)

−1
)

.

Here s is fixed and n → ∞. Therefore ϑ�
n is a good estimator, i.e., ϑ�

k,n depends

on Xk = (X1, . . . , Xk), is easy to calculate and is asymptotically efficient because it
is asymptotically equivalent to the MLE. For the details see Kutoyants andMotrunich
(2016).

The one-step MLE-process in the case of ergodic diffusion forward Eq. 3 can be
illustrated as follows. Suppose that we have a preliminary estimator ϑ̄T δ constructed
by the observations XT δ = (

Xt, 0 ≤ t ≤ T δ
)
with δ ∈ ( 12 , 1]. Then the one-step

MLE-process ϑ�
t,T , T δ < t ≤ T based on the Fisher-score device (4), (6) has the

following form

ϑ�
t,T = ϑ̄T δ + I

(
ϑ̄T δ

)−1
∫ t

T δ

Ṡ
(
ϑ̄T δ , Xs

)
t σ (Xs)

2

[
dXs − S

(
ϑ̄T δ , Xs

)
ds

]
. (7)

This estimator-process is asymptotically efficient (t = rT ; r ∈ (0, 1])
√

t
(
ϑ�

t,T − ϑ0
) =⇒ N

(
0, I (ϑ0)

−1
)

(see Kutoyants (2015)) and provides asymptotically efficient estimator-processes

Y �
t,T = u

(
t, Xt , ϑ

�
t,T

)
, Z�

t,T = u′
x

(
t, Xt , ϑ

�
t,T

)
σ (Xt ) (8)

of the solution (Yt , Zt ) of the BSDE.

Forward equation with small volatility

We are given the function f (t, x, y, z) defined on [0, T ] × Rk × R × Rk , function
�(x), x ∈ Rk and k-dimensional diffusion process (forward)

dXt = S (ϑ, t, Xt ) dt + εσ (t, Xt ) dWt, X0, 0 ≤ t ≤ T . (9)

Here ϑ ∈ 
 ⊂ Rd , 
 is an open bounded set and Wt = (
W 1

t , . . . , Wk
t

)
, 0 ≤ t ≤

T is a standard k-dimensional Wiener process.
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Introduce the condition L.
The functions f (t, x, y, z) , �(x), vector S (ϑ, t, x) = (Sl (ϑ, t, x) , l = 1, . . . , k)

and k × k matrix σ (t, x) = (σlm (t, x)) are smooth

|S (ϑ, t, x) − S (ϑ, t, y)| + |σ (t, x) − σ (t, y)| ≤ L |x − y| ,
|f (t, x, y1, z1) − f (t, x, y2, z2)| ≤ C [|y1 − y2| + |z1 − z2|]

and satisfy (p > 0)

|S (ϑ, t, x)| + |σ (t, x)| ≤ C (1 + |x|) ,

|f (t, x, y, z)| + |�(x)| ≤ C
(
1 + |x|p)

.

We must find a couple of stochastic processes
(
X�

t,ε, Z
�
t,ε, 0 ≤ t ≤ T

)
which

approximate well the solution of the BSDE

dYt = −f (t,Xt , Yt , Zt ) dt + Zt dWt, Y0, 0 ≤ t ≤ T (10)

satisfying the condition YT = �(XT ).

Let us denote xt (ϑ) =
(
x

(1)
t (ϑ), . . . , x

(k)
t (ϑ)

)
, 0 ≤ t ≤ T the solution of the

system of ordinary differential equations

dxt (ϑ)

dt
= S (ϑ, t, xt (ϑ)) , x0, 0 ≤ t ≤ T .

The true value is ϑ0 and we let xt = xt (ϑ0). We have the estimates: with
probability 1

sup
0≤t≤T

|Xt − xt | ≤ Cε sup
0≤t≤T

|Wt | (11)

and for any p > 0

sup
0≤t≤T

Eϑ0 |Xt − xt |p ≤ Cεp. (12)

For the proof see, e.g., Kutoyants (1994).
We have a family of problems of parameter estimation by observations Xt =

(Xs, 0 ≤ s ≤ t), where t ∈ (0, T ] and therefore we need a family of estimators
ϑ̄t,ε, 0 < t ≤ T . Let

(
Ck ([0, t]) ,Bt

)
be a measurable space of continuous vector-

functions on [0, t] with Borelian σ -algebraBt . Denote by
{
P(ε,t)

ϑ , ϑ ∈ 

}
the family

of measures induced in this space by the solutions of (9) with different ϑ ∈ 
.
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Note that these measures are equivalent (see Liptser and Shiryaev (2001)) and the
likelihood ratio function is

L
(
ϑ, Xt

) = dP(ε,t)
ϑ

dP(ε,t)
0

(
Xt

) = exp

{
1

ε2

∫ t

0
S (ϑ, s, Xs)A (s,Xs)

−1 dXt

− 1

2ε2

∫ t

0
S (ϑ, s, Xs)A (s,Xs)

−1 S (ϑ, s, Xs) ds

}
, ϑ ∈ 
.

Here P(ε,t)
0 is the measure, which corresponds to the observations (9) with

S (ϑ, t, Xt ) ≡ 0. The matrix A (s, x) is

Alm (s, x) = [
σ (s, x)∗ σ (s, x)

]
lm

, l, m = 1, . . . , k.

Recall that the MLE ϑ̂ε,t is defined by the equation

L
(
ϑ̂ε,t , X

t
)

= sup
ϑ∈


L
(
ϑ, Xt

)
. (13)

Introduce the Regularity conditionsR.

