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Abstract We consider a strictly pathwise setting for Delta hedging exotic options,
based on Föllmer’s pathwise Itô calculus. Price trajectories are d-dimensional contin-
uous functions whose pathwise quadratic variations and covariations are determined
by a given local volatility matrix. The existence of Delta hedging strategies in this
pathwise setting is established via existence results for recursive schemes of parabolic
Cauchy problems and via the existence of functional Cauchy problems on path space.
Our main results establish the nonexistence of pathwise arbitrage opportunities in
classes of strategies containing these Delta hedging strategies and under relatively
mild conditions on the local volatility matrix.

Keywords Pathwise hedging · Exotic options · Pathwise arbitrage · Pathwise Itô
calculus · Föllmer integral · Local volatility · Functional Itô formula · Functional
Cauchy problem on path space

Introduction

In mainstream finance, the price evolution of a risky asset is usually modeled as
a stochastic process defined on some probability space and hence is subject to
model uncertainty. In a number of situations, however, it is possible to construct
continuous-time strategies on a path-by-path basis and without making any prob-
abilistic assumptions on the asset price evolution. A theory of hedging European
options of the form H = h(S(T )) for one-dimensional asset price trajectories S =
(S(t))0≤t≤T was developed by Bick and Willinger (1994) by using Föllmer’s (1981)
approach to pathwise Itô calculus. Bick and Willinger (1994) showed, in particular,

A. Schied (�) · I. Voloshchenko
Department of Mathematics, University of Mannheim, 68131 Mannheim, Germany
e-mail: schied@uni-mannheim.de

http://crossmark.crossref.org/dialog/?doi=10.1186/s41546-016-0003-2-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:schied@uni-mannheim.de


Page 2 of 25 A. Schied, I. Voloshchenko

that if S is strictly positive and admits a pathwise quadratic variation of the form
〈S, S〉(t) = ∫ t

0a(s, S(s)) ds for some function a(s, x) > 0, then a solution v to the
terminal-value problem

⎧
⎨

⎩

v ∈ C1,2 ([0, T ) × R+) ∩ C([0, T ] × R+),
∂v
∂t

+ a ∂2v

∂x2
= 0 in [0, T ) × R+,

v(T , x) = h(x), x ∈ R+,

(1.1)

is such that v(t, S(t)) is the portfolio value of a self-financing trading strategy that
perfectly replicates the optionH = h(S(T )) in a strictly pathwise sense. In particular,
the amount v(0, S(0)) can be regarded as the cost required to hedge the option H. In
continuous-time finance, this amount is usually equated with an arbitrage-free price
ofH. The latter interpretation, however, is not clear in the pathwise situation, because
one first needs to exclude the existence of arbitrage in a strictly pathwise sense.

In the present paper we pick up the approach from (Bick and Willinger 1994)
and, in a first step, extend their results to a setting with a d-dimensional price tra-
jectory, S(t) = (S1(t), . . . , Sd(t))�, and an exotic derivative of the form H =
h(S(t0), . . . ,S(tN )), where t0 < t1 < · · · < tN are the fixing times of daily closing
prices and h is a certain function. In practice, most exotic derivatives that pay off at
maturity (i.e., European-style) are of this form. Using ideas from (Schied and Stadje
2007), we show that such options can be hedged in a strictly pathwise sense if a cer-
tain recursive scheme of terminal-value problems (1.1) can be solved, and we provide
sufficient conditions for the existence and uniqueness of the corresponding solutions.

In the second part of the paper we then approach the absence of strictly path-
wise arbitrage within a class of strategies that are based on solutions of recursive
schemes of terminal-value problems. This class of strategies hence includes, in
particular, the Delta hedging strategies of exotic derivatives of the form H =
h(S(t0), . . . ,S(tN )). Our main result, Theorem 3.3, states that there are no admissi-
ble arbitrage opportunities as soon as the covariation of the price trajectory is of the
form

d
〈
Si, Sj

〉
(t) =

{
aij (t,S(t)) dt if S takes values in all of Rd ,

aij (t,S(t))Si(t)Sj (t) dt if S takes values in Rd+,
(1.2)

and the matrix a(t, x) = (aij (t, x)) is continuous, bounded, and positive definite.
Here, admissibility refers to the usual requirement that the portfolio value of a
strategy must be bounded from below for all considered price trajectories.

Our result on the absence of arbitrage is related to (Alvarez et al. 2013, Theorem
4), where the absence of pathwise arbitrage is established for d = 1, a > 0 con-
stant, and a certain class of smooth strategies. There are, however, several differences
between this and our result. First, we consider a more general class of price trajecto-
ries that are based on local instead of constant volatility, allow for an arbitrary number
d of traded assets, and may either be strictly positive or of the Bachelier type. Sec-
ond, our class of trading strategies comprises the natural Delta hedging strategies for
path-dependent exotic options and, third, we use a completely different approach to
prove our result; while Alvarez et al. (2013) use a continuity argument to transfer the
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absence of arbitrage from the probabilistic Black–Scholes model to a pathwise con-
text, our proof does not rely on any probabilistic asset pricing model. Instead, we use
Stroock’s and Varadhan’s (1972) idea for a probabilistic proof of Nirenberg’s strong
parabolic maximum principle.

We then consider a setup, in which an option’s payoff may depend on the full
trajectory of asset prices. In this functional framework, Föllmer’s pathwise Itô for-
mula needs to be replaced by its functional extension, which was formulated by
Dupire (2009) and further developed by Cont and Fournié (2010). Furthermore, the
Cauchy problem (1.1) (and the corresponding iterated scheme) need to be replaced
by a functional Cauchy problem on path space as studied in Peng and Wang (2016)
and Ji and Yang (2013). We provide versions of our results on hedging strategies and
the absence of pathwise arbitrage also in this functional setting.

There are many other approaches to hedging and arbitrage in the face of model
risk. For continuous-time results, see, for instance, Lyons (1995), Hobson (2011;
1998), Vovk (2011; 2012; 2015), Bender et al. (2008), Davis et al. (2014), Biagini
et al. (2015), Beiglböck et al. (2015), Schied et al. (2016), and the references
therein. Discrete-time settings were, for instance, considered in Acciaio et al. (2016),
Bouchard and Nutz (2015), Föllmer and Schied (2011), Riedel (2015), and again the
references therein.

This paper is organized as follows. In Section “Strictly pathwise hedging of exotic
derivatives”, we introduce a general framework for continuous-time trading by means
of Föllmer’s pathwise Itô calculus. Based on an extension of an argument from
(Föllmer 2001), our Proposition 2.1 will, in particular, justify the assumption that
price trajectories should admit pathwise quadratic variations and covariations. We
will then introduce the pathwise framework for hedging exotic options à la Bick and
Willinger (1994). In Section “Absence of pathwise arbitrage”, we will introduce the
class of strategies to which our no-arbitrage result, Theorem 3.3, applies. The exten-
sion to the functional setting is given in Section “Extension to functionally dependent
strategies”. All proofs are contained in Section “Proofs”.

Strictly pathwise hedging of exotic derivatives

Pathwise Itô calculus can be used to model financial markets without probabilis-
tic assumptions on the underlying asset price dynamics; see, e.g., (Bender et al.
2008, Bick and Willinger 1994, Davis et al. 2014, Föllmer 2001, Lyons 1995, Schied
2014, Schied and Stadje 2007, Schied et al. 2016) for corresponding case studies.
In this section, we first motivate and describe a general setting for such an approach
to asset price modeling and to the hedging of derivatives. Let us assume that we
wish to trade continuously in d + 1 assets. The first is a riskless bond, B(t), of
which we assume for simplicity that it is of the form B(t) = 1 for all t. This
assumption can be justified by assuming that we are dealing here only with prop-
erly discounted asset prices. The prices of the d risky assets will be described by
continuous functions S1(t), . . . , Sd(t), where the time parameter t varies over a cer-
tain time interval [0, T ]. Throughout this paper, we will use vector notation such
as S(t) = (S1(t), . . . , Sd(t))�. For the moment, when S = (S(t))0≤t≤T is fixed, a
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trading strategy will consist of a pair of functions ξ = (ξ1, . . . , ξd)� and η, where
ξi(t) describes the number of shares held at time t in the ith risky asset and η(t) does
the same for the riskless asset. The portfolio value of (ξ(t), η(t)) is then given as

V (t) := ξ(t) · S(t) + η(t)B(t) = ξ(t) · S(t) + η(t), 0 ≤ t ≤ T , (2.1)

where x · y denotes the euclidean inner product of two vectors x and y.
A key concept of mathematical finance is the notion of a self-financing trading

strategy. If trading is only possible at finitely many times 0 = t0 < t1 < · · · < tN <

T , then ξ and η will be constant on each interval [ti , ti+1) and on [tN , T ]. In this case
it is well-known from discrete-time mathematical finance that the trading strategy
(ξ , η) is self-financing if and only if

Vti − V0 =
i∑

k=1

ξ tk−1

(
Stk − Stk−1

) +
i∑

k=1

ηtk−1

(
Btk − Btk−1

)
, i = 1, . . . , N.