1. The function S (ϑ, t, x) is two-times continuously differentiable w.r.t. ϑ and the
derivatives are Lipschitz in x.

2. We suppose that there exists a positive constant m such that for any real λ ∈ Rk

we have

m−1 ‖λ‖2 ≤ λ∗
A (s, x) λ ≤ m ‖λ‖2 . (14)

3. The Fisher information matrix

It (ϑ) =
∫ t

0
Ṡ (ϑ, s, xs(ϑ))∗ A (s, xs(ϑ))−1

Ṡ (ϑ, s, xs(ϑ)) ds,

is uniformly nondegenerate:

inf
ϑ∈


inf|λ|=1
λ∗
It (ϑ)λ > 0

Here λ ∈ Rd dot means derivation w.r.t. ϑ and Ṡ (ϑ, s, x) is k × d-matrix.
4. Identifiability condition : for any ν > 0 and any t ∈ (0, T ] the estimate

inf
ϑ0∈


inf|ϑ−ϑ0|>ν

∫ t

0
δ (s, xs, ϑ, ϑ0)

∗
A (s, xs)

−1 δ (s, xs, ϑ, ϑ0) ds > 0

holds. Here δ (s, xs, ϑ, ϑ0) = S (ϑ, s, xs) − S (ϑ0, s, xs).

The Regularity conditions allow us to prove the folowing properties of the MLE
ϑ̂ε,t , t ∈ (0, T ].
1. It is uniformly consistent: for any ν > 0 and any compact K ⊂ 


lim
ε→0

sup
ϑ0∈K

P(ε,t)
ϑ0

(∣∣∣ϑ̂ε,t − ϑ0

∣∣∣ > ν
)

= 0.

2. Uniformly on compacts K ⊂ 
 asymptotically normal

ε−1
(
ϑ̂ε,t − ϑ0

)
=⇒ N

(
0, It (ϑ0)

−1
)

.
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3. The polynomial moments converge and it is asymptotically efficient.

These properties were established in Kutoyants (1994) in the case of the one-
dimensional diffusion processes (9). There is no essential dificulties to apply the
same proof in our case. The presented below multi-step MLE-processes have exactly
the same asymptotic properties, but can be calculated more easily.

Introduce the family of functions

U =
{(

u(t, x, ϑ), t ∈ [0, T ] , x ∈ Rk
)

, ϑ ∈ 

}

such that for all ϑ ∈ 
 the function u(t, x, ϑ) satisfies the PDE

∂u

∂t
+

k∑
l=1

Sl(ϑ, t, x)
∂u

∂xl

+ ε2

2

k∑
l,m=1

Al,m (t, x)
∂2u

∂xl∂xm

= −f

(
t, x, u, ε

k∑
l=1

σlm(t, x)
∂u

∂xm

)

and the condition u(T , x, ϑ) = �(x), x ∈ Rk .
The limit of the function u (t, x, ϑ) as ε → 0 we denote as u◦ (t, x, ϑ). The

function u◦ (t, x, ϑ) satisfies the equation

∂u◦
∂t

+
k∑

l=1
Sl(ϑ, t, x) ∂u◦

∂xl
= −f

(
t, x, u◦, ε

k∑
l=1

σlm(t, x) ∂u◦
∂xm

)

with the final value u◦ (T , x, ϑ) = �(x). Below u̇◦ (t, x, ϑ) and ü◦ (t, x, ϑ) means
the derivative of this function w.r.t. ϑ .

Introduce the condition U

1. The function u (t, x, ϑ) is two-times continuously differentiable w.r.t. ϑ and the
derivatives u̇ (t, x, ϑ) and ü (t, x, ϑ) are Lipschitz w.r.t. x unifoormly in ϑ ∈ 
.

2. The function u (t, x, ϑ) and its derivatives u̇ (t, x, ϑ) and u̇′
x (t, x, ϑ) converge

uniformly in t ∈ [0, T ] to u◦ (t, x, ϑ) , u̇◦ (t, x, ϑ) , u̇′◦,x (t, x, ϑ) respectively.

The sufficient conditions providing these properties of u (t, x, ϑ) can be found in
Freidlin and Wentzell (1998), Theorem 2.3.1. Note that the derivatives u̇ (t, x, ϑ) and
ü (t, x, ϑ) satisfy the linear PDE of the same type.

If we let Yt = u (t,Xt , ϑ), then by Itô’s formula we obtain BSDE (10) with

Zt =
(
Z1

t , . . . , Z
k
t

)
, Zm

t = ε

k∑
l=1

σml (t, Xt ) u′
xl

(t, Xt , ϑ) .

Recall that our goal is to construct an asymptotically efficient approximation of the
couple (Yt , Zt ). To compare all possible estimators we introduce the lower bounds on
the mean-square risks. This is a version of the well-known Hajek-Le Cam minimax
risk bound (see, e.g., Ibragimov and Has’minskii (1981), Theorem 2.12.1).
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Theorem 1 Suppose that the conditions L,R and U are fulfilled. Then for all
estimators Ȳt and Z̄t and all t ∈ (0, T ] we have the relations

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−2Eϑ

∣∣Ȳt − Yt

∣∣2 ≥ u̇◦ (t, xt , ϑ0)
∗
It (ϑ0)

−1 u̇0 (t, xt , ϑ0) , (15)

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−4Eϑ

∣∣Z̄t − Zt

∣∣2 ≥
∣∣∣(u̇◦)′x (t, xt , ϑ0)

∗
It (ϑ0)

− 1
2 σ (t, xt )

∣∣∣2 . (16)

Proof We first verify that the family of measures is locally asymptotically normal
(LAN) and then we apply the proof of the Hajek-Le Cam lower bound (Ibragimov
and Has’minskii 1981), which provides us (15), (16). We present here the necessary
modification of the proof given in Ibragimov and Has’minskii (1981). Usually this

inequality is considered for the risk like Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 and we are interested by the

risk Eϑ

∣∣Ȳt,ε − Yt

∣∣2, where Yt is a random process. Another point, the random vector

t (see below), in general, is asymptotically normal and, in our case, it has Gaussian
distribution, that is why the proof is slightly simplified.

Let us denote ϕε = εIt
− 1

2 where It = It (ϑ0) and introduce the normalized
likelihood ratio

Zt,ε(v) = L
(
ϑ0 + ϕεv, Xt

)
L (ϑ0, Xt )

, v ∈ Vε = {v : ϑ0 + ϕεv ∈ 
} .

We can write

lnZt,ε(v) = 1

ε

∫ t

0
[S (ϑ0 + ϕεv, s, Xs) − S (ϑ0, s, Xs)] σ (s,Xs)

−1 dWs

− 1

2ε2

∫ t

0

∣∣∣[S (ϑ0 + ϕεv, s, Xs) − S (ϑ0, s, Xs)]
∗ σ (s,Xs)

−1
∣∣∣2 ds

= v∗
t − 1

2
|v|2 + rε,

where rε → 0 and the vector


t = It (ϑ0)
− 1

2

∫ t

0
Ṡ (ϑ0, s, xs) σ (s, xs)

−1 dWs ∼ N (0, J) .

Here J is a unit d × d matrix.

Hence, the family of measures
{
P(ε,t)

ϑ , ϑ ∈ 

}
is LAN in 
 (Ibragimov and

Has’minskii 1981, Kutoyants 1994).
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Below, M > 0, KM is a cube in Rd whose vertices have coordinates ±M , so that
its volume is (2M)d and ϑv = ϑ0 + ϕεv.

sup
|ϑ−ϑ0|≤ν

Eϑ

∣∣Ȳt,ε − Yt

∣∣2 = sup
|ϑ−ϑ0|≤ν

Eϑ

∣∣Ȳt − u (t,Xt , ϑ)
∣∣2

= sup
|ϕεv|≤ν

Eϑv

∣∣Ȳt − u (t,Xt , ϑ0 + ϕεv)
∣∣2

≥ sup
v∈KM

Eϑv

∣∣Ȳt − u (t,Xt , ϑ0 + ϕεv)
∣∣2

≥ 1

(2M)d

∫
KM

Eϑv

∣∣Ȳt − u (t,Xt , ϑ0 + ϕεv)
∣∣2 dv

= 1

(2M)d

∫
KM

Eϑ0Zt,ε(v)
∣∣Ȳt − u (t,Xt , ϑ0 + ϕεv)

∣∣2 dv.

We have

u (t,Xt , ϑ0 + ϕεv) = u (t,Xt , ϑ0) + u̇ (t, Xt , ϑ0)
∗ ϕεv

+ε

∫ 1

0
[u̇ (t, Xt , ϑ0 + rϕεv) − u̇ (t, Xt , ϑ0)]

∗
I
− 1

2
t v dr

= u (t,Xt , ϑ0) + u̇ (t, Xt , ϑ0)
∗ ϕεv + ϕεhε,

where |hε| ≤ Cε. Hence, if we denote

b̄ε = ε−1 (
Ȳt − u (t,Xt , ϑ0)

)
, u̇ = u̇ (t, Xt , ϑ0)

∗
I
− 1

2
t

and introduce such vector v̄ε that b̄ε = u̇ (t, Xt , ϑ0)
∗
I
− 1

2
t v̄ε, then we can write

ε−2Eϑ0Zt,ε(v)
∣∣Ȳt − u (t,Xt , ϑ0 + ϕεv)

∣∣2

= Eϑ0Zt,ε(v)

∣∣∣∣b̄t − u̇ (t, Xt , ϑ0)
∗
I
− 1

2
t v

∣∣∣∣
2

(1 + O(ε))

= Eϑ0Zt,ε(v)
∣∣u̇∗ (v̄ε − v)

∣∣2 (1 + O(ε)) .

Further, we use the following result known as Scheffé’s lemma

Lemma 1 Let the random variables Zε ≥ 0, ε ∈ (0, 1] converge in probability to
the random variable Z ≥ 0 as ε → 0 and EZε = EZ = 1, then

lim
ε→0

E |Zε − Z| = 0.

For the proof see, e.g., Theorem A.4 in Ibragimov and Has’minskii (1981).
Recall that Eϑ0Zt,ε(v) = Eϑ0Zt(v) = 1, where lnZt(v) = v∗
t − 1

2 |v|2. Hence
for any K > 0

Eϑ0Zt,ε(v)
∣∣u̇∗ (v̄ε − v)

∣∣2
K

= Eϑ0Zt(v)
∣∣u̇∗ (v̄ε − v)

∣∣2
K

(1 + o(1)) .
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Here we denoted |D|2K = |D|2 ∧ K . These allow us to write

1

(2M)d

∫
KM

Eϑ0Zt,ε(v)
∣∣Ȳt − u (t,Xt , ϑ0 + εv)

∣∣2 dv
≥ 1

(2M)d

∫
KM

Eϑ0Zt,ε(v)
∣∣Ȳt − u (t,Xt , ϑ0 + εv)

∣∣2
K
dv

= 1

(2M)d

∫
KM

Eϑ0Zt(v)
∣∣u̇∗ (v̄ε − v)

∣∣2
K
dv (1 + o(1)) .