(2.2)
By making the mesh of the partition {t0, . . . , tN } finer and finer, the Riemann

sums on the right-hand side of (2.2) should converge to corresponding integrals,∫ t

0 ξ(s) dS(s) and
∫ t

0η(s) dB(s). Clearly,
∫ t

0η(s) dB(s) is a Riemann-Stieltjes integral,
and criteria for its existence are well known. For a very specific class of strate-
gies ξ , the following proposition gives necessary and sufficient conditions for the
existence of

∫ t

0 ξ(s) dS(s). This proposition extends and elaborates an argument by
Föllmer (2001). Before stating this proposition, let us fix for the remainder of this
paper a refining sequence of partitions, (Tn)n∈N. That is, each Tn is a finite partition
of the interval [0, T ], and we have T1 ⊂ T2 ⊂ · · · and the mesh of Tn tends to zero
as n↑∞. Moreover, it will be convenient to denote the successor of t ∈ Tn by t ′. That
is,

t ′ =
{
min{u ∈ Tn | u > t} if t < T ,

T if t = T .

Proposition 2.1. Let t �→ S(t) ∈ R
d be a continuous function on [0, T ]. For

i, j ∈ {1, . . . , d} and Kij ∈ R with Kij = Kji , we define the trading strategy

ξ ij =
(
ξ

ij

1 , . . . , ξ
ij
d

)�
through

ξ
ij
k (t) =

⎧
⎨

⎩

2
(
Si(t) + Sj (t) − Kij

)
if i �= j and k = i or k = j,

2 (Si(t) − Kii) if i = j and k = i,

0 otherwise.
(2.3)

Then
∫ t

0 ξ ij (s) dS(s) exists for all t and all i, j as the finite limit of the correspond-
ing Riemann sums, i.e.,

∫ t

0
ξ ij (s) dS(s) = lim

n↑∞
∑

s∈Tn, s≤t

ξ ij (s)(S(s′) − S(s)), (2.4)

if and only if the covariations,
〈
Si, Sj

〉
(t) := lim

n↑∞
∑

s∈Tn, s≤t

(
Si(s

′) − Si(s)
) (

Sj (s
′) − Sj (s)

)
, (2.5)
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exist in R for all t and all i, j . In this case it follows that
∫ t

0
ξ ii (s) dS(s) = (Si(t) − Kii)

2 − (Si(0) − Kii)
2 − 〈Si, Si〉(t), (2.6)

and, for i �= j ,
∫ t

0
ξ ij (s) dS(s) = (

Si(t) + Sj (t) − Kij

)2 − (
Si(0) + Sj (0) − Kij

)2

−
∑

k,�∈{i,j}
〈Sk, S�〉(t).

(2.7)

The preceding proposition has the following two complementary implications.

• If one wishes to deal with the very simple strategies of the form (2.3), then one
must necessarily assume that the components of the asset price trajectory S admit
all pathwise quadratic variations and covariations of the form (2.5).

• Suppose that the quadratic variation of Si exists and vanishes identically. This
is, for instance, the case if Si is Hölder continuous for some exponent α > 1/2.
Then, for ξ ii as in (2.3) and Kii = Si(0), the integral

∫ t

0 ξ(s) dS(s) exists for
all t. By letting η(t) := ∫ t

0 ξ(s) dS(s) − ξS(t) · S(t), we obtain a self-financing
trading strategy whose portfolio value is given by V (t) = (Si(t) − Si(0))2. But
this is clearly an arbitrage opportunity as soon as Si is not constant. Hence, price
trajectories of a risky asset necessarily need to be modeled by functions with
nonvanishing quadratic variation.

These two aspects imply that it is reasonable to require that price trajectories S of
a risky asset possess all covariations 〈Si, Sj 〉 in the sense that the limit in (2.5) exists
for all t ∈ [0, T ]. It was shown by Föllmer (1981) that, if in addition the covaria-
tions are continuous functions of t, Itô’s formula holds in a strictly pathwise sense
(see also (Sondermann 2006) for additional background and an English translation
of (Föllmer 1981)). Let us thus denote by QV d the class of all continuous functions
S : [0, T ] → R

d on [0, T ] for which all covariations 〈Si, Sj 〉(t) exist along (Tn)

and are continuous functions of t. We point out that the existence and the value of
the covariation 〈Si, Sj 〉(t), and hence the space QV d , depend in an essential man-
ner on the choice of the refining sequence of partitions, (Tn); see, e.g., (Freedman
1983, p. 47). Moreover, QV d is not a vector space (Schied 2016). It follows easily
from Föllmer’s pathwise Itô formula that for the following class of “basic admissi-
ble integrands” ξ , the Itô integral

∫ t

r
ξ(s) dS(s) exists for all t ∈ [r, u] ⊂ [0, T ] as

the finite limit of Riemann sums in (2.4); see (Schied 2014, p. 86). This integral is
sometimes also called the Föllmer integral.

Definition 2.2 (Basic admissible integrands). For 0 ≤ r < u ≤ T , anRd -valued
function [r, u] � t �→ ξ(t) is called a basic admissible integrand for S ∈ QV d , if
there exist m ∈ N, a continuous function A : [r, u] → R

m whose components are
functions of bounded variation, an open set O ⊂ R

m×R
d such that (A(t),S(t)) ∈ O

for all t, and a continuously differentiable function f : O → R for which the function
x → f (A(t), x) is for all t twice continuously differentiable on its domain, such that
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ξ(t) = ∇xf (A(t),S(t)),

where ∇xf (a, x) denotes the gradient of x → f (a, x).

Following Bick and Willinger (1994), we will from now on consider not just one
particular price trajectory S, but admit an entire class S ⊂ QV d of such trajectories
so as to account for the uncertainty of the actual realization of the price trajectory.
Specifically, we will consider the classes

Sa :=
{

S∈QV d

∣
∣
∣
∣
〈
Si, Sj

〉
(t) =

∫ t

0
aij (s,S(s)) ds for all t ∈ [0, T ] and 1≤ i, j ≤ d

}

and

S +
a :=

{

S∈QV d

∣
∣
∣
∣Si(t)>0,

〈
Si, Sj

〉
(t)=

∫ t

0
aij (s,S(s))Si(s)Sj (s)ds for all t and i,j

}

,

where a(t, x) = (aij (t, x))i,j=1,...,d is a continuous function of (t, x) ∈ [0, T ] × R
d

(respectively of (t, x) ∈ [0, T ] × R
d+ in case of S +

a ) into the set of positive definite
symmetric d×d-matrices. Additional assumptions on a(t, x) will be formulated later
on. Here, R+ := (0, ∞), and we will write Rd

(+) to denote the two possibilities, Rd

andRd+, according to whether we are consideringSa orS +
a . Similarly, we will write

S (+)
a etc. Price trajectories in S +

a can arise as sample paths of multi-dimensional
local volatility models. At least for d = 1, the local volatility function σ(·) := √

a(·)
is often chosen by calibrating to the market prices of liquid plain vanilla options
(Dupire 1997). Since in practice there are only finitely many given options prices,
σ(·) is typically only determined on a finite grid (Bühler 2015), and so regularity
assumptions on σ(·) can be made without loss of generality.

Our next goal is to introduce and characterize a class of self-financing trading
strategies that may depend on the current value of the particular realization S ∈ S (+)

a

and includes candidates for hedging strategies of European derivatives. Before that,
let us introduce some notation. By C(D) we will denote the class of real-valued con-
tinuous functions on a setD ⊂ R

n. For an interval I ⊂ [0, T ]with nonempty interior,
◦
I , we denote by C1,2

(
I × R

d
(+)

)
the class of all functions in C

(
I × R

d
(+)

)
that are

continuously differentiable in (t, x) ∈ ◦
I ×R

d
(+), twice continuously differentiable in

x for all t ∈ ◦
I , and whose derivatives admit continuous extensions to I × R

d
(+). Let

us also introduce the following second-order differential operators,

L := 1

2

d∑

i,j=1

aij (t, x)
∂2

∂xi∂xj

and L + := 1

2

d∑

i,j=1

aij (t, x)xixj

∂2

∂xi∂xj

.
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Proposition 2.3. Suppose that 0 ≤ r < u ≤ T and that v ∈ C1,2
(
[r, u] × R

d
(+)

)
.