Then

Zt(v) = exp

{
v∗
t − 1

2
|v|2

}
= exp

{
−1

2
|v − 
t |2

}
exp

{
1

2
|
t |2

}

and

Eϑ0Zt(v)
∣∣u̇∗ (v̄ε − v)

∣∣2
K

= Eϑ0e
− 1

2 |v−
t |2 ∣∣u̇∗ (vε − v)
∣∣2
K

e
1
2 |
t |2

= Eϑ0e
− 1

2 |w|2 ∣∣u̇∗ (v̄ε − 
t − w)
∣∣2
K

e
1
2 |
̄t |2

= Eϑ0e
− 1

2 |w|2 ∣∣u̇∗ (w̃ε − w)
∣∣2
K

e
1
2 |
̄t |2

where w = v−
t and w̃ε = v̄ε −
t . Introduce the set CM such that each coordinate

of 
t =
(



(1)
t , . . . , 


(d)
t

)
is less than M − √

M , i.e.,
∣∣∣
(l)

t

∣∣∣ ≤ M − √
M . Then

1

(2M)d
Eϑ0e

1
2 |
t |2

∫
w+
t∈KM

∣∣u̇∗ (w̃ε − w)
∣∣2
K

e− 1
2 |w|2dv

≥ 1

(2M)d
Eϑ0e

1
2 |
t |21{
t∈CM }

∫
CM

∣∣u̇∗ (w̃ε − w)
∣∣2
K

e− 1
2 |w|2dv

≥ 1

(2M)d
Eϑ0e

1
2 |
t |21{
t∈CM }

∫
K√

M

∣∣u̇∗ (w̃ε − w)
∣∣2
K

e− 1
2 |w|2dv

because K√
M

⊂ CM . By Andersen’s Lemma (see, e.g., Ibragimov and Has’minskii
(1981), Lemma 2.10.2)∫

K√
M

∣∣u̇∗ (w̃ε − w)
∣∣2
K

e− 1
2 |w|2dv ≥

∫
K√

M

∣∣u̇∗w
∣∣2
K

e− 1
2 |w|2dv.

Note that as M → ∞ we obtain the limits
1

(2M)d
Eϑ0e

1
2 |
t |21{
t∈CM } −→ 1

(2π)
d
2

and
1

(2π)
d
2

∫
K√

M

∣∣u̇∗w
∣∣2
K

e− 1
2 |w|2dv −→ Eϑ0 |u̇∗
t |2K .

The last steps are ε → 0 and K → ∞
Eϑ0

∣∣u̇∗
t

∣∣2
K

−→ u̇◦ (t, xt , ϑ0)
∗
It (ϑ0)

−1 u̇◦ (t, xt , ϑ0) .

The detailed proof can be found in Ibragimov and Has’minskii (1981),
Theorem 2.12.1.
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Therefore the bound (15) is verified. The bound (16) is proved in a similar way.
Note that Zt = εu′

x (t, Xt , ϑ) σ (t, Xt ). An arbitrary estimator Z̄t of Zt we write as
Z̄t = εZ̃t . Then, for ε−1

(
Z̄t − Zt

)
we follow the proof given above.

Definition Suppose that the conditions L,R,U are fulfilled. Then we call the
estimator-processes Y ∗

t , Z∗
t , 0 < t ≤ T asymptotically efficient if for all ϑ0 ∈ 
 and

all t ∈ (0, T ] we have the equalities
lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−2Eϑ

∣∣Y ∗
t − Yt

∣∣2 = u̇◦ (t, xt , ϑ0)
∗
It (ϑ0)

−1 u̇◦ (t, xt , ϑ0) , (17)

lim
ν→0

lim
ε→0

sup
|ϑ−ϑ0|≤ν

ε−4Eϑ

∣∣Z∗
t − Zt

∣∣2 =
∣∣∣(u̇◦)′x (t, xt , ϑ0)

∗
It (ϑ0)

− 1
2 σ (t, xt )

∣∣∣2 . (18)

As we do not know the value ϑ we propose first to estimate it using some
estimator-process ϑ�

ε,t , 0 < t ≤ T and then to put

Y �
t = u

(
t, Xt , ϑ

�
ε

)
, Z�

t = ε

k∑
l=1

u′
xl

(
t, Xt , ϑ

�
ε

)
σl (t, Xt ) .

Recall that formally the MLE-process ϑ̂ε,t , 0 < t ≤ T “solves” the problem and it
can be shown that under the supposed regularity conditions the estimator-processes
Ŷt,ε = u(t, Xt , ϑ̂ε,t ) and Ẑt,ε = u′

x(t, Xt , ϑ̂ε,t )σ (t, Xt ) are asymptotically efficient
in the sense of the relations (17) and (18), respectively, but this solution can not be
called acceptable because the calculation of ϑ̂ε,t for all t ∈ (0, T ], in the general case,
is a computationally difficult problem. That is why we propose to use the so-called
multi-step MLE-process (Kutoyants 2015), which is introduced as follows. First we
construct a preliminary estimator ϑ̄τε by the observations Xτε = (Xs, 0 ≤ s ≤ τε) on
some learning interval [0, τε], where τε = εδ with 0 < δ < 1 and then we propose
an estimator-process ϑ�

t,ε, τε ≤ t ≤ T based on this preliminary estimator. Finally
we show that the corresponding estimators, say, Y �

t,ε = u
(
t, Xt , ϑ

�
t,ε

)
, τε ≤ t ≤ T

are asymptotically efficient.
As a preliminary we propose the minimum distance estimator (MDE) ϑ̄τε defined

by the relation

∥∥∥X − X̂
(
ϑ̄τε

)∥∥∥2
τε

= inf
ϑ∈


∥∥∥X − X̂ (ϑ)

∥∥∥2
τε

= inf
ϑ∈


∫ τε

0

[
Xt − X̂t (ϑ)

]2
dt.

Here the family of random processes
{(

X̂t (ϑ) , 0 ≤ t ≤ τε

)
, ϑ ∈ 


}
is defined as

follows

X̂t (ϑ) = x0 +
∫ t

0
S (ϑ, s, Xs) ds, 0 ≤ t ≤ τε, ϑ ∈ 
.

These estimators were studied in Kutoyants (1994) in the case of fixed τε = τ and
are called the trajectory fitting estimators as well, because we choose an estimator
ϑ̄τε , which provides a trajectory X̂t

(
ϑ̄τε

)
, 0 ≤ t ≤ τε closest to the observations
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Xt, 0 ≤ t ≤ τε. It was shown that if the conditions of regularity and the condition of
identifiability: for any ν > 0

inf
ϑ0∈


inf|ϑ−ϑ0|>ν

∫ τ

0

∣∣∣∣
∫ t

0
[S (ϑ, s, xs) − S (ϑ0, s, xs)] ds

∣∣∣∣
2

dt > 0 (19)

hold and the matrix

Jτ (ϑ0) =
∫ τ

0

∫ t

0
Ṡ (ϑ0, s, xs)

∗ ds
∫ t

0
Ṡ (ϑ0, s, xs) ds dt

is uniformly nondegenerate (below λ ∈ Rd )

inf
ϑ0∈


inf|λ|=1
λ∗
Jτ (ϑ0) λ > 0, (20)

then the MDE is asymptotically normal

ε−1 (ϑτ − ϑ0) =⇒ Jτ (ϑ0)
−1

∫ τ

0

∫ t

0
Ṡ (ϑ0, s, xs)

∗ ds
∫ t

0
σ (s, xs)

∗ dWs dt.

Note that if we have the Regularity condition 3 (identifiability) with T = τ , then
the identifiability condition (19) is also fulfilled. Indeed, suppose that there exists
ϑ1 �= ϑ0 such that∫ τ

0

∣∣∣∣
∫ t

0
[S (ϑ1, s, xs) − S (ϑ0, s, xs)] ds

∣∣∣∣
2

dt = 0.

Then for all t ∈ [0, τ ]∫ t

0
S (ϑ1, s, xs) ds =

∫ t

0
S (ϑ0, s, xs) ds,

which implies

S (ϑ1, s, xs) = S (ϑ0, s, xs) , 0 ≤ s ≤ τ.

The last equality, of course, contradicts Regularity condition 3.
Now suppose that τε = εδ with δ < 1 and the matrix

C (ϑ0) = Ṡ (ϑ0, 0, x0)
∗
Ṡ (ϑ0, 0, x0)

is uniformly nondegenerate in ϑ0 ∈ 
 (below λ ∈ Rd )

inf
ϑ∈


inf|λ|=1
λ∗
C (ϑ0) λ > 0 (21)

Then, we can obtain the asymptotics

ε−1 (ϑτ − ϑ0) = 3

2
√

τε

C (ϑ0)
−1 σ (0, x0)

∫ 1

0

[
1 − r2

]
dW(r) (1 + o(1)) .

Note that

Jτε (ϑ0) =
∫ τε

0
t2Ṡ (ϑ0, 0, x0)

∗
Ṡ (ϑ0, 0, x0) dt (1 + o(1))

= τ 3ε

3
Ṡ (ϑ0, 0, x0)

∗
Ṡ (ϑ0, 0, x0) (1 + o(1))
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and ∫ τε

0

∫ t

0
Ṡ (ϑ0, s, xs)

∗ ds
∫ t

0
σ (s, xs)

∗ dWs dt

= Ṡ (ϑ0, 0, x0)
∗ σ (0, x0)

∫ τε

0
tWt dt (1 + o(1))

= τ
5
2
ε

2
Ṡ (ϑ0, 0, x0)

∗ σ (0, x0)
∫ 1

0

(
1 − r2

)
dW(r) (1 + o(1)) .

Therefore, the family of random vectors ε−1+ δ
2
(
ϑ̄τε − ϑ0

)
is asymptotically nor-

mal. Moreover, following Kutoyants (1994) it can be shown that the moments are
bounded, i.e.,

sup
ϑ0∈K

Eϑ0

∣∣∣ε−1+ δ
2
(
ϑ̄τε − ϑ0

)∣∣∣p < C, (22)

where the constant C = C(p) > 0 does not depend on ε for all p > 0.
Let us introduce the one-step MLE-process ϑ�

t,ε, τε ≤ t ≤ T

ϑ�
t,ε = ϑ̄τε

+It

(
ϑ̄τε

)−1
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
dXs − S

(
ϑ̄τε , s, Xs

)
ds

]
. (23)

Its properties are described in the following proposition.

Proposition 1 Let the conditions L,R be fulfilled and δ ∈ (0, 1), then for all
t ∈ (0, T ]

ε−1 (
ϑ�

t,ε − ϑ0
) ⇒ N

(
0, It (ϑ0)

−1
)

and this estimator-process is asymptotically efficient. Moreover, we have the uniform
consistency, i.e., for any ν > 0

lim
ε→0

sup
ϑ0∈K

P(ε)
ϑ0

(
sup

τε≤t≤T

∣∣ϑ�
t,ε − ϑ0

∣∣ > ν

)
= 0.