Then the following conditions are equivalent.

(a) For each S ∈ S (+)
a , there exists a basic admissible integrand ξS on [r, u] such

that

v(t,S(t)) = v(r,S(r)) +
∫ t

r

ξS(s) dS(s) for t ∈ [r, u].
(b) The function v satisfies the parabolic equation

∂v

∂t
+ L (+)v = 0 in [r, u] × R

d
(+). (2.8)

Moreover, if these equivalent conditions hold, then ξS in (a) must necessarily be
of the form

ξS(t) = ∇xv(t,S(t)). (2.9)

Now suppose that f : Rd
(+) → R is a continuous function for which there exists a

solution v to the following terminal-value problem,

(TVP(+))

⎧
⎪⎨

⎪⎩

v ∈ C1,2
(
[0, T ) × R

d
(+)

)
∩ C

(
[0, T ] × R

d
(+)

)
,

∂v
∂t

+ L (+)v = 0 in [0, T ) × R
d
(+),

v(T , x) = f (x) for x ∈ R
d
(+).

For S ∈ S (+)
a and t ∈ [0, T ), we can define

ξS(t) := ∇xv(t,S(t)) and ηS(t) := v(t,S(t)) − ξS(t) · S(t). (2.10)

We then obtain from Proposition 2.3 that

ξS(t) · S(t) + ηS(t) = v(t,S(t)) = v(0,S(0)) +
∫ t

0
ξS(s) dS(s). (2.11)

Thus, (ξS, ηS) is a self-financing trading strategy with portfolio value V S(t) =
v(t,S(t)). Since the function v is continuous on [0, T ] × R

d
(+), the limit V S(T ) :=

limt↑T V S(t) exists and satisfies

V S(T ) = f (S(T )) for all S ∈ S (+)
a .

In this sense, (ξS, ηS) is a strictly pathwise hedging strategy for the derivative with
payoff f (S(T )).

The preceding argument was first made by Bick and Willinger (1994, Proposition
3) in a one-dimensional setting. It is remarkable in several respects. For instance,
consider the one-dimensional case with a(t, x) = σ 2x2 for some σ > 0 so that
(TVP+) becomes the standard Black–Scholes equation, which can be solved for a
large class of payoff functions f. The preceding argument then shows that the Black–
Scholes formula—which is nothing other than an explicit formula for v(0, S0)—can
be derived without any probabilistic assumptions whatsoever. It follows, in particular,
that the fundamental assumption underlying the Black–Scholes formula is not the
log-normal distribution of asset price returns, but the fact that the quadratic variation
of the asset prices is of the form 〈S, S〉(t) = σ 2

∫ t

0S(s)2 ds. Let us now state general
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existence results for solutions of (TVP) and (TVP+), which in the case of (TVP) is
taken from Janson and Tysk (2004). Recall that we assume that a(t, x) is positive
definite for all t and x.

Theorem 2.4. Suppose that f ∈ C
(
R

d
(+)

)
has at most polynomial growth in the

sense that |f (x)| ≤ c0(1 + |x|p) for some constants c0, p > 0. Then, under the
following conditions, (TVP(+)) admits a unique solution v(t, x) within the class of
functions that are of at most polynomial growth uniformly in t.

(a) (Janson and Tysk, 2004, Theorem A.14) In case of (TVP), we suppose that
aij (t, x) is locally Hölder continuous on [0, T ) × R

d and that |aij (t, x)| ≤
c1(1 + |x|2) for a constant c1 ≥ 0, all (t, x) ∈ [0, T ] × R

d , and all i, j .
(b) In case of (TVP+), we suppose that aij (t, x) is bounded and locally Hölder

continuous on [0, T ) × R
d for all i, j .

Our next goal is to extend the preceding hedging argument to the case of a path-
dependent exotic option. In practice, the payoff of such a derivative is usually of the
form

H = h(S(t0), . . . ,S(tN )) (2.12)

where 0 = t0 < t1 < · · · < tN = T denote the fixing times of daily closing prices
and h is a certain function.

Theorem 2.5. Suppose that the conditions of Theorem 2.4 are satisfied and h in
(2.12) is a locally Lipschitz continuous function on (Rd

(+))
N+1 with a Lipschitz con-

stant that grows at most polynomially. That is, there exist p ≥ 0 and L ≥ 0 such that,
for |xi |, |yi | ≤ m,

|h(x0, . . . , xN) − h (y0, . . . , yN)| ≤ (1 + mp)L

N∑

i=0

|xi − yi |.

Then, letting

vN (t, x0, . . . , xN, x) := h (x0, . . . , xN) for t ∈ [0, T ], x ∈ R
d
(+),

the following recursive scheme for functions vk : [tk, tk+1
]×

(
R

d
(+)

)k+1×R
d
(+) → R,

for k = 0, . . . , N − 1, is well-defined.

• For k = N − 1, N − 2, . . . , 0, the function fk+1(x) := vk+1 (tk+1, x0, . . . ,
xk, x, x) is continuous in x, and (t, x) �→ vk(t, x0, . . . , xk, x) is the solution of
(T V P (+)) with terminal condition fk+1 at time tk+1.

The condition on the local Lipschitz continuity of h in the preceding result can
often be relaxed in more specific situations. Examples are the pathwise versions of
the (d-dimensional) Bachelier and Black–Scholes models, which both correspond
to the choice aij (t, x) = ãij for a constant positive definite matrix (̃aij ). In these
cases the recursive scheme in Theorem 2.5 can be solved for large classes of payoff
functions h without requiring local Lipschitz continuity. As a matter of fact, even
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the continuity of h can be relaxed so as to account for discontinuous payoffs as,
e.g., in barrier options. This also applies to the strictly pathwise hedging argument
that we are going to formulate next. However, these relaxations need case-by-case
arguments. We therefore do not spell them out explicitly here and leave the details to
the interested reader.

Now let H be an exotic option as in (2.12) and suppose that the recursive scheme
in Theorem 2.5 holds for functions vk , k = 0, . . . , N . When denoting by ∇xvk the
gradient of the function x �→ vk (t, x0, . . . , xk, x), then

ξS(t) := ∇xvk (t,S(t0), . . . ,S(tk),S(t)) ,

ηS(t) := vk (t,S(t0), . . . ,S(tk),S(t)) − ξS(t) · S(t),
for t ∈ [tk, tk+1),

(2.13)
is a self-financing trading strategy on each interval [tk, tk+1) in the sense that

ξS(t) · S(t) + ηS(t) = vk (t,S(t0), . . . ,S(tk),S(t))

= vk(tk,S(t0), . . . ,S(tk),S(tk)) +
∫ t

tk

ξS(s) dS(s).

The continuity of t �→ vk(t,S(t0), . . . ,S(tk),S(t)) implies the existence of the
limit ∫ tk+1

tk

ξS(s) dS(s) := lim
t↑tk+1

∫ t

tk

ξS(s) dS(s)

and hence allows us to define
∫ t

0
ξS(s) dS(s) :=

�−1∑

k=0

∫ tk+1

tk

ξS(s) dS(s) +
∫ t

t�

ξS(s) dS(s), t ∈ [0, T ], (2.14)

where � is the largest k such that tk < t . With these conventions, we obtain the
following Delta hedging result.

Corollary 2.6. Let H be an exotic option as in (2.12) and suppose that the recur-
sive scheme in Theorem 2.5 holds for functions vk , k = 0, . . . , N . Then, for each
S ∈ S (+)

a , the strategy (2.13) is self-financing in the above sense and satisfies

lim
t↑T

ξS(t) · S(t) + ηS(t) = v0(0,S(t0)) +
∫ T

0
ξS(s) dS(s) = h(S(t0), . . . ,S(tN )).

In this sense, (ξS, ηS) is a strictly pathwise Delta hedging strategy for H.