Proof Note that the estimator ϑ�
t,ε is defined for t ∈ [τε, T ], but as τε → 0 we

obtain for any positive t the relation t > τε.
The substitution of the observations (9) provides us the equality

ϑ�
t,ε − ϑ0 = ϑ̄τε − ϑ0 + εIt

(
ϑ̄τε

)−1
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
σ (s,Xs)

−1 dWs

+It

(
ϑ̄τε

)−1
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
S (ϑ0, s, Xs) − S

(
ϑ̄τε , s, Xs

)]
ds.

Recall that the vector-process (Xs, 0 ≤ s ≤ T ) converges uniformly in s to the
deterministic vector-function (xs, 0 ≤ s ≤ T ) and the estimator ϑ̄τε is consistent.
Therefore, we have the convergence in probability
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It

(
ϑ̄τε

)−1
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
σ (s,Xs)

−1 dWs

−→ It (ϑ0)
−1

∫ t

0
Ṡ (ϑ0, s, xs)

∗ σ (s, xs)
−1 dWs ∼ N

(
0, It (ϑ0)

−1
)

.

For the other terms, we first write the Taylor expansion

S (ϑ0, s, Xs) − S
(
ϑ̄τε , s, Xs

) = Ṡ (ϑ0, s, Xs)
∗ (

ϑ0 − ϑ̄τε

) + O
(
ε2−δ

)

because ϑ0 − ϑ̄τε = O
(
ε1− δ

2

)
. Then, we denote

Dε = It

(
ϑ̄τε

) −
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1
Ṡ (ϑ0, s, Xs)

∗ ds

and write

ϑ̄τε − ϑ0+It

(
ϑ̄τε

)−1
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
S (ϑ0, s, Xs) − S

(
ϑ̄τε , s, Xs

)]
ds

= (
ϑ̄τε − ϑ0

)
It

(
ϑ̄τε

)−1
Dε + O

(
ε2−δ

)

The following estimate can be easily verified

Dε = O
(
εδ

) + O
(
ε1−

δ
2

)
+ O(ε)

because Xs − xs = O(ε), ϑ̄τε − ϑ0 = O
(
ε1− δ

2

)
and

It (ϑ0)−
∫ t

τε

Ṡ (ϑ0, s, xs)
∗
A (s, xs)

−1
Ṡ (ϑ0, s, xs) ds = O

(
εδ

)
.

Hence

ε−1 (
ϑ�

t,ε − ϑ0
) − It (ϑ0)

−1
∫ t

0
Ṡ (ϑ0, s, xs)

∗ σ (s, xs)
−1 dWs

= ε−1 (
ϑ̄τε − ϑ0

)
O

(
ε1−

δ
2

)
= O

(
ε1−δ

)
−→ 0. (24)

The uniform consistency can be shown following the proof of such uniform
consistency presented in Kutoyants (2015), Theorem 1.

Let us define the estimator-processes Y �
ε = (

Y �
t,ε, τε ≤ t ≤ T

)
and Z�

ε =(
Z�

t,ε, τε ≤ t ≤ T
)
as follows

Y �
t,ε = u

(
t, Xt , ϑ

�
t,ε

)
, Z�

t,ε = εu′
x

(
t, Xt , ϑ

�
t,ε

)
σ (t,Xt ) .

Theorem 2 Suppose the conditions L,R,U and (21) hold, then the esti-mator-
processes Y �

ε , Z�
ε admit the representations

Y �
t,ε = Yt + εu̇◦ (t, xt , ϑ0)

∗ ξt (ϑ0) (1 + o(1)) , (25)

Z�
t,ε = Zt + ε2u̇′◦,x (t, xt , ϑ0)

∗ ξt (ϑ0) σ (t, xt ) (1 + o(1)) , (26)
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where the Gaussian process

ξt (ϑ0) = It (ϑ0)
−1

∫ t

0
Ṡ (ϑ0, s, xs)

∗σ (s, xs)
−1dWs, τε ≤ t ≤ T .

The random processes

ηt,ε = ε−1 (
Y �

t,ε − Yt

)
, τ ≤ t ≤ T ,

ζt,ε = ε−2 (
Z�

t,ε − Zt

)
, τ ≤ t ≤ T

for any τ ∈ (0, T ] converge in probability to the processes

ηt = u̇◦ (t, xt , ϑ0)
∗ ξt (ϑ0) , τ ≤ t ≤ T ,

ζt = u̇′◦,x (t, xt , ϑ0)
∗ ξt (ϑ0) σ (t, xt ) , τ ≤ t ≤ T ,

respectively, uniformly in t ∈ [τ, T ]. Moreover, these approximations are asymptoti-
cally efficient in the sense of (17), (18).

Proof By the condition U, we obtain the representation

Y �
t,ε − Yt = u

(
t, Xt , ϑ

�
t,ε

) − u (t,Xt , ϑ0) = u̇(t, Xt , ϑ0)
∗ (

ϑ�
t,ε − ϑ0

)
(1 + o(1)) ,

Z�
t,ε − Zt = ε

[
u′

x

(
t, Xt , ϑ

�
t,ε

) − u′
x (t, Xt , ϑ0)

]
σ (t,Xt )

= εu̇′
x (t, Xt , ϑ0)

∗ (
ϑ�

t,ε − ϑ0
)
σ (t,Xt ) (1 + o(1)) ,

and for any τ ∈ (0, T ] we have the convergence in probability

sup
τ≤t≤T

|u̇(t, Xt , ϑ0) − u̇◦(t, xt , ϑ0)| ≤ sup
τ≤t≤T

|u̇(t, Xt , ϑ0) − u̇(t, xt , ϑ0)|
+ sup

τ≤t≤T

|u̇(t, xt , ϑ0) − u̇◦(t, xt , ϑ0)| −→ 0, (27)

sup
τ≤t≤T

∣∣u̇′
x(t, Xt , ϑ0) − u̇′

x(t, xt , ϑ0)
∣∣ ≤ sup

τ≤t≤T

∣∣u̇′
x(t, Xt , ϑ0) − u̇′

x(t, xt , ϑ0)
∣∣

+ sup
τ≤t≤T

∣∣u̇′
x(t, xt , ϑ0) − u̇′◦,x(t, xt , ϑ0)