The preceding corollary establishes a general, strictly pathwise hedging result for
a large class of exotic options arising in practice. It also identifies v0(0,S(t0)) as
the amount of cash needed at t = 0 so as to perfectly replicate the payoff H for all
price trajectories in S (+)

a . In continuous-time finance, this amount is usually equated
with an arbitrage-free price for H. In our situation, however, the interpretation of
v0(0,S(t0)) as an arbitrage-free price lacks an essential ingredient: We do not know
whether our class of trading strategies is indeed arbitrage-free with respect to all pos-
sible price trajectories in S (+)

a . This question will now be explored in the subsequent
section. Our corresponding result, Theorem 3.3, gives sufficient conditions under
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which trading strategies, as those in Corollary 2.6, do indeed not generate arbitrage
in our pathwise framework. Theorem 3.3 will be the main result of this paper.

Remark 2.7 (Robustness of the hedging strategy). The strategy (2.13) yields
a perfect hedge for the exotic option H only if the actually realized price tra-
jectory, S, belongs to the set S (+)

a . In reality, however, the realized quadratic
variation is typically subject to uncertainty, and therefore it may turn out a poste-
riori that S does actually not belong to S (+)

a . If S nevertheless belongs to QV d ,
one can then speak of volatility uncertainty. One possible approach to volatil-
ity uncertainty was developed in (Lyons 1995), where, for the case in which
H = h(S(T )), the linear Eq. (TVP+) is replaced by a certain nonlinear par-
tial differential equation that corresponds to a worst-case approach within a class
of price trajectories whose realized volatility may vary within a given set. A dif-
ferent approach to volatility uncertainty was proposed in (El Karoui et al. 1998)
for the case d = 1, in which we write S instead of the vector notation S.
Although (El Karoui et al. 1998) is set up in a diffusion framework, it is straight-
forward to translate the comparison result of (El Karoui et al. 1998, Theorem 6.2)
into a strictly pathwise framework. For options of the form H = h(S(T )) with
h ≥ 0 convex, one then gets that the Delta hedge (2.13) is robust in the sense that
it is still a superhedge as long as a overestimates the realized quadratic variation,
i.e.,

∫ t

r
a(s, S(s)) ds ≥ 〈S, S〉(t) − 〈S, S〉(r) for 0 ≤ r ≤ t ≤ T . Thus, if a Delta

hedging strategy is robust, then a trader can monitor its performance by comparing
a(t, S(t)) to the realized quadratic variation 〈S, S〉. In (Schied and Stadje 2007), it
was analyzed to what extent the preceding result can be extended to exotic payoffs of
the form H = h(S(t0), . . . , S(tN )). It was shown that robustness then breaks down
for a large class of relevant convex payoff functions h, but that it still holds if h is
directionally convex.

Absence of pathwise arbitrage

We are now going to study the absence of pathwise arbitrage within a class of
strategies that is suggested by the pathwise Delta hedging strategies constructed in
Theorem 2.5 and Corollary 2.6. We refer to the paragraph preceding Remark 2.7 for
a motivation of this problem. Let us first introduce the class of strategies we will
consider.

Definition 3.1. Suppose thatN ∈ N, 0 = t0 < t1 < · · · < tN = tN+1 = T , and vk

(k = 0, . . . , N) are real-valued continuous functions on [tk, tk+1]×
(
R

d
(+)

)k+1×R
d
(+)

such that, for k = 0, . . . , N−1, the function (t, x) �→ vk (t, x0, . . . , xk, x) is the solu-
tion of (TVP(+)) with terminal condition fk+1(x) := vk+1 (tk+1, x0, . . . , xk, x, x) at
time tk+1. For S ∈ S (+)

a , we then define ξS as in (2.13) and

V S
ξ (t) := v0(0,S(0)) +

∫ t

0
ξS(s) dS(s), (3.1)
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where the pathwise Itô integral is understood as in (2.14). By X (+) we denote the
collection of all pairs (v0(0, ·), ξ ·) that arise in this way.

Theorem 2.5 gives sufficient conditions for the existence of a family of functions
(vk) as in the preceding definition, but these conditions are not necessary. In partic-
ular, as mentioned above, the local Lipschitz continuity of the terminal function vN

can be relaxed in many situations. We can now define our strictly pathwise notion of
an arbitrage strategy.

Definition 3.2. ((Admissible) arbitrage opportunity) A pair (v0(0, ·), ξ ·) ∈
X (+) is called an arbitrage opportunity for S (+)

a if the following conditions hold.

(a) V S
ξ
(T ) ≥ 0 for all S ∈ S (+)

a .

(b) There exists at least one S ∈ S (+)
a for which V S

ξ
(0) = v0(0,S(0)) ≤ 0 and

V S
ξ
(T0) > 0 for some T0 ∈ (0, T ].

An arbitrage opportunity (v0(0, ·), ξ ·) will be called admissible if the following
condition is also satisfied.

(c) There exists a constant c ≥ 0 such that V S
ξ
(t) ≥ −c for all S ∈ S (+)

a and
t ∈ [0, T ].

Let us comment on the preceding definition. Condition (a) states that one can fol-
low the strategy (v0(0, ·), ξ ·) up to time T without running the risk of ending up
with negative wealth at the terminal time. Now let S be as in condition (b). The
initial spot value, S0 := S(0), will then be such that v0(0,S0) = V S

ξ
(0) ≤ 0.

Hence, for any price trajectory S̃ ∈ S (+)
a with S̃(0) = S0, only a nonpositive ini-

tial investment v0(0,S0) = V S̃,ξ (0) is required so as to end up with the nonnegative
terminal wealth V S̃,ξ (T ) ≥ 0. Moreover, for the particular price trajectory S, there
exists a time T0 at which one can make the strictly positive profit V S

ξ
(T0) > 0.

This profit can be locked in, e.g., by halting all trading from time T0 onward. In
this sense, the strategy (v0(0, ·), ξ ·) is indeed an arbitrage opportunity. Condition
(c) is a constraint on the strategy (v0(0, ·), ξ ·) that is analogous to the admissibil-
ity constraint that is usually imposed in continuous-time probabilistic models so as
to exclude doubling-type strategies. Indeed, it follows, e.g., from Dudley’s (1977)
result that standard diffusion models typically admit arbitrage opportunities in the
class of strategies whose value process is not bounded from below (see also the
discussion in (Jeanblanc et al. 2009, Section 1.6.3)). In our pathwise setting, an
example of an arbitrage opportunity that does not satisfy condition (c) will be pro-
vided in Example 3.4 below. First, however, let us state the main result of our
paper.

Theorem 3.3 (Absence of admissible arbitrage). Suppose that a(t, x) is contin-
uous, bounded, and positive definite for all (t, x) ∈ [0, T̃ ] × R

d
(+), where T̃ > T .

Then there are no admissible arbitrage opportunities in X (+).
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Example 3.4. (A non-admissible arbitrage opportunity) Suppose that d = 1
and a ≡ 2. Then the assumptions of Theorem 3.3 are clearly satisfied. Moreover,
L = ∂2/∂x2 and (TVP) is the time-reversed Cauchy problem for the standard heat
equation. There are many explicit examples of nonvanishing functions v satisfying
(TVP) with terminal condition f ≡ 0; see, e.g., (Widder 1975, Section II.6). By
Widder’s uniqueness theorem for nonnegative solutions of the heat equation, (Widder
1975, Theorem VIII.2.2), any such function v must be unbounded from above and
from below on every nontrivial strip [t, T ] × R with t < T . In particular, there must
be 0 ≤ t0 < t1 < T and x0, x1 ∈ R such that v(t0, x0) = 0 and v(t1, x1) > 0. By
means of a time shift, we can assume without loss of generality that t0 = 0. It can
be shown easily that Sa contains trajectories that can connect the two points x0 and
x1 within time t1 − t0, and so it follows that the function v gives rise to an arbitrage
opportunity.

Extension to functionally dependent strategies

Recall from (2.12) our representation H = h(S(t0), . . . ,S(tN )) of the payoff of an
exotic option, based on asset prices sampled at the N + 1 dates 0 = t0 < t1 < · · · <

tN = T . If N is large, it may be convenient to use a continuous-time approximation of

the payoffH. For instance, the payoffH =
(

1
N

∑N
n=1 S1

tn
− K

)+
of an average-price

Asian call option on the first asset, S1, can be approximated by a call option based

on a continuous-time average of asset prices, H ≈
(
1
T

∫ T

0 S1
t dt − K

)+
. Approxima-

tions of this type may be easier to treat analytically and are standard in the textbook
literature. In this section, we extend our preceding results to a situation that covers
such continuous-time approximations of (2.12). That is, we will consider payoffs of
the form H(S), where S describes the entire path of the underlying price trajectory
up to time T, and H is a suitable mapping from the Skorohod space D([0, T ],Rd)

to R. This will involve functional Itô calculus as introduced by (Dupire 2009) and
further developed by Cont and Fournié (2010). In the sequel, we will use the same
notation as in (Cont and Fournié 2010).

For a d-dimensional càdlàg path X in the Skorohod space D([0, T ],Rd) we write
X(t) for the value of X at time t and Xt = (X(u))0≤u≤t for the restriction of X to
the interval [0, t]. Hence, Xt ∈ D([0, t],Rd). We will work with non-anticipative
functionals as defined in (Cont and Fournié 2010, Definition 1), i.e., with a family
F = (Ft )t∈[0,T ] of maps Ft : D([0, t],Rd) �→ R. For all further notation and
relevant definitions, we refer to (Cont and Fournié 2010, Section 1).

The functional Itô formula (in the form of (Cont and Fournié 2010, Theorem 3))
yields that we can define general admissible integrands ξ in the following way, so as
to ensure that the pathwise Itô integral

∫ t

r
ξ(s) dS(s) exists for all t ∈ [r, u] ⊂ [0, T ]

as a finite limit of Riemann sums; see (Cont and Fournié 2010, p. 1051).

Definition 4.1. (General admissible integrands) Suppose that 0 ≤ r < u ≤ T ,
m ∈ N, V : [r, u] → R

m is càdlàg and satisfies supt∈[r,u]nTn∩[r,u]|V(t)−V(t−)| → 0,
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and F is a non-anticipative functional in C
1,2([r, u]) (see (Cont and Fournié 2010,

Definition 9)) such that the following regularity conditions are satisfied:

(a) F depends in a predictable manner on its second argument V, i.e.,

Ft(Xt ,Vt ) = Ft(Xt ,Vt−),

where Vt− denotes the path defined on [r, t] by
Vt−(s) = V(s), s ∈ [r, t), Vt−(t) = V(t−),

(b) F, its vertical derivative ∇xF, and its second vertical derivative ∇2
xF belong to

the class F∞
l (see (Cont and Fournié 2010, Definition 3)),

(c) the horizontal derivativeDF as well as the second vertical derivative ∇2
xF of F

satisfy the local boundedness condition (Cont and Fournié 2010, equation (9)).

Then

ξ(t) = ∇xFt

(
S[r,u],t ,Vt

)

is called a general admissible integrand for S ∈ QV d . Here, S[r,u] denotes the
restriction of S to the interval [r, u].

In analogy to Proposition 2.3, we will now characterize self-financing trading
strategies that may depend on the entire past evolution of the particular realization
S ∈ S (+)

a . For an interval I ⊂ [0, T ] with nonempty interior,
◦
I , we denote by

C
1,2(I ) the class of all non-anticipative functionals on

⋃
t∈[a,b] D([a, t],Rd

(+)) that

are horizontally differentiable and twice vertically differentiable on
◦
I and whose

derivatives are continuous at fixed times and admit continuous extensions to I.
Thus, lifting the second-order differential operators L and L + yields the

following operators on path space,

A := 1

2

d∑

i,j=1

aij (t,X(t))∇2
ij and A + := 1

2

d∑

i,j=1

aij (t,X(t))Xi(t)Xj (t)∇2
ij .

The following proposition is a functional version of Proposition 2.3.

Proposition 4.2. Suppose that 0 ≤ r < u ≤ T and let F ∈ C
1,2([r, u]) be a

non-anticipative functional satisfying the conditions from Definition 4.1.
Then the following conditions are equivalent.

(a) For each S ∈ S (+)
a , there exists a general admissible integrand ξS on [r, u]

such that

Ft

(
S[r,u],t

) = Fr

(
S[r,u],r

) +
∫ t

r

ξS(s) dS(s) for t ∈ [r, u].

(b) The functional F satisfies the path-dependent parabolic equation

DF + A (+)F = 0 on S (+)
a

⏐
⏐[r,u]. (4.1)
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Moreover, if these equivalent conditions hold, then ξS in (a) must necessarily be
of the form

ξS(t) = ∇xFt

(
S[r,u],t

)
. (4.2)

Now suppose that for suitably given H : D([0, T ],Rd
(+)) → R there exists a

solution F to the following path-dependent terminal-value problem,

(
FTVP(+)

)

⎧
⎪⎪⎨

⎪⎪⎩

F ∈ C
1,2([0, T )) satisfies the conditions from Definition 4.1,

DF + A (+)F = 0 in
⋃

t∈[0,T ) D
(
[0, t],Rd

(+)

)
,

FT (XT ) = H(XT ) for XT ∈ D
(
[0, T ],Rd

(+)

)
.

Note that the terminal condition H has to be defined on the Skorohod space
D([0, T ],Rd

(+)) as opposed to C([0, T ],Rd
(+)), because we need to take its vertical

derivatives, which requires applying discontinuous shocks.
Then, for S ∈ S (+)

a and t ∈ [0, T ), we can define

ξS(t) := ∇xFt(St ) and ηS(t) := Ft(St ) − ξS(t) · S(t). (4.3)

Proposition 4.2 gives

ξS(t) · S(t) + ηS(t) = Ft(St ) = F0(S0) +
∫ t

0
ξS(s) dS(s), (4.4)

whence we infer that (ξS, ηS) is a self-financing trading strategy with portfolio
value V S(t) = Ft(St ). Since the functional F is left-continuous on [0, T ] and S is
continuous, the limit V S(T ) := limt↑T V S(t) exists and satisfies

V S(T ) = H(S) for all S ∈ S (+)
a .

Thus, (ξS, ηS) is a strictly pathwise hedging strategy for the derivative with payoff
H = H(S).

In the next step, we will explore conditions yielding the existence and uniqueness
of solutions to (FTVP) and (FTVP+). Path-dependent PDEs such as (4.1) are closely
related to backward stochastic differential equations (BSDEs) generalizing the (func-
tional) Feynman-Kac formula (Dupire 2009). In (Peng andWang 2016), a one-to-one
correspondence between a functional BSDE and a path-dependent PDE is established
for the Brownian case. This was then generalized in (Ji and Yang 2013) to the case
of solutions to stochastic differential equations with functionally dependent drift and
diffusion coefficients.

We will now use (Ji and Yang 2013, Theorem 20) to formulate conditions such
that (FTVP) and (FTVP+) admit unique solutions. To this end, we will need the
following regularity conditions from (Peng and Wang 2016, Definition 3.1).

Definition 4.3. The functional H : D([0, T ],Rd) �→ R on the Skorohod space
D([0, T ],Rd) is of class C2(D([0, T ],Rd)) if for all X ∈ D([0, T ],Rd) and t ∈



Probability, Uncertainty and Quantitative Risk  (2016) 1:3 Page 15 of 25

[0, T ], there exist p1 ∈ R
d and p2 ∈ R

d × R
d so that p2 is symmetric and the

following holds

H
(
XXh

t

)
− H(X) = p1 · h + 1

2
h�p2h + o(|h|2), h ∈ R

d ,

where XXh
t
(u) := X(u)I[0,t)(u) + (X(u) + h)I[t,T ](u). We denote H ′

Xt
(X) :=

p1 and H ′′
Xt

(X) := p2. Moreover, H : D
([0, T ],Rd

) �→ R is of class

C2
l,lip

(
D

([0, T ],Rd
))

if H ′
Xt

(X) and H ′′
Xt

(X) exist for all X ∈ D
(
[0, T ],Rd

(+)

)

and t ∈ [0, T ], and if there are constants C, k > 0 such that for all X,Y ∈
D

(
[0, T ],Rd

(+)

)
(with ‖ · ‖ denoting the supremum norm),

|H(X) − H(Y)| ≤ C(1 + ‖X‖k + ‖Y‖k)‖X − Y‖,
|H ′

Xt
(X) − H ′

Ys
(Y)| ≤ C(1 + ‖X‖k + ‖Y‖k)(|t − s| + ‖X − Y‖), t, s ∈ [0, T ]

|H ′′
Xt

(X) − H ′′
Ys

(Y)| ≤ C(1 + ‖X‖k + ‖Y‖k)(|t − s| + ‖X − Y‖), t, s ∈ [0, T ].

Theorem 4.4. Suppose that the terminal condition H of (FTVP(+)) is of class

C2
l,lip

(
D

(
[0, T ],Rd

(+)

))
. Then, under the following conditions, (FTVP(+)) admits

a unique solution F ∈ C
1,2([0, T )).