∣∣ −→ 0. (28)

Therefore, the representations (25),(26) follow now from (24).
More detailed analysis shows that the convergences O(1) in (24),(25) are uniform

in t ∈ [τ, T ] due to (11). Moreover, we have the convergence of moments uniform on
compacts ϑ0 ∈ K as well, because we have (12) and the moments of the preliminary
estimator are bounded (22). Therefore, the estimates used above can be also written
for the moments. This convergence of moments provides the asymptotic efficiency
of the estimators Y �

ε , Z�
ε .

The estimators Y �
t,ε, Z

�
t,ε, τε ≤ t ≤ T are given for the values t > τε = εδ with

δ ∈ (0, 1). It is interesting to have a shorter learning interval and, therefore, longer
estimation period for Yt , Zt . That is why we propose the two-step MLE-process
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which uses the preliminary estimator with the worse rate of convergence. Let us take
δ ∈ [1, 4

3 ), introduce the second preliminary estimator-process

ϑ̄t,ε = ϑ̄τε + It

(
ϑ̄τε

)−1
∫ t

τε

Ṡ
(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
dXs − S

(
ϑ̄τε , s, Xs

)
ds

]

and the two-step MLE-process ϑ��
t,ε, τε ≤ t ≤ T

ϑ��
t,ε = ϑ̄t,ε + It

(
ϑ̄t,ε

)−1 ∫ t

τε
Ṡ

(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
dXs − S

(
ϑ̄t,ε, s, Xs

)
ds

]
.

For the preliminary estimator we obtain the same estimate (22), but with different
τε. Further, for the first preliminary estimator similar calculations as above provide
us the estimates

ε−γ
(
ϑ̄t,ε − ϑ0

) = ε−γ
∣∣ϑ̄τε − ϑ0

∣∣2 O(1) + o(1) = ε−γ+2−δO(1) + o(1).

For the two-step MLE-process we have

ε−1 (
ϑ��

t,ε − ϑ0
) = εγ− δ

2
(
ε−γ

∣∣ϑ̄t,ε − ϑ0
∣∣) (ε−1+ δ

2
∣∣ϑ̄τε − ϑ0

∣∣)O(1)

+It (ϑ0)
−1

∫ t

τε

Ṡ (ϑ0, s, xs)
∗
A (s, xs)

−1 dWs + o(1).

Therefore if we take γ such that γ + δ < 2 and γ − δ
2 > 0, say, γ < 2

3 , then we
obtain

ε−1 (
ϑ��

t,ε − ϑ0
) =⇒ N

(
0, It (ϑ0)

−1
)

.

Now the estimator-processes Y ��
ε , Z��

ε defined with the help of two-step MLE-
process

Y ��
t,ε = u

(
t, Xt , ϑ

��
t,ε

)
, τε ≤ t ≤ T ,

Z��
t,ε = u′

x

(
t, Xt , ϑ

��
t,ε

)
σ (t,Xt ) , τε ≤ t ≤ T

are known for the larger time interval [τε, T ].
Of course, we can continue this process and to reduce the learning interval once

more by introducing the three-step MLE-process ϑ���
t,ε as follows. The learning inter-

val is [0, τε], τε = εδ , where δ ∈ [ 43 , 3
2 ). The first preliminary estimator-process

is

ϑ̄t,ε = ϑ̄τε + It

(
ϑ̄τε

)−1 ∫ t

τε
Ṡ

(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
dXs − S

(
ϑ̄τε , s, Xs

)
ds

]
,

the second is
¯̄ϑt,ε = ϑ̄t,ε + It

(
ϑ̄t,ε

)−1 ∫ t

τε
Ṡ

(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1 [
dXs − S

(
ϑ̄t,ε, s, Xs

)
ds

]
,

and the three-step MLE-process

ϑ���
t,ε = ¯̄ϑt,ε + It (

¯̄ϑt,ε)
−1

∫ t

τε
Ṡ

(
ϑ̄τε , s, Xs

)∗
A (s,Xs)

−1
[
dXs − S( ¯̄ϑt,ε, s, Xs)ds

]
.

The similar calculations will provide us the relations : ϑ̄τε − ϑ0 = ε1− δ
2 O(1),

ε−γ1
(
ϑ̄t,ε − ϑ0

) = ε2−γ1−δO(1), ε−γ2
( ¯̄ϑt,ε − ϑ0

)
= ε−γ2+γ1+1− δ

2 O(1),
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and

ε−1 (
ϑ���

t,ε − ϑ0
) = εγ2− δ

2

(
ε−γ2

∣∣∣ ¯̄ϑt,ε − ϑ0

∣∣∣) (ε−1+ δ
2
∣∣ϑ̄τε − ϑ0

∣∣)O(1)

+It (ϑ0)
−1

∫ t

τε

Ṡ (ϑ0, s, xs)
∗
A (s, xs)

−1 dWs + o(1).

Hence if we chose δ, γ1 and γ2 such that

δ < 2, γ1 + δ < 2, γ1 − γ2 + 1 − δ

2
> 0, γ2 >

δ

2
,

then once more we obtain asymptotically efficient MLE-process

ε−1 (
ϑ���

t,ε − ϑ0
) =⇒ N

(
0, It (ϑ0)

−1
)

.