(a) (Ji and Yang, 2013, Theorem 20) In case of (FTVP), we suppose that
a(t,X(t)) = σ(t,X(t))σ (t,X(t))� with a Lipschitz continuous volatility
matrix σ.

(b) In case of (FTVP+), we suppose that a(t,X(t)) = σ(t,X(t))σ (t,X(t))� with
a Lipschitz continuous volatility matrix σ such that aii(t,X(t)) is also Lipschitz
continuous.

Remark 4.5. Note that analogous conditions on the covariance, respectively,
volatility structure, can also be formulated for the case where these quantities are
path-dependent, thanks to (Ji and Yang 2013, Theorem 20). However, for the purpose
of this paper, which is establishing conditions on the covariance of the underlying
under which no admissible arbitrage opportunities exist, we must stick to the choice
of Markovian volatility in order to be able to apply a support theorem later on.

As above, the quantity F0(S0) can be identified as the amount of cash needed at
t = 0 so as to perfectly replicate the payoff H. But in order to interpret F0(S0) as an
arbitrage-free price, we have to know whether our class of trading strategies is indeed
arbitrage-free. Below we will formulate Theorem 4.7, which is a functional analogue
of Theorem 3.3.

Definition 4.6. Suppose that the non-anticipative functional F satisfying the
conditions from Definition 4.1 is the solution of the path-dependent heat Eq. (4.1)

DF + A (+)F = 0 on
⋃

t∈[0,T )

C
(
[0, t],Rd

(+)

)
.
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For S ∈ S (+)
a , we then define ξS as in (4.2) (on [0, T )) and

V S
ξ (t) := F0(S0) +

∫ t

0
ξS(s) dS(s). (4.5)

By Y (+) we denote the collection of all pairs (F0(·), ξ ·) that arise in this way.

The notion of an (admissible) arbitrage opportunity for S (+)
a in the functional

setting is defined in analogy to Definition 3.2; we only have to replace X (+) by
Y (+).

Theorem 4.7 (Absence of admissible arbitrage). Suppose that a(t,X(t)) is con-
tinuous, bounded, and positive definite for all (t,X(t)) ∈ [0, T̃ ] × R

d
(+), where

T̃ > T . Then there are no admissible arbitrage opportunities in Y (+).

Proofs

Proofs of the results from Sections “Strictly pathwise hedging of exotic
derivatives and Absence of pathwise arbitrage”

Proof of Proposition 2.1. We first consider the case i = j . Then,

ξ ii (s) · (S(s′) − S(s)) = 2 (Si(s) − Kii) (Si(s
′) − Si(s))

= (
Si(s

′) − Kii

)2 − (Si(s) − Kii)
2 − (Si(s

′) − Si(s))
2.

Summing over s ∈ Tn yields
∑

s∈Tn, s≤t

ξ ii (s) · (S(s′) − S(s)) = (Si(tn) − Kii)
2 − (Si(0) − Kii)

2

−
∑

s∈Tn, s≤t

(Si(s
′) − Si(s))

2,
(5.1)

where tn = max{s′ | s ∈ Tn, s ≤ t} ↘ t as n ↑ ∞. Clearly, the limit of the left-
hand side exists if and only if the limit of the right-hand side exists, which implies
the result for i = j . In case i �= j , the result follows just as above by using
the already established existence of 〈Sk, Sk〉(t) for all k and t and by noting that∑

k,�∈{i,j} 〈Sk, S�〉 = 〈
Si + Sj , Si + Sj

〉
.

Proof of Proposition 2.3. The pathwise Itô formula yields that for S ∈ S (+)
a ,

v(t,S(t)) = v(r,S(r)) +
∫ t

r

∇xv(s,S(s)) dS(s)

+
∫ t

r

(
∂

∂t
v(s,S(s)) + L (+)v(s,S(s))

)

ds.

(5.2)

This immediately yields that (b) implies (a) and that (2.9) must hold.
Let us now assume that (a) holds. Then
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∫ t

r

(
ξS(s) − ∇xv(s,S(s))

)
dS(s) =

∫ t

r

(
∂

∂t
v(s,S(s)) + L (+)v(s,S(s))

)

ds.

Since the right-hand side has zero quadratic variation (Sondermann 2006, Proposi-
tion 2.2.2), the same must be true of the left-hand side. By (Schied 2014, Proposition
12), the quadratic variation of the left-hand side is given by

∫ t

r

(
ξS(s) − ∇xv(s,S(s))

)�
a(s,S(s))

(
ξS(s) − ∇xv(s,S(s))

)
ds

in case of S ∈ Sa . Taking the derivative with respect to t gives
(
ξS(t) − ∇xv(t,S(t))

)�
a(t,S(t))

(
ξS(t) − ∇xv(t,S(t))

)
= 0

for all t, and the fact that the matrix a(t,S(t)) is positive definite yields that (2.9)
must hold. For S ∈ S +

a , the matrix a(s,S(s)) needs to be replaced by the matrix with
components aij (s,S(s))Si(s)Sj (s), and we arrive at (2.9) by the same arguments
as in the case of S ∈ Sa . Plugging (2.9) into (5.2) and using (a) implies that the
rightmost integral in (5.2) vanishes identically, which establishes (b) by again taking
the derivative with respect to t.

Now we prepare for the proof of Theorem 2.4 (b). The following lemma can be
proved by means of a straightforward computation.

Lemma 5.1. For x = (x1, . . . , xd)� ∈ R
d let exp(x) := (ex1 , . . . , exd )� ∈ R

d+.
Then v(t, x) solves (TVP+) if and only if ṽ(t, x) := v(t, exp(x)) solves

(T̃VP)

⎧
⎨

⎩

ṽ ∈ C1,2([0, T ) × R
d) ∩ C([0, T ] × R

d),
∂ṽ
∂t

+ L̃ ṽ = 0 in [0, T ) × R
d ,

ṽ(T , x) = f̃ (x) for x ∈ R
d ,

where f̃ (x) = f (exp(x)) and

L̃ := 1

2

d∑

i,j=1

ãij (t, x)
∂2

∂xi∂xj

+
d∑

i=1

b̃i (t, x)
∂

∂xi

, x ∈ R
d , (5.3)

for ãij (t, x) := aij (t, exp(x)) and b̃i (t, x) := − 1
2aii(t, exp(x)).

Next, the terminal-value problem (T̃VP) will be once again transformed into
another auxiliary terminal-value problem. To this end, we need another transforma-
tion lemma, whose proof is also left to the reader.

Lemma 5.2. For p > 0 let g(x) := 1 + ∑d
i=1 epxi . Then ṽ(t, x) solves (T̃VP) if

and only if v̂(t, x) := g(x)−1ṽ(t, x) solves

(T̂VP)

⎧
⎨

⎩

v̂ ∈ C1,2([0, T ) × R
d) ∩ C([0, T ] × R

d),
∂v̂
∂t

+ L̂ v̂ = 0in [0, T ) × R
d ,

v̂(T , x) = f̂ (x)for x ∈ R
d ,
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where f̂ (x) = f̃ (x)/g(x) and

L̂ := 1

2

d∑

i,j=1

ãij (t, x)
∂2

∂xi∂xj

+
d∑

i=1

b̂i (t, x)
∂

∂xi

+ ĉ(t, x), x ∈ R
d , (5.4)

for

b̂i (t, x) = b̃i (t, x) + pg(x)−1
d∑

j=1

epxj ãij (t, x),

ĉ(t, x) = p(p − 1)

2g(x)

d∑

i=1

ãii (t, x)epxi .

Proof of Theorem 2.4. We will show that (T̃VP) admits a solution ṽ if |f̃ (x)| ≤
c(1 + ∑d

i=1 epxi ) for some p > 0 and that ṽ is unique in the class of functions that
satisfy a similar estimate uniformly in t. To this end, note that the coefficients of
L̂ satisfy the conditions of (Janson and Tysk 2004, Theorem A.14), i.e., â(t, x) =
ã(t, x) is positive definite, there are constants c1, c2, c3 such that for all t, x, and i, j

we have that |̃aij (t, x)| ≤ c1(1+|x|2), |̂bi(t, x)| ≤ c2(1+|x|), |̂c(t, x)| ≤ c3, and ãij ,
b̂i , and ĉ are locally Hölder continuous in [0, T )×R

d . It therefore follows that (T̂VP)

admits a unique bounded solution v̂ whenever f̂ is bounded and continuous. But
then ṽ(t, x) := g(x)̂v(t, x) solves (T̃VP) with terminal condition f̃ (x) := g(x)f̂ (x).