Therefore, we obtain the corresponding approximations Y ���
t,ε , Z���

t,ε for the values
t ∈ [τε, T ] with essentially smaller τε than in the case of one-step MLE-process.

Example

Black and Scholes model. Suppose that the forward equation is

dXt = ϑXtdt + εσXtdWt, X0 = x0 > 0, 0 ≤ t ≤ T ,

and the functions f (x, y, z) = −βy − γ xz and �(x) are given. The function �(x)

is continuous and satisfies the condition |�(x)| ≤ C
(
1 + |x|p)

with some constants
C > 0 and p > 0. We have to find (Yt , Zt ) such that

dYt = [βYt + γXtZt ] dt + ZtdWt, 0 ≤ t ≤ T ,

and YT = �(XT ).
The corresponding PDE is

∂u

∂t
+ ε2σ 2x2

2

∂2u

∂x2
+ (ϑ − εσγ )x

∂u

∂x
− βu = 0, u(T , x, ϑ) = �(x).

To write its solution we change the variables s = T − t, x̄ = ln x and let
u (t, x̄, ϑ) = eμ(ϑ)x̄+λ(ϑ)sv (s, x̄, ϑ), where

μ(ϑ) = 2εσγ + εσ 2 − 2ϑ

2ε2σ 2
, λ(ϑ) = β +

(
2εσγ + εσ 2 − 2ϑ

)2
8ε2σ 2

.

Then, we obtain the reduced equation

∂v

∂s
= ε2σ 2

2

∂2v

∂x̄2
, 0 ≤ s ≤ T , v(0, x̄, ϑ) = e−μ(ϑ)x̄�(ex̄),

whose solution is well-known

v(s, x̄, ϑ) = 1√
2πsε2σ 2

∫ ∞

−∞
exp

{
− (x̄ − z)2

2ε2σ 2s

}
e−μ(ϑ)z�

(
ez

)
dz.
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Let us fix τε = ε
3
4 and introduce the preliminary TFE is

ϑ̄τε =
∫ τε

0 (Xs − x0)Ht dt∫ τε

0 H 2
t dt

, Ht =
∫ t

0
Xs ds.

Of course, we also can write the MLE ϑ̂τε

ϑ̂τε = 1

τε

∫ τε

0

dXs

Xs

,

but as in our work we used the TFE, we show how to calculate ϑ̄τε . The Fisher
information is It (ϑ) = tσ−2. The one-step MLE-process is

ϑ�
t,ε = ϑ̄τε + 1

t

∫ t

τε

1

Xs

[
dXs − ϑ̄τεXsds

]
.

Moreover, it is easy to see that

ϑ�
t,ε = ϑ̄τε + 1

t

∫ t

τε

dXs

Xs

− ϑ̄τε

t − τε

t
= 1

t

∫ t

τε

dXs

Xs

+ ϑ̄τε

τε

t

= ϑ̂t,ε + ϑ̄τε

τε

t
− 1

t

∫ τε

0

dXs

Xs

= ϑ̂t,ε + o(ε).

Hence, the estimators ϑ�
t,ε and ϑ̂t,ε have the same limit distributions. Therefore

the estimator-process

Y �
t,ε = X

μ(ϑ̄τε )
t

eλ(ϑ̄τε )(T −t)√
2π (T − t) ε2σ 2

∫ ∞

−∞
e
− (lnXt −z)2

2ε2σ2(T −t)
−μ(ϑ̄τε )z

�
(
ez

)
dz.

It is easy to see that Y �
t,ε −→ �(XT ) as t → T . The expression for Z�

t,ε can be
written as well.

Discussions

Note that we approximate the solution of the BSDE and not the equation itself. Of
course, it is also possible to write the stochastic differential for Y �

t,ε. For simplic-
ity of notation we consider the case k = 1, d = 1. Indeed, the process Y �

t,ε =
u

(
t, Xt , ϑ

�
t,ε

)
, where Xt has stochastic differential (9) and ϑ�

t,ε given by (23) can be
written as follows

ϑ�
t,ε = ϑ̄τε + εIt

(
ϑ̄τε

)−1
∫ t

τε

Ṡ(ϑ̄τε , s, Xs)σ (s,Xs)
−1 dWs

+It

(
ϑ̄τε

)−1
∫ t

τε

Ṡ(ϑ̄τε , s, Xs)A (s,Xs)
−1 [

S(ϑ0, s, Xs) − S(ϑ̄τε , s, Xs)
]
ds

= ϑ̄τε + εI−1
t

∫ t

τε

αs,εdWs + I−1
t

∫ t

τε

βs,εds (29)

with obvious notations. Therefore, the stochastic differential for Y �
t,ε can be written

(Itô formula).
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It was shown that the right-hand side of (29) tends to a constant ϑ0 as ε → 0 and
we can verify that dϑ�

t,ε → 0.
More detailed analysis shows that

dY �
t,ε = −f (t,Xt , Yt , Zt ) dt + ZtdWt + εdηt + o(ε), τε ≤ t ≤ T ,

where the Gaussian process ηt is defined in Theorem 2. We used the relation Y �
t,ε =

Yt + εηt + o(ε).
The multi-step MLE-processes used in this work can be useful in similar problems

of BSDE approximations for dicrete-time observations and ergodic diffusion models
mentioned in the introduction (see (Abakirova, A and Kutoyants, YA: On approxi-
mation of the BSDE. Large samples approach. In preparation) and Gasparyan and
Kutoyants (2015)).
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