Hence, (T̃VP) admits a solution whenever |f̃ (x)| ≤ c
(
1 + ∑d

i=1 epxi

)
for some

p > 0. Lemma 5.1 now establishes the existence of solutions to (TVP+) if the
terminal condition is continuous and has at most polynomial growth.

Remark 5.3. It follows from the preceding argument that, if |f (x)| ≤ c(1+|x|p),
then the corresponding solution v of (TVP+) satisfies |v(t, x)| ≤ c̃(1 + |x|p) for a
certain constant c̃ and with the same exponent p.

Proof of Theorem 2.5. We first prove the result in the case of (TVP). The function
vk will be well-defined if fk+1 is continuous and has at most polynomial growth. It is
easy to see that these two properties will follow if vk+1 satisfies the following three
conditions:

(i) (x0, . . . , xk+1, x) �→ vk+1(t, x0, . . . , xk+1, x) has at most polynomial growth;
(ii) x �→ vk+1(tk+1, x0, . . . , xk+1, x) is continuous for all x0, . . . , xk+1;
(iii) (x0, . . . , xk+1) �→ vk+1(t, x0, . . . , xk+1, x) is locally Lipschitz continuous,

uniformly in t and locally uniformly in x, with a Lipschitz constant that grows
at most polynomially. More precisely, there exist p ≥ 0 and L ≥ 0 such that,
for |x|, |xi |, |yi | ≤ m and t ∈ [tk+1, tk+2],

|vk+1(t, x0, . . . , xk+1, x) − vk+1(t, y0, . . . , yk+1, x)|≤ (1+mp)L

k+1∑

i=0

|xi−yi |.
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We will now show that vk inherits properties (i), (ii), and (iii) from vk+1. Since
these properties are obviously satisfied by vN , the assertion will then follow by
backward induction.

To establish (i), let p, c > 0 be such that f̃k+1(x) := c (|x0|p + · · · +
|xk|p + |x|p + |x|p) satisfies −f̃k+1 ≤ fk+1 ≤ f̃k+1. Then let ṽk(t, x0, . . . , xk, x)
be the solution of (TVP) with terminal condition f̃k+1 at time tk+1. Theorem 2.4,
(Janson and Tysk 2004, Theorem A.7), and the linearity of solutions imply that
(x0, . . . , xk, x) �→ ṽk(t, x0, . . . , xk, x) has at most polynomial growth, while the
maximum principle in the form of (Janson and Tysk 2004, Theorem A.5) implies that
−ṽk ≤ vk ≤ ṽk . This establishes (i).

Condition (ii) is satisfied automatically, as solutions to (TVP) are continuous by
construction.

To obtain (iii), let p and L be as in (iii) and xi , yi be given. We take m so that
m ≥ |xi | ∨ |yi | for i = 1, . . . , k and let δ := L

∑k
i=0 |xi − yi |. Then

− (
1 + mp + |x|p) δ ≤ vk+1 (tk+1, x0, . . . , xk, x, x)

− vk+1 (tk+1, y0, . . . , yk, x, x) ≤ (
1 + mp + |x|p) δ.

Now we define u(t, x) as the solution of (TVP) with terminal condition
u(tk+1, x) = |x|p at time tk+1. Theorem 2.4 implies that u is well defined, and
the maximum principle and (Janson and Tysk 2004, Theorem A.7) imply that 0 ≤
u(t, x) ≤ c|x|p for some constant c ≥ 0. Another application of the maximum
principle yields that

−(1+mp+u(t, x))δ≤vk(t, x0, . . . , xk, x)−vk(t, y0, . . . , yk, x) ≤ (1+mp+u(t, x))δ

for all t and x, which establishes that (iii) holds for vk with the same p and the new
Lipschitz constant (1 + c)L.

Now we turn to the proof in case of (TVP+). It is clear from our proof of
Theorem 2.4 (b) that (TVP+) inherits the maximum principle from (T̂VP). More-
over, Remark 5.3 shows that vk inherits property (i) from vk+1. So Remark 5.3 can
replace (Janson and Tysk 2004, Theorem A.7) in the preceding argument. Therefore,
the proof for (TVP+) can be carried out in the same way as for (TVP).

Proof of Theorem 3.3. We first prove the result in case of X . Let us suppose by
way of contradiction that there exists an admissible arbitrage opportunity in X , and
let 0 = t0 < t1 < · · · < tN = tN+1 = T and vk denote the corresponding time points
and functions as in Definition 3.1.

Under our assumptions, the martingale problem for the operator L is well-posed
(Stroock and Varadhan 1969). Let Pt,x denote the corresponding Borel probability
measures on C([t, T ],Rd) under which the coordinate process, (X(u))t≤u≤T , is a
diffusion process with generator L and satisfies X(t) = x Pt,x-a.s. In particular, Xi

is a continuous local Pt,x-martingale for i = 1, . . . , d. Moreover, the support theorem
(Stroock and Varadhan 1972, Theorem 3.1) states that the law of (X(u))t≤u≤T under
Pt,x has full support on Cx([t, T ],Rd) := {ω ∈ C([t, T ],Rd) | ω(t) = x}.

In a first step, we now use these facts to show that all functions vk

are nonnegative. To this end, we note first that the support theorem implies
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that the law of (X(t1), . . . ,X(tN )) under P0,x has full support on (Rd)N .
Since P0,x-a.e. trajectory in Cx([0, T ],Rd) belongs to Sa , it follows that the
set {(S(t1), . . . ,S(tN )) |S ∈ Sa, S(0) = x} is dense in (Rd)N . Condition (a) of
Definition 3.2 and the continuity of vN thus imply that vN(T , x0, . . . , xN+1) ≥ 0
for all x0, . . . , xN+1. In the same way, we get from the admissibility of the arbitrage
opportunity that vk(t, x0, . . . , xk, x) ≥ −c for all k, t ∈ [tk, tk+1] and x0, . . . , xk ,
x ∈ R

d .
For the moment, we fix x0, . . . , xN−1 and consider the function u(t, x) :=

vN−1(t, x0, . . . , xN−1, x). Let Q ⊂ R
d be a bounded domain whose closure is con-

tained in R
d and let τ := inf{s |X(s) /∈ Q} be the first exit time from Q. By Itô’s

formula and the fact that u solves (TVP) we have Pt,x-a.s. for t ∈ [tN−1, T ) that

u(T ∧ τ,X(T ∧ τ)) = u(t, x) +
∫ T ∧τ

t

∇xu(s,X(s)) dX(s). (5.5)

Since∇xu and the coefficients ofL are bounded in the closure ofQ, the stochastic
integral on the right-hand side is a true martingale. Therefore,

u(t, x) = Et,x[ u(T ∧ τ,X(T ∧ τ)) ]. (5.6)

Now let us take an increasing sequence Q1 ⊂ Q2 ⊂ · · · of bounded domains
exhaustingRd and whose closures are contained inRd . By τn we denote the exit time
from Qn. Then, an application of (5.6) for each τn, Fatou’s lemma in conjunction
with the fact that u ≥ −c, and the already established nonnegativity of u(T , ·) yield

u(t, x) = lim
n↑∞Et,x[ u(T ∧ τn,X(T ∧ τn)) ] ≥ Et,x[ u(T ,X(T )) ] ≥ 0. (5.7)

This establishes the nonnegativity of vN−1 and in particular of the terminal condi-
tion fN−1 for vN−2. We may therefore repeat the preceding argument for vN−2 and
so forth. Hence, vk ≥ 0 for all k.

Now let S ∈ Sa and T0 be such that V S
ξ
(0) ≤ 0 and V S

ξ
(T0) > 0, which exists

according to the assumption made at the beginning of this proof. If k is such that tk <

T0 ≤ tk+1 and x0 := S(0), then v0(0, x0) = 0 and vk(T0,S(t0), . . . ,S(tk),S(T0)) >

0. By continuity, we actually have vk(T0, ·) > 0 in an open neighborhood U ⊂
Cx([0, T ],Rd) of the path S.

Since P0,x0 -a.e. sample path belongs to Sa , Itô’s formula gives that P0,x0 -a.s.,

vk(T0,X(t0), . . . ,X(tk),X(T0)) = v0(0, x0) +
∫ T0

0
ξX(t) dX(t).

Localization as in (5.7) and using the fact that v� ≥ 0 for all � implies that

0 = v0(0, x0) ≥ E0,x0 [ vk(T0,X(t0), . . . ,X(tk),X(T0)) ] ≥ 0.

Applying once again the support theorem now yields a contradiction to the fact
that vk(T0, ·) > 0 in the open set U. This completes the proof for X .

Now we turn to the proof for X +. In this case, the martingale problem for the
operator L̃ defined in (5.3) is well posed since the coefficients of L̃ are again
bounded and continuous (Stroock and Varadhan 1969). These properties of the
coefficients also guarantee that the support theorem holds (Stroock and Varadhan
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1972, Theorem 3.1). If (̃Ps,x, X̃) is a corresponding diffusion process, we can con-
sider the laws of X(t) := exp(X̃(t)) and, by Lemma 5.1, obtain a solution to the
martingale problem for L +, which satisfies the support theorem with state space
R

d+. We can now simply repeat the arguments from the proof for X to also get the
result for X +.

Proofs of the results from Section “Extension to functionally dependent
strategies”

Proof of Proposition 4.2. The proof is analogous to the proof of Proposition 2.3.
For S ∈ Sa , all that is needed in addition to the arguments of Proposition 2.3 is the
fact that the quadratic variation of

∫ t

r

(
ξS(s) − ∇xFs(S[r,u],s)

)
dS(s)

is given by
∫ t

r

(
ξS(s) − ∇xFs(S[r,u],s)

)�
a(s,S(s))

(
ξS(s) − ∇xFs(S[r,u],s)

)
ds;

see (Schied and Voloshchenko 2016, Proposition 2.1). For S ∈ S +
a ,

the matrix a(s,S(s)) has to be replaced by the matrix with components
aij (s,S(s))Si(s)Sj (s).

To prove Theorem 4.4 and Theorem 4.7 we need the following lemma, which
is a straightforward extension of Lemma 5.1 to the functional setting. Its proof
is therefore left to the reader. For X in the Skorohod space D([0, T ],Rd) we set
(exp(X))t = exp(Xt ) := (exp(X(u)))0≤u≤t ∈ D([0, t],Rd+).

Lemma 5.4. The functional Ft(Xt ) solves (FTVP+) if and only if F̃t (Xt ) :=
Ft(exp(Xt )) solves

(F̃TVP)

⎧
⎨

⎩

F̃ ∈ C
1,2([0, T )) satisfies the conditions from Definition 4.1,

DF̃ + Ã F̃ = 0 in
⋃

t∈[0,T ) D([0, t],Rd),

F̃T (XT ) = H̃ (XT ) for XT ∈ D([0, T ],Rd),

where H̃ (XT ) = H(exp(XT )) and

Ã := 1

2

d∑

i,j=1

ãij (t,X(t))∇2
ij +

d∑

i=1

b̃i (t,X(t))∂i in
⋃

t∈[0,T )

D
(
[0, t],Rd

)
,

(5.8)
where, as in (Cont and Fournié 2010, Eq. (15)), ∂i are the partial vertical derivatives,
ãij (t,X(t)) := aij (t, exp(X(t))), and b̃i (t,X(t)) := − 1

2aii(t, exp(X(t))).

Note that the chain rule for functional derivatives (see (Dupire 2009, p.6)) implies

the equivalence of the PDEs in (F̃TVP) and (FTVP).
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Regarding the regularity conditions in Definition 4.1, we note that F̃ will be reg-
ular enough if and only if F is regular enough (because exp(X(t)) is a sufficiently
regular functional).

Proof of Theorem 4.4. Part (a) directly follows from (Ji and Yang 2013,
Theorem 20).

To prove part (b), note that the coefficients of Ã satisfy the conditions of (Ji and
Yang 2013, Theorem 20), i.e., ã(t,X(t)) is positive definite and can be written as
σ̃ (t,X(t))̃σ (t,X(t))� with a Lipschitz continuous volatility coefficient σ̃ , and b̃i

is also Lipschitz. It therefore follows that (F̃TVP) admits a unique solution F̃ ∈
C
1,2([0, T )) if H̃ ∈ C2

l,lip(D([0, T ],Rd)). Lemma 5.4 now establishes the existence

of solutions to (FTVP+) if the terminal condition is of class C2
l,lip(D([0, T ],Rd+)).

Proof of Theorem 4.7. The proof is similar to the one of Theorem 3.3. We first
consider the case of Y . Let X and Pt,x (0 ≤ t ≤ T , x ∈ R

d ) be as in the proof
of Theorem 3.3. For a path Y ∈ C([0, T ],Rd), we define Pt,Yt as that probability
measure on C([0, T ],Rd) under which the coordinate process X satisfies Pt,Yt -
a.s. X(s) = Y(s) for 0 ≤ s ≤ t and under which the law of (X(u))t≤u≤T is equal to
Pt,Y(t). The support theorem (Stroock and Varadhan 1972, Theorem 3.1) then states
that the law of (X(u))0≤u≤T under Pt,Yt has full support on CYt ([0, T ],Rd) := {ω ∈
C([0, T ],Rd) | ωt = Yt }.

Now suppose by way of contradiction that there exists an admissible arbitrage
opportunity arising from a non-anticipative functional F as in Definition 4.6. In a
first step, we show that F is nonnegative on [0, T ] × C([0, T ],Rd). As in the proof
of Theorem 3.3, the support theorem implies that

{
(S(t))0≤t≤T |S ∈ Sa, S(0) = x

}

is dense in Cx([0, T ],Rd). Condition (a) of Definition 3.2 and the left-continuity of
F in the sense of (Cont and Fournié 2010, Definition 3) thus imply that FT (Y) ≥ 0
for all Y ∈ C([0, T ],Rd). In the same way, we get from the admissibility of the
arbitrage opportunity that Ft(Yt ) ≥ −c for all t ∈ [0, T ] and Y ∈ C([0, T ],Rd).
To show that actually Ft(Yt ) ≥ 0, let Q ⊂ R

d be a bounded domain whose closure
is contained in R

d and let τ := inf{s |X(s) /∈ Q} be the first exit time from Q. By
the functional change of variables formula, in conjunction with the fact that F solves
(FTVP) (on continuous paths), we obtain Pt,Yt -a.s. for t ∈ [0, T ) that

FT ∧τ (XT ∧τ ) = Ft(Yt ) +
∫ T ∧τ

t

∇xFs(Xs) dX(s). (5.9)

By (Schied and Voloshchenko 2016, Proposition 2.1), we have
〈∫ ·∧τ

t

∇xFs(Xs) dX(s)

〉

(T ) =
∫ T ∧τ

t

∇xFs(Xs)
�a(s,X(s))∇xFs(Xs) ds.

Since ∇xF and the coefficients of A are bounded in the closure of Q, the
stochastic integral on the right-hand side of (5.9) is a true martingale. Therefore,

Ft(Yt ) = Et,Yt [FT ∧τ (XT ∧τ ) ]. (5.10)
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Now let us take an increasing sequence Q1 ⊂ Q2 ⊂ · · · of bounded domains
exhaustingRd and whose closures are contained inRd . By τn we denote the exit time
from Qn. Then, an application of (5.10) for each τn, Fatou’s lemma in conjunction
with the fact that F ≥ −c, and the already established nonnegativity of FT (·) yield

Ft(Yt ) = lim
n↑∞Et,Yt

[
FT ∧τn(XT ∧τn)

] ≥ Et,Yt [FT (XT ) ] ≥ 0. (5.11)

This establishes the nonnegativity of F on [0, T ] × C([0, T ],Rd).
Now let S ∈ Sa and T0 be such that V S

ξ
(0) ≤ 0 and V S

ξ
(T0) > 0. Since V S

ξ
(t) =

Ft(St ) by Proposition 4.2, we have F0(S0) = 0 and FT0(ST0) > 0. By left-continuity
of F, we actually have FT0(·) > 0 in an open neighborhood U ⊂ CS(0)([0, T ],Rd)

of the path S.
Since P0,S(0)-a.e. sample path belongs to Sa , the functional change of variables

formula gives that P0,S(0)-a.s.,

FT0(XT0) = F0(S0) +
∫ T0

0
ξX(t) dX(t).

Localization as in (5.11) and using the fact that F ≥ 0 implies that

0 = F0(S0) ≥ E0,S(0)
[
FT0(XT0)

] ≥ 0.
Applying once again the support theorem now yields a contradiction to the fact

that FT0(·) > 0 in the open set U. This completes the proof for Y .
The proof for Y + is completed by an exponential transformation, as in the proof

of Theorem 3.3.
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